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Abstract 11 

Uncertainty in the interpretation of geological data is an inherent element of geology. Datasets 12 

from different sources: remotely sensed seismic imagery, field data and borehole data, are often 13 

combined and interpreted to create a geological model of the sub-surface. The data have limited 14 

resolution and spatial distribution that results in uncertainty in the interpretation of the data and 15 

in the subsequent geological model(s) created. Methods to determine the extent of 16 

interpretational uncertainty of a dataset, how to capture and express that uncertainty, and 17 

consideration of uncertainties in terms of risk have been investigated. Here I review the work 18 

that has taken place and discuss best practice in accounting for uncertainties in structural 19 

interpretation workflows. Barriers to best practice are reflected on, including the use of software 20 

packages for interpretation. Experimental evidence suggests that minimising interpretation error 21 

through the use of geological reasoning and rules can help decrease interpretation uncertainty; 22 

through identification of inadmissible interpretations and in highlighting areas of uncertainty. 23 

Understanding expert thought processes and reasoning, including the use of visuospatial skills, 24 

during interpretation may aid in the identification of uncertainties, and in the education of new 25 

geoscientists. 26 

 27 

 28 

1. Introduction – uncertainty in science 29 

Over the last decade uncertainty has become increasingly analysed. Scientific uncertainty is 30 

common vernacular within scientific studies and a familiar topic in popular science journalism 31 

(e.g. Uncertain Science… Uncertain World (Pollack, 2005), The Blind Spot: Science and the 32 

Crisis of Uncertainty (Byers, 2011)). Much of the media focus on scientific uncertainty has 33 
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concentrated on climate change, aided by political heavyweights taking up the fight against 34 

anthropogenically induced climate change sceptics, e.g. Gore (2006). The fact that uncertainty in 35 

science has become central to the climate change debate, has led to an increase in the profile of 36 

uncertainty in science more broadly (Figure 1). In Earth Science this growing interest in 37 

uncertainty is exemplified by recent conferences e.g. Capturing uncertainty in geomodels: best 38 

practices and pitfalls Geological Society of London conference, December 2013, and text books 39 

on the topic e.g. Modelling Uncertainty in the Earth Sciences (Caers, 2011). In some sectors of 40 

the discipline the interest is driven by economics, as Earth resources are explored for and 41 

produced in increasingly challenging and expensive environments. In other areas the desire to 42 

predict future responses of environmental systems to present day actions is the driver, 43 

particularly for waste storage, e.g. CO2 and radioactive waste, and geothermal energy projects 44 

(e.g. Vasco et al., 2000; Sifuentes et al. 2009).  45 

Geology is an inherently uncertain science. Uncertainty in geology has been recognised outwith 46 

the discipline by the philosopher and science historian Robert Frodeman. Frodeman (1995) 47 

recognises geology as a science in which:  1) Uncertainty is the norm rather than a special case, 48 

and 2) geological reasoning is seen as a ‘unique’ and desirable skill that will aid solutions to 21st 49 

century problems. This external recognition of geological uncertainty, coupled with the 50 

increasing acknowledgement of geological uncertainty within the discipline (as indicated by 51 

citation metrics, Figure 1); and the public and industrial desire to better understand uncertainties 52 

makes it timely to review current understanding of geological uncertainty. The discipline-53 

underpinning skills of geological interpretation and reasoning, identified by Frodeman (1995) as 54 

unique and desirable, are important methodologies employed by geologists to enable analysis of 55 

data and the creation and testing of hypotheses within a large uncertainty space.  Here I explore 56 
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recent research on geological uncertainty, interpretation and reasoning skills, with specific 57 

reference to structural geology. Many of the examples and references are given from a petroleum 58 

industry perspective, but are equally applicable to other industrial geology sectors such as 59 

mining, carbon capture and storage, and radioactive waste disposal.  60 

 61 

1.1 Uncertainty 62 

The term uncertainty, encompasses known errors or variability, as well as those that we are 63 

unable to predict or have no knowledge of (e.g. Donald Rumsfeld’s “unknown, unknowns” – as 64 

made famous by his 2002 US, Department of Defence briefing (Rumsfeld, 2002)). It 65 

encompasses aleatoric uncertainty (these are known, or expected and are irreducible) as well as 66 

epistemic (those we could know in practice, and are reducible). Aleatoric uncertainty is most 67 

often described through the concept of rolling a dice and comes from the Latin alea, to roll a 68 

dice. The probability of rolling a six for each roll is 1 in 6 and, unless the dice is biased, and 69 

therefore the uncertainty cannot be reduced. In a geological context it may be thought of as the 70 

known uncertainty in a measurement, for example: the geological age of a fossil, or the precision 71 

of a radiometric date. Epistemic uncertainty is an uncertainty that may be reduced if more 72 

knowledge or data is obtained e.g. if more structural data is collected to characterise a fold. The 73 

word epistemic derived from the Greek episteme, knowledge. A useful overview of aleatory and 74 

epistemic uncertainty is given by Der Kiureghian and Ditlevsen (2007).  75 

 76 

The range in possible uncertainties in any given subject area, or scenario, are many and complex.  77 

Taxonomic approaches have been proposed to classify uncertainties in environmental systems 78 

(e.g. Walker et al., 2003; Refsgaard et al., 2007). These papers (e.g. Refsgaard et al., 2007) offer 79 
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taxonomies and classifications of uncertainties as a method to identify, quantify and integrate 80 

different types of uncertainty within a system, with positive impacts for communication and 81 

management of the overall uncertainty. These papers also highlight the complexities in 82 

communicating uncertainties between disciplines, due to different terminology usage and 83 

conceptualisations of different ‘types’ of uncertainty (e.g. Janssen et al., 2005).  84 

 85 

For discipline-specific geological uncertainty there are potentially fewer categorisations, but the 86 

concept of multiple types and levels of interacting uncertainty should not be ignored. Figure 2 87 

shows a simple tree based classification of uncertainty; at the first branch uncertainty is divided 88 

into subjective and objective uncertainties. Walker et al. (2003) argues that explicitly separating 89 

subjective and objective uncertainty, through labelling, should aid the identification of 90 

uncertainties that we may potentially otherwise miss. In the example in figure 2 a seismic 91 

reflection image is used to represent the different types of uncertainty: e.g. subjectivity in fault 92 

placement, or existence; versus the objective (error bound) position of a seismic reflection 93 

amplitude. Within this simple taxonomy there are further levels and categorisations, but it serves 94 

as an example of how uncertainties may be broken down and considered in a geological context. 95 

 96 

2. Geological Uncertainty 97 

Traditionally geological uncertainties have been thought of in a ‘classical’ science context with a 98 

focus on objective uncertainty, such as the errors on a reading or measurement. Many of these 99 

types of geological errors, for example the error in reading a strike and dip measurement of a 100 

bedding surface in the field, are small compared to the natural variability in the data itself; and 101 

are sensibly ignored given a big enough sample (Bond et al., 2007a). Technological 102 
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improvements are constantly improving analytical precision in measurements of many natural 103 

phenomena to the extent that other assumptions or simplifications introduce more significant 104 

errors than the errors of the data measurements (Figure 3). This is particularly significant in 105 

geology where we extrapolate observations over significant distances and our uncertainty space 106 

is much greater than that constrained by data. 107 

 108 

In terms of subjective uncertainties, geoscience has generally been quite poor in both 109 

acknowledging and providing methods to communicate these types of uncertainty. This would 110 

seem a negative statement, but working within a context of large subjective uncertainty is 111 

actually the core strength of a geologist, as recognised by Frodeman (1995); in that a geologist 112 

has a skill set that allows construction of an interpretation when faced with a high level of 113 

uncertainty. It also stems from the culture of the discipline, in which subjective uncertainty is an 114 

implicit element of the data collection and interpretation process. In geology decisions and 115 

hypotheses are made at each step in this process, creating an evolving ‘working model’. To some 116 

degree a culture of iterative hypothesis creation and testing starts in the first basic training 117 

programs of any degree program (see section 2.1 – the working model) and is a continuous 118 

feature for most professional geoscientists (e.g. undertaking seismic interpretation, or 119 

constructing geological models). But human biases, including anchoring to an initial model (see 120 

section 2.3 – cognitive biases) have the potential to limit this process. 121 

 122 

2.1 The Working Model 123 

Conceptual or mental models are used commonly, for example in the association of causal 124 

relationships such as the burning of fossil fuels and climate change (Sloman and Fernbach, 2011; 125 
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Newell et al., 2014). Mental models are based on prior experience and beliefs, and can change or 126 

be updated as more experience or knowledge is acquired. Such mental models and their 127 

evolution are fundamental to geological interpretation and are described here in the context of a 128 

working model. The working model is best exemplified by a geological mapping exercise in 129 

which a geology student makes observations, collects data (recorded in a notebook and/or on a 130 

map) and then decides where to walk next (i.e. what data they will next collect to inform their 131 

working model). The strategy taken will be informed by the task and the geology, but will likely, 132 

for a trained geoscientist, be a variation of the following: walk across strike to locate the next 133 

unit, continue this process to build a picture of the rock units in the area (lithologies, initial 134 

geometrical relationship, thickness etc. – create an initial cross section ‘the working model’), 135 

followed by mapping boundaries of these units away from the transect line (updating the cross-136 

section and 3D geometrical understanding – revising the working model). 137 

 138 

Studies using GPS tracking technology have demonstrated the impact of geological training and 139 

experience on decisions made to complete a geological map in the field (e.g. Baker and Libarkin, 140 

2007; Riggs et al., 2009), these geological specific findings chime with earlier work on spatial 141 

choice in large scale environments (Gärling et al., 1997) and the use of analogues and experience 142 

to inform conceptual models (Bond et al., 2008; Newell et al., 2014). The more experienced 143 

geologist makes conscious predictable decisions about their field routing (sampling the geology 144 

to complete the map most efficiently), whilst those with less experience (mapping without a 145 

working model, or reasoning for their route choice) produce a chaotic route track.  146 

 147 
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Imagine trying to complete the geological boundaries on a map containing only outcrop 148 

information. The geologist can evoke rules and reasoning (e.g. V-ing into valleys) but without 149 

contour information many of these fall down; it is a bit like trying to complete an un-numbered 150 

dot-dot puzzle. Visuospatial skills to conceptualise how geological boundaries will interact with 151 

topography are a key skill for the geological mapper. In work by Hambrick et al. (2012) 152 

individuals with good visuospatial skills but little geological knowledge were shown to out-153 

perform those with similar, low, levels of geological experience in a geological mapping 154 

exercise. These findings are echoed by Liben (2014) who used childrens’ scores in a well-known 155 

test of space conception to demonstrate a link between these and spatial reasoning using a map. 156 

The employment of a working model, that relies on visuospatial reasoning skills, during data 157 

collection in the field allows the geologist to construct a sensible narrative for the data collected. 158 

This model will be refined as new data is collected, or even thrown away completely when the 159 

original working model falls-down or a more elegant solution appears; but it allows the geologist 160 

to build an interpretation. This methodology ensures the practiced geologist is never left with un-161 

interpreted outcrop locations as their geological map at the end of the day (an unnumbered dot-162 

dot puzzle). For an experienced field geologist even the simplest observations at an initial 163 

outcrop, such as the bedding-cleavage relationship, should allow a working cross section to be 164 

built (Figure 4a), with additional data collected along a transect enabling refinement of the 165 

predictions. 166 

 167 

2.2 Multiple working hypotheses and scientific culture 168 

Working models are generally non-unique and more than one working model or hypothesis can 169 

be run in parallel (Figure 4b), with models refined, or disposed of, as new data is collected. The 170 
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ability to work with multiple working hypotheses, has long been recognised as having a positive 171 

effect on interpretation, minimising the potential for the interpreter to favour an initial model 172 

(Chamberlin, 1965)1. In practice however this is rarely done; partly because the possibility of 173 

conceptual uncertainty (or multiple potential models) is rarely recognised, compounded by other 174 

psychological barriers to the employment of multiple models. Chamberlin himself recognised 175 

several issues in pursuing multiple working hypotheses: 1) the human brain has a limited 176 

capacity to deal with and express more than one model at a time, 2) a favour towards single 177 

model solutions, they are simpler to deal with and their uniqueness has an elegance, 3) the 178 

‘danger of vacillation’, or preference for one model. Although, further studies have shown that 179 

vacillation, or uncertainty over which model to choose is uncommon with early anchoring to a 180 

single model being the norm (e.g. Rankey and Mitchell, 2003).  181 

 182 

Multiple conceptual models are not employed frequently in professional geoscience. One reason 183 

for this is scientific culture, which is dominated by the scientific publication process in which 184 

scientists generally advocate a single model or idea that is peer-reviewed. Promoting multiple 185 

possible solutions does not sit easily in this style of review system where advocating and 186 

defending a hypothesis is the norm. It also conforms to our psychological bias, as described by 187 

Chamberlin, to preferably converge on a single model or solution. Chamberlin was writing about 188 

what is now the established psychological field of cognitive bias, particularly with respect to 189 

judgement and decision making under uncertainty.  190 

 191 

2.3 Cognitive biases 192 

                                                           
1
 Chamberlin was a geologist and his paper on multiple working hypothesis was originally published in 1896 in the 

Journal of Geology, which he founded. 
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The leading paper of Tversky and Khaneman (1974), and their other contributions in the area of 193 

cognitive bias, judgement and decision making under uncertainty (e.g. Tversky and Khaneman, 194 

1973; Khaneman et al., 1982)) was recognised by a Nobel prize for Khaneman in 2002. In their 195 

Science paper Judgement Under Uncertainty: Heuristics and Biases (Tversky and Khaneman, 196 

1974) they used a simple set of experiments to demonstrate for the first time the effect of 197 

anchoring on judgements. Development of these and other cognitive bias theories have since 198 

evolved, but application to, and assessment of, their impact on geological uncertainty and 199 

decision-making has been limited. Table 1. provides a summary of classic cognitive biases, that 200 

affect geologists undertaking interpretation of geological data. 201 

 202 

Early work on cognitive bias in geology was undertaken by (Chadwick, 1975) who showed that 203 

geologists see what they think they should see in the rocks rather than what is actually there. He 204 

demonstrated that geologists see more antiforms than synforms and tend to recall fold cleavage 205 

fans with text book geometries rather than as they actually are. Discussion and identification of 206 

cognitive biases affecting geological interpretation are discussed by Baddley et al. (2004) in the 207 

introduction to the Geological Society Special Publication on Geological Prior Information 208 

(Curtis and Wood, 2004). This volume contains reference to geological uncertainty from a 209 

perspective of prior knowledge. Other geological papers that discuss the subject of cognitive bias 210 

and the implications for uncertainty and risk in geology from an oil industry perspective include 211 

Rankey and Mitchell (2003), Bond et al. (2007b, 2008; 2012), Polson and Curtis (2010), 212 

Rowbotham (2010) and a general overview by Curtis (2012). Key outcomes of the papers are 213 

discussed below. 214 

 215 
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Rankey and Mitchell (2003) undertook the first experiment to investigate the interpretations of 216 

multiple geologists to the same dataset. In their experiment six geoscientists interpreted seismic 217 

and well data for a carbonate reef system. The authors identified evidence of model uncertainty, 218 

particularly in net- gross predictions, and evidence of anchoring after the interpreters were 219 

provided with additional data part way through the experiment. Their experiment was followed 220 

by the work by Bond et al. (2007b) who published the first demonstration of geological 221 

conceptual uncertainty at a ‘whole’ geological model scale, with a significant number of 222 

interpreters. The work of Bond et al. (2007b) gathered interpretations to a single synthetic 223 

seismic dataset from 412 geoscientists. The participants evoked a range of structural and 224 

sedimentary styles returning interpretations spanning coral reefs and sequence stratigraphy 225 

through to extension and compression tectonic styles and salt or shale based tectonism. The 226 

synthetic seismic image had been created from a forward model so the authors were able to 227 

appraise the interpretations against the initial model, which was an inverted normal growth fault. 228 

Only 21% of the interpreters applied the ‘correct’ inversion concept to the model (Bond et al., 229 

2007b), highlighting the potential conceptual uncertainty for a dataset and the potential risks in 230 

using single deterministic models. 231 

 232 

As well as showing the range of conceptual uncertainty to a single synthetic seismic image and 233 

evidence of availability bias, Bond et al. (2007b) showed evidence of interpreter desire to use 234 

confirmation bias through provision of an initial model to aid their interpretation. In the 235 

experiment the participant interpreters were stripped of their normal working practices: they had 236 

no regional context, including no regional seismic data, and no well data. The unannotated 237 

seismic image shown in figure 5b was all the knowledge the interpreters had. This proved a 238 
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challenge both in terms of data collection - people do not like to be taken out of their comfort 239 

zone, but also for the interpreters who did not have a contextual basis from which to start their 240 

interpretation. During the data collection process many participants asked “Where in the World 241 

is it?”  and/or wrote on their interpretation ideas of locations e.g. “Gulf of Mexico?” (Bond et al., 242 

2007b). The participants were not only trying to retain their normal working practice comfort 243 

zones, but were attempting to evoke their prior knowledge of an area to aid them in their 244 

interpretation. The use of prior knowledge in this way can impart elements of confirmation and 245 

initial model bias on the interpretation.   246 

 247 

If interpreters use geographical locations to inform interpretational style, you might expect this 248 

process to be reversible. i.e. an interpreter could complete an interpretation and then give an 249 

indication of the likely global location. At the Geological Society of London Tectonic Studies 250 

Group meeting in 2006, this theory was tested with a ‘Where in the World?’ poster. Participants 251 

interpreted the Bond et al. (2007b) seismic image (figure 5b) and then placed a sticky dot on a 252 

World map to indicate the approximate location of the seismic image globally (figure 5a). The 253 

numbers on the dots in figure 5b indicate the order starting at 1 in which the dots were placed on 254 

the map. There is some evidence of spatial clustering or herding, but the global spread is 255 

significant.         256 

 257 

The concept of herding is discussed in a geological context by Baddley et al. (2004), and 258 

demonstrated in the elicitation experiment of Polson and Curtis (2010). In the latter the authors 259 

tracked the decisions of experts as they made probability judgements on the existence of key 260 

features in a geological reservoir and discussed their own judgements with others, revising their 261 
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initial probabilities during the elicitation process. In many ways the concept of herding around 262 

an influential individual, is similar to a conceptual bandwagon to which scientists’ anchor their 263 

ideas or opinions. In geology we may think about the concepts of listric faulting or inversion in 264 

the UK North Sea that dominated thinking in the 1980s and 1990s, or the change in 265 

understanding of salt tectonics through improved seismic imaging and new conceptual models 266 

(e.g. Jackson, 1995).  267 

 268 

The types of cognitive biases discussed: confirmation, initial model, herding, availability have a 269 

tendency to restrict or slow-down the progress of scientific discovery. Interpreters are safe in 270 

their interpretations favouring the accepted dogma over a new or radical idea. In essence 271 

application of existing models and hypotheses are a form of heuristic (or rules of thumb), as 272 

referred to by Tversky and Khaneman (1974). Heuristics allow us to make complex decisions 273 

quickly and play an important role in decision making in all aspects of life. Heuristics are often 274 

used when the brain is over-loaded with multiple complex pieces of information, or information 275 

that cannot be processed quickly enough. e.g. when assessing if we have enough time to cross a 276 

road before the next car comes. Heuristics can be used as a time saving device, allowing complex 277 

tasks to be completed efficiently, and can be an effective decision making tool, see Gigerenzer 278 

and Gaissmaier (2011) for a review of current research understanding of heuristic use.  279 

 280 

As Munier et al. (2003), Bond et al. (2008) and Rowbotham et al. (2010) suggest garnering 281 

multiple hypotheses or solutions can help explore the interpretational space for a model 282 

supporting the suggestion of Curtis (2012) that this may then lead to new ideas. As Thomas 283 

Khun describes in ‘The structure of scientific revolutions’ (Khun, 1962), science generally 284 
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progresses in simple small sequential steps that build on existing research. Rarely are new 285 

concepts or ideas generated and when they do they are often a mistake (penicillin – discovered in 286 

a petri dish) or from the coming together of data or thoughts from other disciplines.  287 

 288 

In summary, humans are very good at applying conceptual analogues to data, and if our 289 

analogues do not fit the data our brains will try and fit what is there to our concepts 290 

(preconceptions and notions). Simply we will try to find the best analogue from our knowledge 291 

base. This may sound unscientific but it is the basis for heuristics and the building of concepts, 292 

scientific knowledge and understanding. In geology, as in other areas, our analogue database 293 

works a lot of the time, but given the large uncertainty space in which geologists work there is 294 

scope to look beyond and make better predictions that span a broader range of possibilities. Both 295 

Rowbotham et al. (2010) and Curtis (2012) discuss the implications of uncertainty and 296 

subjectivity in interpretation highlighting the need to embrace this subjectivity. Curtis (2012) 297 

advocates that by striving to recognise and quantify uncertainties potential outcomes are 298 

maximised. Indeed Curtis (2012) suggests that recognizing subjectivity explicitly may lead to 299 

novel hypotheses. In recognizing subjective uncertainty, as long as we conform to the disciplines 300 

rule’s, we have the potential to better recognise uncertainties and decrease risk in geological 301 

models.   302 

 303 

2.4 Geological Reasoning and Rules 304 

Frodeman’s (1995) paper entitled Geological reasoning: geology as an interpretative and 305 

historical science focused on the employment of reasoning and rules. This is not a process that is 306 

entirely unique to geology, but geological interpretation is heavily reliant on it. Some of the rules 307 
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employed by geologists are based on mathematical or topological/geometric rules e.g. how 308 

surfaces intersect, and the lines and patterns geological boundaries make at their intersection 309 

with topography, such as V’s in valleys. Other physical rules include time, such as superposition 310 

and cross-cutting relationships (e.g. Hutton, 1788; Chiaruttini et al., 1998); conservation of 311 

volume, area and line length when thinking about balancing and restoring sections (Chamberlin, 312 

1910; Dhalstrom, 1969). These rules, or reasonings, are fundamental to a geologist’s skill set, 313 

allowing creation of models that both honour data points, but that are also ‘valid’ geometrically 314 

and philosophically, conforming to the ‘rules’ of nature. 315 

 316 

Working models and geological reasoning go hand-in-hand. The two examples in figure 4, both 317 

rely on geological knowledge and reasoning for model construction. Figure 4a, requires 318 

knowledge of cleavage-bedding relationships in folded strata to predict the presence of folds, and 319 

facing relationships to predict antiform or synform fold closure. The multiple hypothesis 320 

example in Figure 4b, requires knowledge of possible geological concepts (e.g. faulting and 321 

folding) that would allow the same strata to be seen at a lower level on one side of an escarpment 322 

than the other. Both the single ‘working model’ solution (figure 4a) and the multiple hypotheses 323 

(figure 4b), provide a basis for further exploration and testing of the model, to recognise the 324 

uncertainties in the solution (or solutions) that will be presented as the final model. Specific 325 

discussion on rules and reasoning to test models with reference to structural geology are covered 326 

in section 4. 327 

 328 

3. Structural Uncertainty  329 
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A geological framework model represents the large-scale architecture of the sub-surface, and as 330 

such combines structural and stratigraphic information into an overall framework. It is 331 

essentially a 3D representation of the key geological geometries in a given rock volume. Here I 332 

consider structural uncertainty in the context of the creation of a geological framework model. 333 

There are of course other structural uncertainties, many at a finer scale, but focusing on the 334 

uncertainties in structural model creation also highlights the extent to which populating the large 335 

scale framework with other structural features (e.g. fractures) is confounded by uncertainties in 336 

the framework model. In the discussion of structural uncertainty that follows I focus on 337 

geological framework models created from sub-surface data mainly from a petroleum context, 338 

but the points made and associated discussion are equally applicable to other geological sectors  339 

e.g. mining.  340 

 341 

3.1 Data  342 

To create most 3D models of the geology of the subsurface, multiple datasets are used as a basis 343 

for the interpretation. These consist of reasonably constrained elements such as borehole data, 344 

and less constrained data such as seismic images. Data can also be collected in different 345 

geographical coordinate systems and some remotely sensed geophysical data (such as seismic 346 

imagery) has a time-based vertical scale, as compared to depth-based borehole data. Conversion 347 

of co-ordinate systems and time-depth relationships add, generally uncommunicated, 348 

uncertainties to stratigraphic horizon correlations between datasets.  349 

 350 

There are inherent uncertainties in each data type, from the original data collection strategies, to 351 

the processing of the data collected. At each stage assumptions and simplifications are made, 352 
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documentation of these assumptions are generally not passed along the data collection-353 

processing workflow to the interpreter who creates the geological framework model. For 354 

example, the processing of seismic data to create seismic images requires the geophysicist to 355 

stack the seismic data, and in doing so makes assumptions. For geological framework models 356 

created using seismic imagery, understanding the geophysical processing of seismic data can be 357 

critical to the seismic interpretation strategy. This is particularly the case for areas in which the 358 

dips of beds are steep, because reflection seismic imaging best images horizontal beds and is 359 

often processed on the basis that most beds will be horizontal to sub-horizontal and continuous. 360 

Zones of steeply-dipping beds tend to be in areas of structural complexity, therefore 361 

understanding the processing assumptions of the geophysicist when interpreting structures is 362 

critical. The example presented by Kostenko et al. (2008) of a single fold-thrust structure in the 363 

Niger Delta highlights the issue of interpreting seismic data in areas of steeply dipping beds. 364 

Kostenko et al. (2008) document the changes in conceptual model for the fold-thrust, the original 365 

model was based on data from a single well and seismic imagery. Data from an off-shoot drilled 366 

from the well changed the model and the predicted hydrocarbon reserves.  367 

 368 

Each dataset used will have uncertainty, as will the methods by which they are integrated, so 369 

even with ‘hard’ data uncertainties exist before a model is constructed. 370 

    371 

3.2 Fault and horizon interpretation 372 

In creating a geological framework model often very little interpretation is actually completed in 373 

3D. The volume representation is created from 2D geological map and cross-section 374 

interpretations, based on surface mapping, correlation between boreholes, and seismic surveys. 375 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

This information is then used to create surfaces. e.g. top surfaces of formations and faults, which 376 

together form the 3D model. For structural geology the uncertainties in field data collection, 377 

seismic data, or borehole logs, are generally small compared with the interpretational space 378 

across which this ‘hard’ data is then extrapolated to create a 3D model. Various software 379 

programmes are available to fill the space between cross-sections to create surfaces within a 380 

volume, and a 3D model. The model is hence created from a mixture of subjective interpretation 381 

and mathematical interpolation (Tacher et al. 2006). 3D modelling software packages span a 382 

range from interpretation driven through to fully automated model construction techniques, see 383 

Jessell et al., (2014). Increasingly the availability of 3D seismic surveys; allows for pseudo-3D 384 

interpretation. Interpreters working with 3D seismic data often utilise a gridding system 385 

effectively allowing interpretation of a closely spaced 2D mesh, working between 2D and 3D 386 

visualisations. 387 

 388 

Seismic reflections around faults are perturbed by distributed damage associated with faulting 389 

(Sibson, 1977), making seismic imaging difficult (Iacopini and Butler, 2011). For all types of 390 

seismically imaged faults, tying the interpreted adjacent horizons to the fault, requires 391 

assumptions to be made by the interpreter. These assumptions may include: fault drag and/or 392 

rollover, multiple fault strands, over-turned beds etc. Each assumption will have implications for 393 

the final model, as the fault off-set will vary with each assumption. It is easiest to think about the 394 

implications in terms of an Allan, or fault cut-off, diagram (Allan, 1989) that depicts, horizon 395 

offsets across a fault. Figure 7 shows two alternative interpretation scenarios for a normal fault, 396 

and the associated Allan diagrams. If it is assumed that sand-sand juxtaposition across a fault 397 

could provide a fluid-flow pathway, the uncertainty in the interpretation results in very different 398 
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risks for across fault flow. Different modelling software packages, permit different methods for 399 

tying horizons to faults, many will simply project the line or horizon at the same dip angle onto 400 

the fault unless the interpreter manually defines the tie.  401 

 402 

The use of software for seismic interpretation restricts the interpreter’s view and workflow. The 403 

workflows inherent in the software do not allow for example easy transition between horizon and 404 

fault picking, which if interpreting on paper would perhaps be normal. In seismic interpretation 405 

software most interpreters will work with vertically exaggerated data. Understanding the true dip 406 

and geometry of faults in a vertically exaggerated workspace is not simple. Stewart (2011) 407 

provides evidence of the extent of vertically exaggerated seismic imagery in publications 408 

between 2006 and 2010, and plots the true dip of interpreted faults to illustrate the potential 409 

interpretation issues of working in a vertically exaggerated framework including mis-interpreting 410 

fault dip and geometry. In a further paper Stewart (2012) considers the implications of validating 411 

vertically exaggerated sections concluding that the aspect ratios of 1:1 are required for section 412 

validation by restoration. 413 

 414 

Interpretation of fault geometries and linkages in 3D space add a further dimension of 415 

uncertainty to fault interpretation. Figure 8 shows two hypothetical sub-surface top horizon maps 416 

in which the interpretations of fault linkage provide very different pictures of the connectivity of 417 

the fault system, with impacts for reservoir connectivity, potential sediment distribution etc. 418 

Because the horizon offsets at the linkage points may be below seismic resolution, it may not be 419 

possible to distinguish between linked and non-linked faults in a seismic image. These examples 420 
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of interpretational uncertainty in fault linkage allows for multiple concepts as well as positions 421 

for horizons or faults to be chosen. i.e. there is interpretational uncertainty.  422 

 423 

3.3 Uncertainties and Risks 424 

The terms uncertainty and risk are often expressed together, with uncertainty in a geological 425 

model creating a source of potential risk to the final user of that model. Determining risk requires 426 

an understanding of how a model will be used and how the uncertainties in that model will 427 

impact on the answers to questions asked of the model (e.g. will a fault seal?). Figure 9 428 

summarises some elements of structural uncertainty and their potential impact when ‘risking’ a 429 

structural interpretation and model. Note that some uncertainties do not matter if they do not 430 

impact on the question asked of the model.  431 

 432 

Geological framework models are based on cumulative uncertainties, from the original data 433 

collection and processing through to final interpretation. Static geological framework models are 434 

often used to predict other properties, for example fracture attributes, from forward modelling 435 

strain, or mapping curvature (e.g. Fischer and Wilkerson, 2000; Hennings et al., 2000), or monte 436 

carlo simulations of fluid flow. This is often done without considering the uncertainties in the 437 

original model. Although, it is often time consuming to consider multiple models they can be 438 

used to help define the uncertainty space and allow predictions to be made based on a range of 439 

uncertainty. If these uncertainties are then translated into risk it is easier to determine what 440 

uncertainties cause the greatest risk for the decision maker, enabling improved decisions for new 441 

data acquisition strategies and focused understanding of remaining uncertainties.  442 

 443 
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4 Rules and Reasoning to test models. 444 

Rules and reasoning may be used to test or risk geological models. Such tests can highlight 445 

where interpretational uncertainty has resulted in the creation of a model that does not conform 446 

to geological reasoning, and hence is unlikely or high risk. Some key techniques for model 447 

testing and their efficacy are discussed for the testing of different structural features.    448 

 449 

4.1 Balancing and restoration 450 

For much structural geology it is perhaps fair to say that “it’s all about geometry”. Indeed in 451 

creating a static structural model ‘that works’ geometry is of utmost importance. Understanding 452 

geometrical relationships in 2D and 3D is critical to achieving a valid model. Model validation in 453 

structural geology is based on the concepts of restoration and structural balance: see Groshong et 454 

al. (2012) for a recent review, and Butler (2013) for examples. These concepts evoke 455 

assumptions of preservation of line length and/or area (Bally, 1996). Essentially when a 456 

geological framework model or cross section is restored sequentially to show the original 457 

stratigraphic relationships there should be no gaps or overlaps of material and the restored 458 

section should balance, in terms of line length or area, or in the case of a 3D model volume. 459 

Validating a cross-section through restoration or forward modelling is one method to test if a 460 

model ‘works’ geometrically.   461 

 462 

The assumption of volume preservation in balancing models is in the broadest sense valid. i.e. it 463 

provides a good initial test of model validity. The geomechanical properties of the rocks and 464 

their dynamic evolution are generally not considered, although many kinematic back-stripping 465 

and restoration software packages use algorithms to account for burial compaction. As 466 
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geomechanical rock properties are not taken into account the assumptions of line, area or volume 467 

balance must be applied with care. In some instances they may not be valid, i.e. Butler and Paton 468 

(2010), suggest that lateral compaction accounts for area balance mis-matches in the deep-water 469 

fold-thrust belt of the off shore Orange Basin. In this way structural balance can be used to 470 

evaluate the extent of other processes (e.g. strain or compaction) highlighting factors that may be 471 

of importance. See Woodward (2012) for a discussion on using balanced cross-sections to 472 

analyse interpretations. Judge and Allmendinger (2011) have taken the concept further and 473 

investigate methods to assess uncertainties in the balancing of cross-sections. 474 

 475 

Geomechanical models have the potential to provide constraints on properties and improve 476 

understanding of, for example, fracture distributions in rock volumes, but also have their 477 

limitations and assumptions. Despite a vision that geomechanical models are on the brink of 478 

replacing geometrically-based kinematic models (Fletcher and Pollard, 1999), this has not yet 479 

happened. This is mainly because of the difficulties in creating geomechanical models and the 480 

high level of computing power required to run such models. Perhaps it is also because geometry 481 

is an important element of a framework model and provides a test that is relevant to the scale of 482 

the problem and the certainty of the data used to create the model. 483 

 484 

4.2 Seismic stratigraphy and the concept of regional 485 

In the experimental work of Bond et al. (2007b) several rules could be applied to the seismic 486 

image dataset that would have provided the interpreter with clues of the overall structure. The 487 

first would be the use of seismic stratigraphy matching that allows seismically imaged horizons 488 

to be correlated across the image. In the paper exercise version of Bond et al. (2007b) this could 489 
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be easily achieved by bending the paper round on itself (figure 10), in software packages there 490 

are tools that allow the interpreter to ‘grab’ a selection and drag it around the screen for direct 491 

comparison of the ‘seismic signature’ with other parts of the seismic image. By correlating the 492 

horizons on either side of the deformed zone this allows the interpreter to define the pre-493 

deformation level of the strata, and the ‘regional’ (Williams et al, 1989). In the Bond et al. 494 

(2007b) seismic image areas where strata is both below (implying extension) and above 495 

(implying compression) its corresponding regional can be identified (figure 10, dark green line). 496 

Applying the concept of regional allows easy identification of both extension and compression in 497 

the deformed region indicating that the structure must have inverted. 498 

 499 

4.3 Fault Geometries and Damage 500 

To test normal fault interpretations other rules can be invoked such as displacement distance 501 

characteristics (Chapman and Williams, 1983), in which assumptions are made about the 502 

mechanics of faulting. These assumptions have been bench marked against outcrop studies (e.g. 503 

Peacock and Sanderson, 1991; Peacock, 1991), and in different lithologies (Kim and Sanderson, 504 

2005). A methodology for the use of normal fault displacement patterns to check interpretations 505 

of faults in 3D and their linkage has been outlined by Freeman et al. (1990) and employed by 506 

Needham et al. (1996) and others. Essentially this is an extension of an Allan diagram technique 507 

where fault cut-off patterns can be used to determine throw. For an isolated normal fault 508 

maximum displacement is expect in the centre of the fault (figure 11), for more complicated 509 

faults, with linked fault systems, displacement patterns will be more complex (figure 11). Further 510 

work in this area has evoked the use of empirical rules to determine strain in the wall rocks 511 

adjacent to faults from displacement offset patterns (Freeman et al. 2010). The idea being that a 512 
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combination of displacement patterns and realistic fault rock strains can aid in the interpretation 513 

of faults and help determine fault linkages in seismic datasets. 514 

     515 

Displacement-distance characterisation of faults has focused almost purely on normal faults, with 516 

poorer constraint for strike-slip, and thrust faults (Kim & Sanderson, 2005). The bow and arrow 517 

rule of Elliot (1976), in which the strike length of a thrust fault is shown to have an 518 

approximately linear relationship with fault displacement is an exception, and provides a good 519 

benchmark for understanding thrust displacement length relationships for isolated thrust faults. 520 

Wilkerson (1992) suggests that the bow and arrow relationship is limited to individual, non-521 

metamorphic thrust sheets, with a bulk shear angle of 35-40 degrees. Most fold-thrust belts are 522 

however more complex. A range of theoretical models: e.g. fault-bend fold (Suppe, 1983) and its 523 

variants; trishear (Erslev, 1991) allow fold-thrust belts to be forward modelled creating pseudo-524 

realistic geometries (Jamieson, 1987) and predictions of strain (e.g. Allmendinger, 1998). But the 525 

complexities of fold-thrust structures observed in the field (e.g. Teixell and Koyi, 2003) and 526 

seismic imagery (Iacopini and Butler, 2011), and the mis-match between the existing conceptual 527 

models and actual data (Torvela and Bond, 2011) is great. Recent work by Cardozo and 528 

Brandenburg (2014) show how trishear based algorithms can be used to create some of the 529 

complex geometries seen in natural examples imaged by seismic data offshore Venezula and in 530 

the Niger Delta, but not how to predict these geometries. Further research is needed to determine 531 

if displacements can be determined from thrust-fault lengths in fold-thrust belts. 532 

 533 

Strike slip fault – geometries, also have complex patterns (Woodcock and Fisher, 1986) and 534 

although faults like the San Andreas, are well studied seismically (e.g. Huang and Turcotte, 535 
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1990). Predictive models of 3D geometries of strike slip faults based on field analogues are few; 536 

see Kim and Sanderson (2005) for a review of fault displacement-distance characteristics for 537 

strike-slip faults and Stirling et al. (1996) for a global overview of the characteristics of strike-538 

slip faults.  539 

 540 

Various authors have also attempted to correlate the spatial extent of off-fault damage to fault 541 

displacement (e.g. Beach et al., 1999; Shipton and Cowie, 2001; Shipton and Cowie, 2003; 542 

Childs et al. 2009). In a similar manner to displacement-distance characterisation fault damage 543 

studies have focused almost entirely on normal fault systems and have been dominated by a fault 544 

core-damage zone model (Caine et al., 1996), for high porosity sandstones; notably based on 545 

outcrop descriptions from the Navajo sandstone in Utah, although not exclusively. Well exposed 546 

sandstone outcrops provide a good opportunity to characterise field relationships, but these 547 

observations also come with a bias warning. Much of the data collected is for a single rock type 548 

and the observations made have been undertaken in the best exposed areas. Sampling bias is 549 

clearly a potential issue, and understanding of other systems, i.e. faults and damage in carbonates 550 

is more limited (Billi et al. 2003).  Shipton et al. (2006) do summarise relationships in other rock 551 

types, and there are studies in other tectonic regimes, e.g. strike-slip (Kim et al. 2003), but 552 

analogue models are dominated by images of normal faults and damage zones in porous 553 

sandstones.  554 

 555 

In summary, geometrical relationships can be used to test the geometric validity of cross-556 

sections, or 3D models, through restoration and forward modelling. But the risking of 3D 557 

geological framework models of faulted and deformed systems through the systematic 558 
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application of relationships such as fault displacement-distance, or off-fault damage in tectonic 559 

settings other than in normal fault settings in porous sandstone are as yet untested. 560 

 561 

5 Quantification and Communication Strategies  562 

Methods and techniques for both quantifying and visualising uncertainties in structural models 563 

are limited, although a series of recent papers have focused on this topic. In the following 564 

sections published techniques for quantifying and visualising uncertainty in 2D and 3D 565 

geological interpretations are reviewed.  566 

 567 

5.1 Quantification of Uncertainty  568 

Uncertainties in structural models can be represented in 2D on cross-sections and maps, or in the 569 

form of probability distribution functions (PDFs). For 3D geological models work has focused 570 

on probabilistic methods (e.g. Tacher et al. 2006), geological inversion (Wellmann et al., 2010), 571 

and geological ranges based on likely values (e.g. Lindsay et al., 2012).  572 

 573 

The probabilistic method of Tacher et al. (2006) is based on an initial best guess model and a 574 

variability model that is defined using observations and geological constraints. The variability of 575 

each surface in the model is then expressed as a probability, the result being a set of 3D 576 

probability fields for each rock type. The work of Wellmann et al. (2010) takes a different 577 

approach by utilising geological inversion in which probability distributions of data position and 578 

orientation, for simulated datasets are used to construct multiple model realisations. Their 579 

examples show that interaction of uncertainties is important, indicating that the uncertainty is not 580 

simply an aggregate of individual elements within the 3D model.  581 
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 582 

Lindsay et al. (2012) investigate uncertainties in 3D geological models through application of 583 

geological ranges. Here, the focus is on orientation data (strike and dip), which is varied within a 584 

10 degree range to create multiple final models. The uncertainty is quantified as two values: L 585 

the number of possible stratigraphic units at a given point, and a P value that represents the 586 

percentage of models in the suite that have the same stratigraphic unit at a given point. The 587 

values can be used in combination or alone to assess model uncertainty. In a more poorly 588 

constrained and complex example Bistachi et al. (2006) use geological rules to extend surface 589 

dip data to depth in a folded and faulted area of the Alps in combination with a predictor of 590 

certainty with depth. Bistachi et al. (2006) highlight the difference in predicting geological 591 

structure at depth from surface data, as compared to interpolating between data points within a 592 

domain; acknowledging that a deterministic or conceptual model must be made to extrapolate 593 

away from data points, and arguing that statistical based analysis of uncertainties for extrapolated 594 

surfaces (e.g. Tacher et al. 2006) do not make sense. Instead Bistachi et al. (2006) predict 595 

angular uncertainties for features with associated predicted uncertainties at depth. The authors 596 

acknowledge that for some geological bodies (e.g. pluton topology) systematic predictions are 597 

not possible and resort to creating a buffer zone to represent the potential uncertainty space based 598 

on knowledge and common-sense.  599 

 600 

Expert elicitation has also been used to quantify uncertainty. Polson and Curtis (2010) used 601 

expert elicitation to predict the probability of the existence of key elements in a structural model 602 

(e.g. a fault). In contrast the approach of Lark et al. (2013), utilising expert elicitation, is based 603 

on a statistical assessment of the placement of surfaces in a 3D geological framework model by 604 
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five geological interpreters, who were each given a geological map, digital elevation model and a 605 

unique set of boreholes (the authors withheld some boreholes to use as validation tests). In more 606 

recent work (Lark et al., 2014) the confidence of experts in surface positions within a 3D model 607 

has also been investigated, combining a statistical analysis of local geological variability around 608 

boreholes with structured elicitation of expert opinion on the reliability of the data inputs. This 609 

work is similar to that of Lelliott et al. (2009) who used an initial analysis of the uncertainties in 610 

input parameters to a model to create a quality index for each borehole. The reliability of 611 

borehole elevations, data density and geological complexity were assessed and a single index for 612 

the quality of information for the borehole was created. A learning algorithm was then used to 613 

predict expert score at validation sites. 614 

 615 

Although not widely applied the use of Bayesian based methodologies in combination with 616 

expert elicitation of opinion (e.g. Polson and Curtis, 2010; Lark et al. 2013) is being used to 617 

provide constraints on geological models. A good review of Bayesian methods for geological 618 

systems is given by Wood and Curtis (2004). In a further paper Curtis and Wood (2004) 619 

demonstrate the use of the theory to utilise expert opinion to create a relative likelihood for 9 620 

possible 3D geological models. 621 

 622 

5.2 The Final Model - Communication and Visualisation of Uncertainty 623 

In areas of scientific uncertainty or complexity scientists evoke models to predict and to simplify 624 

the scenario of interest. A sub-surface geological model is a geologist’s summary of the data and 625 

their interpretation of it, a hypothesis of the sub-surface reality. Models are fundamental to 626 

geological sciences, whether they are the creation of a geological map or cross section, or a 627 
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model for thermal re-equilibration; they form a central facet of all geological disciplines. Some 628 

models (e.g. those based on experimental data) are easier to determine errors for, whilst others 629 

e.g. the location, or even existence, of a fault in an un-sampled sub-surface, are often essentially 630 

unconstrained. A model defines the extent of our interpretation and provides a method for both 631 

data collection and hypothesis testing (section 2.1) and a communication tool for hypotheses. But 632 

models often hide the extent and nature of uncertainties in the data, the interpretation process and 633 

the final model itself. 634 

 635 

The methods by which geologists’ present and communicate models, or geological 636 

interpretations, are influenced by scientific culture (see section 2.2), but also by the methods with 637 

which scientists communicate more broadly. These are controlled by the medium used for 638 

communication: paper maps and sections, power point presentations, and software: including full 639 

3D visualisations of geological models. In all these examples the communication is of the final 640 

model – a ‘best’ interpretation based on the data available. Few of these methods labour on, or 641 

often show, the data on which a models is built. Traditional working practices, making fair copy 642 

maps from field slips which show only the final interpretation and not the data on which it is 643 

based (figure 6), have set a precedent for how ideas and models are communicated. Does the 644 

end-user of geological maps fully appreciate that a geological map is a model based on data? Not 645 

data itself. Perhaps now as much as anytime, the use of computer realisations of 3D models 646 

project a sense of reality to the virtual reality of the model and hence a perception of certainty.  647 

 648 

Various methods have been trialled to represent and communicate uncertainty, creating 649 

visualisations from 1D-4D. Uncertainties in 2D cross-sections have been visualised using 650 
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overlaid interpretations with the frequency of overlap highlighted by a colour-scale (Bond et al. 651 

2015). Lark et al. (2013) represent uncertainty in cross-sections created from borehole data, as a 652 

series of statistical plots. On geological field maps the certainty of geological boundary 653 

placement is represented by different line strokes, and data (outcrop) is often marked by a green 654 

outline and/or heavier shading, however these annotations are generally lost in fair copy maps in 655 

which the final model is simply represented (see figure 6).   656 

  657 

In the 3D work of Wellmann et al. (2010), uncertainties can be visualised in different dimensions 658 

– 1D borehole histograms, and 2D and 3D colour maps of surfaces. For 3D models Wellmann 659 

and Regenauer-Lieb (2012) develop uncertainty colour mapping of 3D models using entropy to 660 

define the uncertainty at points on the model. The entropy is defined for each point across the 661 

model as a value that represents the predictability of the location of the surface at that point. This 662 

workflow allows new data to be added to the model and for entropy to be recalculated allowing 663 

direct comparison of individual points from models created from different datasets, and for 664 

overall model certainty to be quantified, as well as visualised. In comparison to creating a colour 665 

map based on probabilistic determinations the use of entropy allows multiple elements of the 666 

model to be integrated into a single entropy value. Utilising similar methods the work of Lark et 667 

al. (2014) combines expert confidence in data with predictions of local variability to create 668 

colour maps. The work of Lindsay et al. (2012) also allows for coloured voxels and maps to be 669 

generated using single attributes, or a combination.  670 

 671 

Other suggestions to represent uncertainty include: fuzziness (Bond et al. 2007a), focus and 672 

texture change (MacEachren, 1992, 1994) and pseudo-colouring (Hagen et al. 1992). Pang et al. 673 
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(1997) provide a detailed overview of uncertainty representation in images including the use of 674 

sound and animation, and MacEachren et al. (2005) and Bond et al. (2007a) give overviews of 675 

uncertainty visualisation strategies for geological data. However, in almost all 2D and 3D cases 676 

uncertainty in geological models is represented by colour mapping (or grey scales) (figure 12), 677 

and in 1D graphically by plots and histograms.  678 

 679 

Colour maps work well for quantitative uncertainties e.g. statistically generated, but the use of 680 

colour maps needs to be carefully considered when used to represent combined statistical and 681 

value-based judgements, or in representing a situation where a surface in a model may be 682 

thought to be in one of two positions, but not in the middle. i.e. consideration needs to be given 683 

for how non-linear uncertainties are aggregated, to create a single representative value, or how 684 

expert judgement is combined with probabilistic determinations.  685 

 686 

Visualisation is one method by which uncertainties may be communicated, and standard 3D 687 

geological modelling software packages now allow the user to assign certainty parameters to 688 

their interpretations, that can be visualised on screen. Cognitive and Earth scientists are also 689 

beginning to consider how Earth science visualisation is best made (Rapp and Uttal, 2006).  690 

Other software packages have initiated the use of text notes that allow the interpreter to provide 691 

some reasoning for their choice of interpretation. In an interpretation context the reasoning 692 

behind interpretation choice generally remains in the interpreters head and methods to elicit this 693 

information so it can be utilised for uncertainty analysis and quantification is important. Future 694 

strategies may include pod-cast or video diary style animated context that highlight the 695 
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uncertainties and choice points associated with interpretations. Rather, than the current strategies 696 

of flying-through perfectly rendered models that give no impression of uncertainty in the model.     697 

 698 

6. Improving Interpretations 699 

6.1 Interpretation and Model Building Workflows 700 

Few studies examine interpretation and model building workflows. This may in part be because 701 

in industrial geology the constraints are not purely about science, but include commercial 702 

pressures such as time and economics. There are perhaps even fewer published examples from 703 

which we can learn where geological uncertainty and model building workflows have resulted in 704 

commercial failure In academia there have been few studies that analyse geological 705 

interpretations or interpretational practice with large numbers of participants. There does 706 

however seem to be recognition that 1) ideas generation and the creation and use of multiple 707 

models early in an interpretation workflow might help mitigate risk and improve interpretations, 708 

and 2) that rules and reasoning can be employed to distinguish between valid and invalid models 709 

and risk different model concepts.      710 

 711 

In industry geological interpretation and model building is undertaken using software packages, 712 

the user interface of which constrains the interpreter (e.g. Stewart, 2011 and 2012). The work of 713 

Bond et al. (2008) suggests that throwing away the constraints of software when creating and 714 

exploring model space can be an important and easy mechanism that facilitates creation of 715 

multiple interpretations and ideas for the same dataset. The idea of creative space is further 716 

investigated by Bond et al. (2015) who investigate the difference in interpretation of the same 717 

synthetic model but with the interpreter either given seismic image data or borehole data; they 718 
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conclude that the white space between boreholes may create a freedom in interpretation space 719 

that seismic imagery does not. Staged release of data may therefore allow more conceptual 720 

models to be generated initially. Bond et al. (2008) suggest that bringing together geologists with 721 

different backgrounds and with recent exposure to different concepts, in combination with the 722 

removal of context (e.g. regional and tectonic) will also result in greater number of ideas 723 

generated.  In industry both software and workflows (e.g. Leahy and Skorstad, 2013) are now 724 

being generated to include multiple deterministic models higher into workflow practices, to 725 

better capture the uncertainty space and risks associated with using single deterministic models 726 

 727 

Rowbotham et al. (2010) support the use of multiple conceptual models that may then be put into 728 

geostatistical simulations for stochastic modelling to risk outcomes. The models are generated 729 

based on an understanding of which factors will influence the final outcome when the model is 730 

queried (e.g. sand connectivity). With this approach knowledge of both the final use of the model 731 

and what factors will influence the decision making (the outcome) need to be known. Identifying 732 

the main areas of risk will require some initial interpretation to take place and the issues of 733 

interpreter bias (e.g. anchoring to an initial model) may affect the alternative models generated. 734 

In reality geological models are often created for more than one purpose and are used to satisfy a 735 

range of queries, for example as the exploration or development of a hydrocarbon field 736 

progresses a model will be used to address different questions.  737 

 738 

The use of geological reasoning through validation techniques is highlighted by (Bond et al. 739 

2007b, 2012, and Macrae, 2013) as an important tool to distinguish interpretations that work 740 
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geometrically and through time. In the work by Macrae (2013) a causal link was established 741 

between thoughts about the geological evolution of an interpretation and better interpretation. 742 

Geometric and kinematic validity is an important consideration for any structural model and can 743 

be used to test models. Further, rules such as displacement-distance relationships for faults 744 

maybe used in some settings to risk valid models prior to stochastic modelling.  745 

 746 

6.2 Educating Improvement 747 

The first geological models created by geology students are normally in the form of cross-748 

sections based on data from a geological map. As a student’s university career progresses they 749 

will be exposed to different data types: field data, borehole data and seismic imagery from which 750 

they will construct geological models. Initially most of this work will be completed on paper 751 

without the constraints, or imposed workflows of software. But what makes an individual good 752 

at interpretation and geological model building? And perhaps more critically can we teach better 753 

interpretation? 754 

 755 

Interdisciplinary work crossing the fields of psychology, cognition and education is robust in its 756 

findings that those with better visuospatial reasoning skills make better geological maps, and 3D 757 

interpretations (e.g. Humphreys et al., 1993; Wai et al., 2009, Lubinski, 2010; Hambrick et al., 758 

2012; Liben, 2014), see also Manduca and Mogk (2006) and Kastens and Manduca (2012) and 759 

references therein for papers summarising current understanding in this field. There is still debate 760 

however, as to the extent that 3D thinking skills can be taught and nurtured (Libarkin and Brick, 761 

2002; Black, 2005; Titus and Horseman, 2009; Uttal et al., 2013).  Although (Liben and Titus, 762 
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2012) argue that teaching spatial reasoning skills and practical use of these skills should improve 763 

geological interpretation performance.       764 

 765 

A question-posed by Bond et al. (2011) asked how differently experienced cohorts, coped with 766 

there not being a right answer. In a seismic interpretation exercise the student cohorts with least 767 

experience appeared less confident and able to deal with the uncertainty than professionals. Bond 768 

et al. (2011) suggested that this maybe the result of current teaching and learning practices in 769 

which students are taught and examined in the context of ‘correct’ answers. Teaching methods 770 

that challenge the idea of a “correct answer” may therefore be important to develop confidence 771 

and skills to deal with geological uncertainty.  772 

 773 

Finally, the work of Bond et al. (2012) and Macrae (2013) suggests that teaching specific skills 774 

and reasoning techniques can improve interpretation outcome significantly, more so than 775 

education or experience; although there is statistical evidence that those with higher education 776 

experience do better than those without. The latter presumably relating to the number of 777 

conceptual models and hence knowledge available to an individual to apply to an interpretation 778 

problem. So providing multiple analogues or concepts for students to employ in combination 779 

with clear testing and reasoning rules will provide both knowledge and skills to improve 780 

interpretation ability.  781 

  782 

7 Discussion and Conclusions 783 

In recent years interest in uncertainty in geological models, as well as in science generally has 784 

increased. This interest in geological model uncertainty is in-part driven by economics, as Earth 785 
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resources are exploited from increasingly challenging environments. But public awareness of 786 

global environmental issues particularly those linking energy demand with environmental system 787 

impacts is also a key driver, particularly for waste storage, e.g. CO2 and radioactive waste, 788 

geothermal energy projects; and currently unconventional resource extraction. On the back of 789 

this efforts have been made to determine the range of uncertainty in geological interpretation 790 

(Bond et al. 2007b) and to investigate the role of bias (Rankey and Mitchell, 2003, Polson and 791 

Curtis (2010). These examples have mainly focused on the interpretation of seismic imagery and 792 

associated data, with a focus on petroleum industry problems. The petroleum industry, and 793 

petroleum focused academic endeavours, maybe leading the way in geological uncertainty 794 

analysis but there are mining focused examples (e.g. Lindsay et al., 2012), and many of the 795 

petroleum focused examples given here are equally applicable to gravity or magnetic data which 796 

is used more commonly in the minerals sector. 797 

 798 

How uncertainties are communicated in geological models is important from a social and 799 

economic perspective, as the public are increasingly empowered to take part in decision-making 800 

processes involving scientific understanding. Engaging the public and communicating Earth 801 

Science, so that the risks and geological uncertainties are clearly presented, is crucial for 802 

effective policies, regulation and public acceptance (if appropriate) to be achieved. In an 803 

industrial setting the same is true for communicating uncertainties transparently in geological 804 

models with an economic or social impact, so that sites may be compared and effective decisions 805 

made. 806 

 807 
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Companies that design software for interpretation and geological model construction have taken 808 

on the uncertainty challenge, designing workflows that allow uncertainty judgements to be 809 

included during interpretation (e.g. Leahy and Skorstad, 2013), and in model creation (e.g. 810 

Wellman et al., 2010). These workflows are constrained by the computing environment. At the 811 

interpretation stage this generally ‘forces’ workers to interpret in a vertically exaggerated (e.g. 812 

Stewart, 2011 and 2012) and limited spatial view. Interpretations are constrained by mouse 813 

precision and the interpretation process by the user interface (i.e. difficulties in swapping 814 

between fault and horizon interpretation). Interpretation on paper is a much freer process and has 815 

been advocated as a method to generate multiple initial interpretations to a dataset (Bond et al. 816 

2008). Technological advances (i.e. the increased power of touch screens) may allow a digital 817 

interpretation process to be similar to a paper based exercise, providing the interpreter with much 818 

greater freedom and fewer visual constraints. 819 

 820 

Statistically significant analysis of seismic interpretation experiments on paper (Bond et al. 2012 821 

and Macrae, 2013) suggest that interpretation ability, and hence by inference geological model 822 

creation, can be improved by training and the use of prompts to ensure the interpreter uses 823 

specific validation techniques, such as considering geological evolution. The classic structural 824 

geology techniques of section balancing and forward modelling, which formally consider 825 

geological evolution, and other reasoning techniques (e.g. displacement-distance characteristics) 826 

are key to check interpretational validity, and hence inform understanding of structural 827 

uncertainties.  828 

 829 
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Efforts have been made by several authors to use stochastic methods to create multiple 3D 830 

geological models to better represent the structural uncertainties in model creation. In some case 831 

these have been combined with subjective or conceptual models created by experts. The contrast 832 

between the two approaches is significant and the two are not easily married, but efforts to 833 

combine subjectivity into more quantitative approaches may provide fruitful, especially in 834 

combining expert elicitation with Bayesian theory (e.g. Curtis and Wood, 2004). These 835 

techniques may also be employed to consider specific risks associated with uncertainties in 836 

structural models. Methods to visualise these quantitative and subjective approaches have 837 

generally focused on colour mapping, with more novel ideas suggested, but not adopted.  838 

 839 

The barriers to improve interpretation and model creation include the constraints of time and 840 

computing systems, but also in the way in which science is conducted, through the generation 841 

and advocacy of a single model, and in the way education focuses on ‘correct’ answers rather 842 

than solutions to problems. Educational studies suggest that 3D visualisation and thinking can be 843 

improved through education and exposure to 3D problems. Understanding how experts tackle 844 

problems with uncertainty at an early stage in geoscientists’ career may help the development of 845 

practices and ideas.  As Curtis (2012) suggests embracing subjectivity in interpretation and the 846 

uncertainties structural models that this subjectivity creates, provides an opportunity to improve 847 

our understanding of the sub-surface. 848 

 849 
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 1127 

Figure Captions 1128 

Figure 1.  1129 

Paper publications track the change in usage of the words uncertainty and climate change in 1130 

academic literature. The graph shows the number of articles published per year (left-hand 1131 

vertical axis) between 1995-2013 (horizontal axis) that contain the word ‘Climate Change’ 1132 

(purple line) and ‘Uncertainty’ (blue line) in the article title, abstract or key words, using a 1133 

Scopus Search (www.scopus.com August 2014). The green line tracks the increase in use of the 1134 

word ‘Uncertainty’ in the article title, abstract or key words in the Journal Earth and Planetary 1135 

Science, as the number of articles published per year (left-hand vertical axis). The orange line 1136 

represents the use of the word ‘Uncertainty’ in the article title, abstract or key words in the 1137 

Journal of Structural Geology as a percentage of the papers published each year (right-hand 1138 

vertical axis), although relatively few articles are published and the line shows significant 1139 

fluctuations the overall trend is of an increase in usage.    1140 

 1141 
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Figure 2. 1142 

A tree diagram used to define different classifications of uncertainty, after Tannert et al. (2007). 1143 

Uncertainty is divided into objective and subjective components. Objective uncertainties may be 1144 

dealt with through the use of error bounds. For example in the seismic image a chosen velocity 1145 

model could be used for depth conversion, an assessment of the possible range of velocity 1146 

models could be employed to assigned errors or uncertainties to the depth of different horizons. 1147 

Decisions can be made in a quasi-rational knowledge guided way and the uncertainties assessed. 1148 

For subjective uncertainty the different interpretations of the seimsic image represent the 1149 

subjective uncertainty in geological interpretation – creating error bounds is not so easy when 1150 

different conceptual models are applied in an interpretation e.g. for fault placement and 1151 

connectivity. Subjective uncertainties may be through of as intution or rule guided. Seimsic 1152 

imagery from the Virtual Seismic Atlas (www.seismicatlas.org), interpretations by Rob Butler 1153 

and Clare Bond.  1154 

Figure 3. 1155 

Graph of fault throw versus distance along a single fault from three studies (from Bond et al., 1156 

2007a). Krantz (1988) measured the height of a single bedding plane on either side of a fault 1157 

scarp using traditional mapping techniques, Cowie and Shipton (1998) measured the heights of 1158 

three bedding planes using a total station, and Maerten et al. (2001) used a differential GPS. 1159 

Predicting fault throw with distance along the fault requires projection of the data collected on 1160 

either side of the fault scarp onto a predicted fault surface – assumptions are made about both the 1161 

fault plane and how the beds interact with the fault (i.e. straight along dip projection, assumes no 1162 

bend-in of bedding planes towards the fault). A simple estimate of the errors involved in 1163 
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propagating bedding readings along dip, suggests that the errors in assumptions are greater than 1164 

the improvements in technology. 1165 

 1166 

Figure 4. 1167 

Making observations and predictions to construct and test model(s). A) Simple field 1168 

observations, such as bedding cleavage relationships can be used to make predictions of what 1169 

you would expect to see walking across strike. The scale and geometry of the folds, and other 1170 

complications (e.g. faults) can be determined by further observation, but a reasonable prediction 1171 

of the overall structural model can be made from the initial observation. B) A set of initial data 1172 

or observations allows multiple models to be created that fit the data, there is not a unique 1173 

solution.  1174 

 1175 

Figure 5. 1176 

An un-interpreted seismic image and global ‘guesstimates’ of its location. A) World Map with 1177 

sequentially numbered orange dots representing the global locations where individual 1178 

geoscientists thought the seismic image (B) had come from.  1179 

There is an associated movie *.mov file of Figure 5A. 1180 

 1181 

Figure 6. 1182 

Geological maps from the 1880s. A) Field slip of the Inchnadamph area showing the location of 1183 
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outcrop observations in stream sections. B) the final fair copy map which does not distinguish 1184 

outcrop observations from interpretation. Reproduced with the permission of the British 1185 

Geological Survey ©NERC. All rights Reserved. 1186 

Figure 7.  1187 

Hypothetical models for fault off-sets and their associated Allan diagrams, with implications for 1188 

fluid flow in an off-set sandstone layers. A) Hypothetical model one is a single fault strand (red) 1189 

that offsets the sandstone layer (orange) such that in the centre of the fault the sandstone layer is 1190 

not juxtaposed on either side of the fault (as shown in the associated Allan diagram). If the fault 1191 

forms a seal due to shale smear fluids will not be able to flow in the sandstone across the fault. 1192 

B) The second model is of distributed faulting, and the sandstone remains juxtaposed across the 1193 

fault zone despite the cumulative offset across the zone being the same as for the single fault in 1194 

A). There will therefore be no shale smear and assuming no other fault seal processes fluids will 1195 

be able to flow in the sandstone layer across the fault. 1196 

 1197 

Figure 8.  1198 

Fault maps showing different interpretations of the same dataset. Assuming a limited amount of 1199 

either field or seismic data faults may be linked differently by different interpreters. A) The fault 1200 

interpretation map shows a high degree of linkage between fault strands. B) Fault interpretation 1201 

of the same dataset shows minimal fault linkage.  The different implications of the two 1202 

interpretations A) and B) for sediment distribution, and reservoir connectivity in a hydrocarbon 1203 

context would be significant. 1204 
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 1205 

Figure 9. 1206 

Schematic block diagram of a hypothetical geology. The text in black highlights areas of 1207 

potential structural uncertainty in the geological model, text in red gives indications of risks that 1208 

may be associated with these uncertainties. Note that several uncertainties will impact, or 1209 

contribute to a range of risks.  1210 

 1211 

Figure 10.  1212 

Seismic image used for the interpretation exercise in Bond et al. (2007b). The dark green line 1213 

denotes the ‘regional’, the top of the pre-deformation strata at the level it was at before 1214 

deformation. Two seismically imaged horizons, at the top of the pre-deformation statigraphy are 1215 

outlined in pink and blue at different positions across the image. Note that they can be observed 1216 

to be both below and above the dark green regional line. This indicates that there has been both 1217 

extension and compression within the central area of the seismic image. Outline boxes A and B 1218 

at either end of the seismic image and their expanded interpretations to the right, show how 1219 

seismic stratigraphy matching outside the deformation zone can be used to interpret a seismic 1220 

stratigraphy and identify the regional. In the paper version the stratigraphy at either side of the 1221 

section could be matched by folding the paper round on itself.    1222 

 1223 

Figure 11. 1224 

Displacement – distance graph for hypothetical faults. The turquoise line depicts fault 1225 
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displacement with distance along a fault for a single isolated normal fault. The orange line 1226 

depicts a scenario in which two initially isolated normal faults have linked to create a single 1227 

fault. Fault lengths can be used to predict displacements, but linked faults do not conform to 1228 

simple central displacement maxima. In-turn fault displacement patterns can be used to make 1229 

predictions of fault linkage and fault linkage timing.   1230 

 1231 

Figure 12. 1232 

Examples of commonly used methods to highlight uncertainty on 3D surfaces. A) colour 1233 

mapping, B) contouring, C) combined colour map and contour. This is a hypothetical example, 1234 

but the colours and contours could represent for example: uncertainty in horizon top height or 1235 

facies type. The scale bar is common to all models. Examples created in Move software. 1236 

 1237 

 1238 

Tables 1239 

 1240 

Bias Description 

Availability bias The decision, model, or interpretation that is most readily ‘available’ in the 

mind or most dominant (e.g. as seen in textbooks). 

Confirmation bias To seek out opinions and facts that support ‘confirm’ ones own beliefs or 

hypotheses. 

Anchoring bias Failure to adjust from experts’ beliefs, dominant approaches or initial 
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ideas. For example having come up with an idea of the geology to then 

change this view. 

Optimistic bias It won’t happen to me mentality, or there is definitely oil in this prospect, 

where the interpretation puts a positive spin on the desired outcome. 

Positive outcome 

bias 

Wanting things to turn out for the best, the interpretation maximizes 

positive outcomes (similar to optimistic bias). 

Hypothesis testing 

bias 

Starting with an initial hypothesis and trying to fit the data to it (similar to 

confirmation bias). 

 1241 

Table 1. A summary of common biases described in cognitive science literature that may affect 1242 

the interpretation of geological data. The descriptions are based on those given in Krueger and 1243 

Funder (2004), after Bond et al., (2008) 1244 
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