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Abstract

This paper conducts the first detailed analysis of the dynamics of

Bitcoin prices. The application of an autoregressive jump-intensity

GARCH model allows one to study the role of both volatility clusters

and extreme price movements. The results suggest that the influence

of the latter is particularly pronounced - larger than in other markets

- and remains largely unchanged over time. These results gain impor-

tance as the Bitcoin market only recently emerged and is characterised

by a number of distinct market features which imply that there are

no uncertainties on the Bitcoin supply-side. Thus, the observed price

movements are attributable to demand side factors.
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1 Introduction

The virtual currency of Bitcoin emerged in 2008, developed by a group of

anonymous programmers with the purpose to make possible online pay-

ments without involvement of a financial institution or other third parties;

see Nakamoto (2008). Bitcoin is the most popular virtual currency and re-

ceived considerable attention from both the general public and academia,

mainly due to the spectacular price behaviour, its general novelty value and

certainly also extraordinary events and scandals related to Bitcoin. It does

not come as a surprise that monetary theorists as well as central banks

are particularly interested in this phenomenon. Lo and Wang (2014), for

instance, discuss whether or not Bitcoin has the ability to perform the func-

tions required of a fiat money. European Central Bank (2012) emphasises

that virtual currencies generally can have the function of serving as medium

of exchange within a specific community. Among the issues the very compre-

hensive paper by Boehme et al. (2015) discusses is whether or not Bitcoin

can disrupt existing monetary systems.

Bitcoins can be obtained, first, by verifying transactions within the Bit-

coin network - this process is commonly referred to as Bitcoin mining. Sec-

ond, Bitcoins are also traded on various exchanges. The following figures

illustrate that the Bitcoin market is economically highly relevant, and, thus,

deserves the attention it currently receives. The market capitalisation cur-

rently is about 4 billion USD: the peak was close to 14 billion beginning

of 2014.1 Slightly more than 14 million Bitcoins are in circulation, around

1Data source: https://blockchain.info.
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250,000 unique Bitcoin addresses are used per day and there are more than

100,000 transactions per day. In addition to this, virtual currencies are a

new phenomenon in general and are, at the same time, associated with the

emergence of a new tradable entity and a new market place. Studying the

price behaviour of such a newly developed tradable entity in the context of

otherwise developed economies and financial markets is deemed particularly

attractive.

The detailed analysis into the dynamics of Bitcoin prices this paper con-

ducts is - to the best knowledge of the author - the first one to date.2 The pa-

per analyses Bitcoin price behaviour using an autoregressive jump-intensity

GARCH model introduced by Chan and Maheu (2002). This method has

been tested and proven by the empirical finance community and allows one

to study the role of both volatility clusters and extreme price movements

- two features often exhibited by financial market data. Volatility clusters

usually emerge in more nervous market environments while extreme price

movements - captured by the jump component of this model - are driven by

extraordinary news. The model applied in this paper allows one to study

how the role of extreme price movements develops over time and also to

compare this role across markets.

The main results can be summarised as follows: Extreme price move-

ments play a particularly strong role - stronger than in other markets - and

remain largely unchanged over time. The applied jump models fit the data

reasonable well; they outperform benchmark GARCH models and most of

2To be precise, the paper analyses the Bitcoin USD exchange rate. For ease of reading,
this exchange rate is referred to as Bitcoin price.
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the jump parameters are significant. A short cross-market comparison shows

that Bitcoin prices are more sensitive to news than crude oil prices. These re-

sults gain particular importance as the Bitcoin market only recently emerged

and is characterised by a number of distinct market features: the total num-

ber of Bitcoins is fixed and both the number of Bitcoins in circulation as

well as its growth rate is known with certainty. As this implies that there is

no uncertainty on the supply-side of Bitcoin, it can be concluded that the

observed price fluctuations are attributable to demand side factors.

The extant empirical literature this paper contributes to can be sum-

marised as follows: Baek and Elbeck (2014) use the method of detrended

ratios in order to study relative volatility as well as drivers of Bitcoin returns.

They find that Bitcoin volatility is internally driven and conclude that the

Bitcoin market is currently highly speculative. Cheah and Fry (2015) test

for speculative bubbles in Bitcoin prices and find that they exhibit specula-

tive bubbles. In addition, the authors state that the fundamental value of

Bitcoin is zero. In a similar paper, Cheung et al. (2015) apply a recently

proposed popular testing procedure in order to search for periodically col-

lapsing bubbles. They find evidence of these type of bubbles in particular in

the period between 2011 and 2013. Yelowitz and Wilson (2015) use Google

search data in order to shed light on the characteristics of users interested

in Bitcoin. Their analysis shows that ”computer programming enthusiasts”

and criminals seem to be particularly interested in Bitcoin, while interest

does not seem to be driven by political and investment motives. Yermack

(2013), finally, finds that Bitcoin prices are considerably more volatile than

other currencies and that there is ”virtually zero correlation” with the price
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of gold.

The remainder of the paper is organised as follows: Section 2 provides a

detailed descriptive analysis of the data, 3 outlines the empirical approach

applied in this paper. Sections 4 and 5 present the main empirical results

as well as a discussion of which; Section 6 offers some concluding remarks.

2 Data

It has already been mentioned above that Bitcoins are traded on various

exchanges. This paper uses two Bitcoin price series from two different ex-

changes: first, Mt.Gox, until its shutdown the most liquid Bitcoin exchange,

and second, BTC-e. Brandvold et al. (2015) find that Mt.Gox and BTC-e

are the leading markets with the highest information share. The periods

of observation are 7/02/2011 - 2/24/2014 and 8/14/2011 and 8/27/2015,

respectively; data frequency is daily, and log-returns of the prices are used.

Figure 1 presents the data used in this paper in levels as well as in re-

turns. It should not need considerable emphasis that these eye-catching

price dynamics deserve a closer investigation. The most famous episode is

certainly the price hike witnessed end of 2013 and beginning of 2014. The

Bitcoin price peaked at about 1,200 USD. Subsequent to this extraordinary

period, Bitcoin prices seem to have stabilised - at least for Bitcoin standards

- and volatility seems to be considerably lower than in earlier periods. How-

ever also prior to this price hike - and thus, before the general public started

developing a particular interest in Bitcoin - remarkable price movements are

present: in early stages of 2013, for instance, Bitcoin prices increased very
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Figure 1: Bitcoin prices - levels and returns

fast, reaching 200 USD for the first time. Throughout the entire sample

period volatility clusters as well as extreme price movements seem to be

present.

Figures 2 and 3 vividly illustrate that Bitcoin price returns are far from

normally distributed. Displayed are kernel density estimates as well as

quantile-quantile plots for the full sample, an early subsample and a late

subsample, with 31/12/2012 serving as cut-off point. The empirical distri-

butions are highly leptocurtic - more clustered around the mean and with

heavier tails. This leptocurtosis is particularly pronounced in the early sub-

sample and in the BTC-e market. The quantile-qualtile plots confirm this

finding. These plots further illustrate that extreme price movements seem

to be more common in the Mt.Gox exchange and in particular in the late

subsample.
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Figure 2: Kernel density estimates. BTC-e left column, Mt.Gox right col-
umn; full samples (upper panel), early subsample (middle panel) and late
subsample (lower panel).
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Figure 3: Quantile-quantile plots. BTC-e left column, Mt.Gox right col-
umn; full samples (upper panel), early subsample (middle panel) and late
subsample (lower panel).
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3 Empirical model

The so-called autoregressive jump-intensity GARCH model has been pro-

posed by Chan and Maheu (2002). This model consists of a jump com-

ponent, which is able to capture extreme price movements, as well as a

GARCH component, which captures volatility clusters. Chan and Maheu’s

(2002) model has been tested and proven by the empirical finance commu-

nity; areas of application of this and similar models include crude oil prices

(Gronwald, 2012), exchange rates (Chan, 2003) as well as copper prices

(Chan and Young, 2006). Jumps in commodity prices are generally consid-

ered reflecting reactions of prices to surprising news; see e.g. Jorion (1988).

The model consists of the following mean equation:

yt = µ+
l∑

i=1

φiyt−i +
√
htzt +

nt∑
k=1

Xt,k (1)

with zt ∼ NID(0, 1). It is assumed that ht follows a GARCH(p,q) process:

ht = ω +
q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i (2)

The last term denotes the jump component. It is assumed that the (con-

ditional) jump size Xt,k is normally distributed with mean θt and variance

δ2t ; nt describes the number of jumps that arrive between t − 1 and t and

follows a Poisson distribution with λt > 0:

P (nt = j|Φt−i) =
λjt
j!
e−λt (3)
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λt is called jump-intensity. The model is estimated in two variants: a con-

stant jump-intensity model with λt = λ, θt = θ, and δ2t = δ2 and a time-

varying jump-intensity model. For the latter, λt is assumed to follow the

auto-regressive process

λt = λ0 +
r∑
i=1

ρiλt−i +
s∑
i=1

γiξt−i. (4)

The jump-intensity residual ξt is calculated as

ξt−i ≡ E[nt−i|Φt−i]− λt−i =
∞∑
j=0

jP (nt−i|Φt−i)− λt−i. (5)

Using the observation xt and Bayes rule, the probability of the occurrence

of j jumps at time t can be written as

P (nt = j|Φt) =
f(xt|nt = j,Φt−1)P (nt = j|Φt−1)

P (xt|Φt−1)
(6)

The application of the time-varying jump intensity model allows one

to study how the influence of extreme price movements changes over time.

According to Nimalendran (1994), finally, the total variance Σ2 of a process

can be decomposed in a jump-induced part and a diffusion-induced part:

Σ2 = ht + λt(θ
2 + δ2). (7)

This decomposition procedure allows one to compare statistical behaviour

across different markets. Finally, calculating this measure using the time-

varying jump intensity makes possible to study how the share of jump-

10



induced variance changes over time. The following sections present and

discuss the results.

4 Results

Table 1 presents the estimated parameters of the constant as well as the

autoregressive jump-intensity model; Table 2 compares the goodness-of-fit

of the conditional jump models to that of a standard GARCH(1,1) model

estimated as benchmark. Figure 4, finally, presents the estimated time-

varying λ coefficient as well as time-varying shares of variance induced by

jumps.

Table 1: Constant and time-varying jump-intensity models
Mt.Gox BTC-e

Parameter GARCH Constant JI ARJI GARCH Constant JI ARJI
2.9E-03 2.8E-03 3.3E-03 4.4E-04 9.42E-04 9.5E-04

µ
(0.0011) (0.0001) (0.0001) (0.5753) (0.0392) (0.0429)
0.2663 0.2172 0.2000 0.2499 0.2195 0.2014

φ1 (0.001) (0.0001) (0.0001) (0.0001) (0.001) (0.001)
-0.1059 -0.0853 -0.0888

φ2 - - -
(0.0001) (0.0009) (0.0004)

3.0E-05 1.6E-05 1.9E-04 1.2E-04 8.3E-06 8.5E-06
ω

(0.0001) (0.022) (0.0054) (0.0001) (0.0148) (0.0076)
0.3481 0.2129 0.0897 0.3910 0.2316 0.1241

α
(0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
0.7456 0.6949 0.802 0.6206 0.6634 0.7476

β
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

0.0855 0.0723 0.0519 0.0485δ -
(0.0001) (0.0001)

-
(0.0001) (0.0001)

-0.113 -0.004 -0.0063 -0.0021
θ -

(0.1944) (0..3311)
-

(0.1248) (0.4615)
0.1562 0.111 0.2034 0.1461

λ -
(0.0001) (0.0001)

-
(0.0001) (0.0001)

0.7452 0.6061
ρ - -

(0.0001)
- -

(0.0001)
1.1180 0.6287

γ - -
(0.0001)

- -
(0.0024)

Jump-induced variance (%) - 53.62 60.73 - 52.96 61.36

Note: p-values in parentheses. Number of endogenous lags as well as inclusion of constant

is based on standard information criteria as well as significance of parameters.

The estimation results show that all but one jump-parameter are statisti-

cally different from zero, and, moreover, a considerable share of the variance

is found to be induced by jumps. The jump GARCH models clearly outper-
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Table 2: Model performance
Model selection criteria

MtGox BTC-e
Criterion GARCH Constant ARJI GARCH Constant ARJI
LogL 1874.64 1964.44 1978.42 2817.006 2991.383 2995.913
AIC -3.359639 -3.515621 -3.537143 -3.858622 -4.102316 -4.102973
BIC -3.337110 -3.479575 -3.492086 -3.836861 -4.069621 -4.063035
HQ -3.351121 -3.501992 -3.520107 -3.850503 -4.090117 -4.088072

Likelihood ratio test
MtGox BTC-e

Models Test statistic Test statistic
CJI vs. GARCH 179.61∗∗∗ 348.76∗∗∗

ARJI vs. GARCH 207.56∗∗∗ 357.81∗∗∗

ARJI vs. CJI 27.95∗∗∗ 9.06∗∗

Note: GARCH denotes a standard GARCH(1,1) model, CJI the time-constant jump

intensity model and ARJI the autoregressive jump intensity model.

form the benchmark GARCH(1,1); the time-varying jump-intensity model

is found to have the best goodness-of-fit.

Figure 4 reveals that higher jump-intensities are more frequent in 2011

and in 2012 than in later years. The largest peaks however occur during the

fourth quarter of 2011, the third quarter of 2012, the second quarter 2013,

and the first quarter of 2015. In the beginning of 2014, Mt.Gox prices are

marked by particularly large jumps related to the market turbulences prior

to its shutdown. BTC-e prices after 2014 seem to be slightly less sensitive

to news and jump intensity peaks occur slightly more regular. The variance

decomposition, furthermore, shows that the share of variance induced by

jumps fluctuates around 60 %. Pronounced decreases only occur four times:

to the same times large peaks of the jump-intensity occur. The share of

jump-induced variance drops to about 15−30%. Although these findings at

first glance seem to contradict each other, there is a simple explanation: in

the aftermath of the extreme movements the volatility is generally higher,

12



Figure 4: Jump intensities and jump-induced variance
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with a larger share of volatility captured by the GARCH component. Gron-

wald (2012) finds a similar pattern for the crude oil market.

Carrying forward this comparison between the results obtained in this

paper and Gronwald’s (2012) crude oil market study shows that there are

remarkable differences between these markets. Gronwald (2012) finds the

share of oil price variance induced by jumps to fluctuate around 40 %. This

measure is considerably lower than for the Bitcoin prices. Moreover, in the
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aftermath of extreme price movements associated with the OPEC collapse

1986, the Gulf War 1991, and the oil price record high of 2008, this share

drops drastically to just 5 − 10% - also much lower than the values found

for the Bitcoin market. Shares of the jump-induced variance of about 60%

as in the Bitcoin market are observed in the crude oil market in very early

stages only - prior to 1986. In that period the crude oil market is considered

very immature and, thus, particularly sensitive to news.

5 Discussion

It has already been highlighted that the Bitcoin market is characterised by

a number of unique features. This section further elaborates on this and

also proposes innovative economic interpretations. First, the total number

of Bitcoins is fixed - there are only 21 million units. Second, ”all of the quan-

tities and growth rates of Bitcoins are known with certainty by the public”

(Yermack, 2013) and every single trade of Bitcoins is recorded in a publicly

available database (Dwyer, 2015). Third, it is ensured that the growth rate

of Bitcoins remains constant over time: if Bitcoin mining becomes more

attractive, e.g. through higher Bitcoin prices, the complexity of the cryp-

tographic puzzles adjusts accordingly. These rules have been designed in

advance by the developers of Bitcoin. They will remain unchanged over

time and have been established without the intervention of any regulator

(see Boehme et al, 2015). For some authors these features are be problem-

atic from an economic perspective: Yermack (2013), for instance, states the

following: ”In the case of a ’wild success’ of Bitcoins and the replacement

14



of sovereign fiat currency it would not be possible to increase the supply of

Bitcoins in concert with economic growth.” In the same vein, Lo and Wang

(2014) conclude that ”some features of bitcoin, as designed and executed to

date, have hampered its ability to perform the functions required of a fiat

money.”

This paper now aims at establishing a different perspective on this issue.

It is just these unique market features that make this market a fascinating

object of study. The total number of Bitcoins, the number of Bitcoins in

circulation and the growth rate are known with certainty. In other words,

there is no uncertainty on the supply-side of Bitcoins. Considering the

following analogy between Bitcoin and the market for crude oil illustrates

this: observers of the crude oil market usually follow with bated breath

when OPEC announcements regarding their future oil production rates are

made. Whether or not OPEC countries will adjust production generally

has considerable effects. In other words, current availability of crude oil

is uncertain. The same applies to crude oil reserves as well as crude oil

resources: new explorations, the development of new technologies, and the

price of crude oil itself will have an effect on the overall amount of crude oil

that is available. It does not need further explanation that also these factors

will affect the price of crude oil. Similar things apply to other commodity

markets. The supply of Bitcoin, however, is not uncertain. The implication

of this observation is that the observed price fluctuations and, thus, also the

identified price jumps, can only be caused by demand-side factors.
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6 Conclusions

Virtual currencies are a phenomenon that has emerged only recently and Bit-

coin is the certainly most famous one - in terms of both economic relevance

and also interest it received from the general public and academia alike.

Center stage so far in the academic analysis takes the question whether Bit-

coin is a currency or an asset and under which motivation economic agents

get involved in Bitcoins. The preliminary conclusion is that Bitcoins are

to be considered an asset or speculative investment rather than a currency.

Yermack (2013), most prominently, argues that the fixed number of Bit-

coins is a severe economic problem as the supply of money would not be

able to be adjusted in concert with economic growth. A small but steadily

increasing number of papers also studied Bitcoin prices empirically, mainly

with the focus on Bitcoin volatility (see Baek and Elbeck, 2014) and bub-

ble behaviour (see Cheung et al., 2015 and Cheah and Fry, 2015). These

papers find that speculative activity is a major driver of Bitcoin prices.

Yelowitz and Wilson’s (2015) analysis of Google searches for Bitcoin shows

that ”computer programming enthusiasts and illegal activity drive interest

in Bitcoin”. Dowd and Hutchinson (2015), finally, come to a very drastic

conclusion: ”Bitcoin will bite the dust”.

Regardless of whether or not this is going to happen, the Bitcoin market

is a fascinating object of study. Bitcoin, in specific, and virtual currencies

in general only recently emerged and are associated with the emergence of

a new tradable entity and a new market place. The price dynamics ob-

served in this new market can certainly be described as spectacular and it
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is noteworthy that Bitcoin itself has been developed without involvement of

any regulatory authority or support from the academic front. Thus, it is a

unique situation as the following discussion of spectacular price movements

and newly developed markets illustrates. Among the earliest representa-

tives is certainly the Dutch tulip mania 1634-1637. Regardless of whether

the observed price movements are a bubble or are justified by economic fun-

damentals (see Garber, 1990), the noteworthy feature is that in the 17th

century a modern market economy has not developed yet and, likewise, eco-

nomic knowledge of market participants has not been very developed either.

A similar assessment holds for the Mississippi as well as the South Sea Bub-

bles. Spectacular price movements are certainly also present in the market

for crude oil. This market however is well established and most of the market

participants are professionals, often with economic background. An exam-

ple for another recently developed market is the European Union Emission

Trading Scheme, a market for trading pollution permits. This market has

been designed by politicians and lawyers and is based on economic reasoning.

Nevertheless price movements are spectacular, but however can be largely

explained by the design of the market (Hintermann, 2010; Gronwald and

Hintermann, 2015). In contrast, Bitcoin is a newly emerged tradable entity,

the overall economic environment is advanced, Bitcoin has been designed

without involvement of regulatory authorities, market participants can be

assumed to have at least certain understanding of markets, and Bitcoin has

some unique features.

The eye-catching price movements observed in this market certainly jus-

tify a thorough analysis. Some existing research in this area dealt with is-

17



sues such as price volatility and price fundamentals. This paper contributes

to this literature by conducting the first extensive analysis into the price

dynamics of Bitcoin. It applies an autoregressive jump intensity GARCH

model, a model which has been tested and proven by the empirical finance

community. The key features of this model are that it is able to capture

volatility clusters as well as extreme price movements. The importance of

the latter, in addition, can be studied over time and across markets.

This paper finds that Bitcoin price dynamics are generally similar to

other markets. Evidence of both volatility clusters and extreme price move-

ments is found. The importance of these price movements remains largely

unchanged over time. There are, however, some remarkable differences. The

contribution of these large movements is considerably larger than in other

financial markets. Thus, Bitcoin prices are more sensitive to news than

prices in other markets. Among the explanations for this is certainly the

immaturity of the market. The unique market features discussed in this

paper, however, also imply that there is no uncertainty on the supply-side

and, thus, all extreme price movements can only be driven by demand side

factors.
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