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Abstract 9 

Variability in the fluctuations of two Scottish lobster populations, the Hebrides and 10 

Southeast, was investigated from available long data series of fishery and environmental 11 

variables. In a multivariate context, relationships between selected environmental variables 12 

and the fishery data were studied at different spatial and temporal (annual, spring and 13 

autumn) scales and from individual and overall sampled fleet. Multivariate techniques such 14 

as cross correlation function (CCF), principal components analysis (PCA) and redundancy 15 

analysis (RDA) confirmed that the capture of lobsters was strongly influenced by sea 16 

surface temperature (SST), wind speed (WS), and sea level pressure (SLP) throughout the 17 

year, and this dependence affected the duration of the fishery. There were evident 18 

differences in the patterns of environmental variables for both regions. In the Hebrides, the 19 

total variation (42%) of the interaction fishery-environmental variables for the spring and 20 

autumn fisheries could be attributed to the environmental variables in an 89%. For the 21 

Southeast, the spring fishery was more affected by changes in the environment, with a total 22 

variation of 34%, from which 85% could be explained by the environmental variables 23 

tested, than the autumn fishery where catches and catch rates may be more affected by the 24 

way individual vessel and sampled fleet operate. Two elements were identified, Hebrides 25 

and Southeast spring and autumn fisheries. The Hebrides lobster population is strongly 26 

influenced by density-independence processes at all spatial scales. The Southeast fishery is 27 

also driven by environmental processes, with higher correlations for recruits with 28 

differences at small and large spatial scales  29 

Keywords: Homarus gammarus fisheries, redundancy analysis, environmental factors. 30 

31 
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 32 

Introduction 33 

Fluctuations in lobster abundance may occur as a consequence of the combination of 34 

environmental and fishery-related processes. This study attempts to account for sources of 35 

variation and highlight the most influential factors that might allow fishery managers to 36 

acquire the best tools for achieving a sustainable fishery. The mechanisms involved in any 37 

fishery have implications for the whole population under exploitation. For example, the 38 

success of trap-based fisheries, like the homarid lobster fisheries, strongly depends on the 39 

behaviour of the target species, trap efficiency and oceanographic conditions of the region 40 

(Miller, 1990; Addison, 1995; Fogarty and Addison, 1997; Tremblay and Smith, 2001; 41 

Watson and Jury, 2013). In homarid lobsters, sea temperature influences behaviour and 42 

availability to traps over the short term (McCleese and Wildner, 1958). Researchers have 43 

found a strong correlation between long term catch rates of the American lobster (more 44 

than 50 years of data) and sea surface temperature at the largest spatial scales, with lags of 45 

0-3 yrs, and it has also been suggested that wind-driven temperature variability can directly 46 

affect catch rates in offshore localities (Comeau and Drinkwater, 1997; Drinkwater 1994). 47 

Other results have found that temperature changes are due to alongshore winds forcing 48 

upwelling or downwelling (Drinkwater et al., 2006).  49 

On the other hand, wind speed and direction is important for the transport of larvae directly 50 

affecting recruitment processes in pelagic (Borges et al, 2003) and benthic (Wegner et al, 51 

2003) fish in eastern Atlantic waters. Investigation on the importance of wind on 52 

fluctuations of crustacean populations is desired.  53 
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Comparative studies of wind and catch rates of the European lobster, Homarus gammarus, 54 

in Scottish waters are lacking. However, for Scottish lobster fisheries, authors (Shelton et 55 

al., 1978) have demonstrated differences between spring and autumn in the Southeast of 56 

Scotland, related to moulting and recruitment, but the effects of this process on fisheries 57 

may differ between areas at different geographic scales. Differences in lobster size at 58 

maturity and fecundity (Lizárraga-Cubedo et al., 2003) and population size structure 59 

(Kinnear, 1988; Mill et al, 2009) have been identified between the Hebrides and Southeast, 60 

and it is suggested such discrepancies may occur as a response to the local conditions and 61 

fishing strategies. From this information some questions can be addressed; are wind and sea 62 

temperature the most important environmental factors affecting the fluctuations of lobster 63 

abundance, if so how do they contribute to the total variation in catch rates, and are there 64 

any temporal and spatial differences? The environmental influences on the fishery will be 65 

investigated by addressing these questions.  66 

It is acknowledged that catches alone may not necessarily reflect lobster abundance at the 67 

intermediate and small spatial scales (Koeller, 1999; Watson and Jury, 2013). Therefore, 68 

the relative abundance index (CPUE) may not be truly representative of the abundance of 69 

the population under exploitation (Addison, 1995; 1997; Fogarty and Addison, 1997; Jury 70 

et al, 2001) suggesting that more work on this field should be undertaken. This leads us to 71 

inspect how all the fishery components respond to environmental conditions and also what 72 

elements of the fishery are more relevant for stock assessment purposes.  73 

In a fishery context, knowledge of the pre-recruit and recruit components is of great 74 

importance. These components are seldom compared with environmental conditions, hence 75 

it would be important to assess: 1) how the pre-recruit (undersized lobsters) and post-recruit 76 
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(legal size lobsters) components relate to fishing effort and environmental elements at 77 

different temporal and spatial scales; and 2) how do these components relate to catch rates. 78 

Individual series of fishery and environmental data may not necessarily present significant 79 

correlation owing to time lags, which may discourage further statistical analysis. However, 80 

a more careful analysis of long time series or short time series at different spatial scales 81 

may reveal the underlying relationships.  82 

In this paper, we explore the relationships between the elements involved in the European 83 

lobster fishery (fishing effort, catch, and catch rates of undersized and legal size lobsters) 84 

and environmental data for two Scottish stocks, the Hebrides and Southeast, between 1983-85 

1997. We also analyse the relationships between variables at smaller (data from individual 86 

vessel) and larger (overall sampled fleet) spatial scales (Table 1). The auto-correlation 87 

function (ACF) and cross-correlation function (CCF) are used to analyse individual data 88 

series and to explore relationships between two pairs of variables, respectively. In addition, 89 

two dimension reduction techniques, principal components analysis (PCA) and redundancy 90 

analysis (RDA), are applied to investigate the data in a multivariate context. As well as 91 

analyses on an annual basis, the data were partitioned into two seasonal (spring and 92 

autumn) components to investigate changes of the variables studied on three different 93 

temporal bases. 94 

95 
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Materials and Methods 96 

Fisheries 97 

Fisheries data were obtained from Marine Scotland Science, Marine Laboratory Aberdeen, 98 

in the form of voluntary logbooks completed by selected fishermen. Data from the overall 99 

sampled fleet (sf), aggregated on a weekly basis, include a discontinuous series of catch in 100 

numbers of legal size lobsters (L sf) and discarded (undersized, S sf) lobsters, and fishing 101 

effort (creels lifted, f sf), for the period 1970-1996 for the Hebrides and 1963-97 for the 102 

Southeast of Scotland (Fig. 1). From these data, two relative abundance indices or catch 103 

rates were calculated: the legal lobster catch rate, U Lsf (legal lobsters per 100 creels lifted), 104 

and the undersized lobster catch rate, U Ssf (undersized lobsters per 100 creels lifted). Total 105 

weight of annual, spring and autumn commercial landings data (TL) were obtained from 106 

Scottish Sea Fisheries Statistical Tables for the longest period available of 1981-97. The 107 

number of vessels contributing to the data varied between years and areas. Therefore, for a 108 

better understanding of the fishery data structure, the vessel with the longest continuous 109 

series available was chosen from each area (from 1983-93 for the Hebrides and from 1985-110 

97 for the Southeast). The individual vessel information (iv), included catch in numbers of 111 

legal lobsters (L iv), discarded lobsters (S iv), fishing effort (f iv), legal lobster catch rate (U 112 

Liv), and undersized lobster catch rate (U Siv). For comparative purposes, fishery data from 113 

all the sampled vessels, individual vessels and total landings were confined to the periods 114 

1983-93 for the Hebrides and 1985-97 for the Southeast. 115 

The Hebrides lobster fishery extends over an area of 26,500 km² (56.5-59°N and 6-9°W), 116 

containing 8 ICES rectangles. The fishery in the Southeast covers an area of approximately 117 

11,500 km² (55.5-56.5°N and 1-4°W) and contains about 3.5 ICES rectangles. Although all 118 
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the sampled vessels contributed with fishery statistics for the area specified for each region 119 

(Hebrides and Southeast), individual vessels fished in a more reduced range. The individual 120 

vessel in the Southeast fished in an area of about 370 km² per year, mainly along the 121 

coastline, and activity was focused on very confined fishing grounds (Fig. 1a). The 122 

individual vessel in the Hebrides covered an average area of approximately 740 km² per 123 

year, specifically performing its fishing in two ICES rectangles of the Outer Hebrides (data 124 

from 1990-93, Fig. 1b). It is assumed that data from overall sampled fleet represent 125 

processes at larger spatial scale than information from individual vessels. 126 

Regulation in the fishery during the study period has been limited to specification of a 127 

minimum landing size (MLS). During this time there have been three different MLSs. Prior 128 

to 1984 the MLS was 80mm carapace length (CL), 83mm CL from 1984-92, 85mm CL 129 

from 1993-97 (data for the studied period) and currently of 87mm CL. There has been no 130 

effort limit, closed season or protection of berried females (although in the Hebrides a 131 

programme of V-notching started in September 2000, after the period considered in this 132 

study, Mill et al, 2009).  133 

Other fishery management measures have been inspected recently by the Scottish 134 

Government (2012) such as a reduction of number of creels deployed by fishermen and the 135 

introduction of quotas. These measures could apply to a mix creel fishery composed by 136 

catches of velvet crabs, edible crabs and lobsters, from which lobsters have shown to be the 137 

most valuable resource reaching its maximum value of £13.2 million in 2011 and this trend 138 

has been increasing since 2002. 139 

In the Hebrides, the duration (length) of the fishing season is dictated by the local weather 140 

conditions. Normally, the fishery starts from April or May, and ends in October-November. 141 
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In the Southeast, the weather conditions are more favourable for fishing for the whole year. 142 

This fishery can be divided into two components, the spring or pre-moult season and the 143 

summer or post-moult season. From March-May the sea temperature starts increasing and 144 

lobsters feed actively, and this is reflected in increasing catch rates. Fishing declines and 145 

lobster activity decreases from June-July (Shelton et al., 1978). In the summer (August-146 

October) recruits join the fishable stock after moulting and catch rates increase to their 147 

highest levels (Thomas, 1958, Shelton et al., 1978; Schmalenbach and Buchholdz 2013). 148 

Based on this seasonal pattern, analysis of the fishery data from each area has been carried 149 

out for annual, spring (March-May) and autumn (August-October) time series. 150 

Environmental variables 151 

Time series of sea surface temperature (SST), air temperature (AT), sea level pressure 152 

(SLP), and wind speed (WS), for the Hebrides and Southeast were acquired from the 153 

COADS (Comprehensive Ocean-Atmosphere Data Set) web site http://www.cdc.noaa.gov/coads/ for 154 

the period 1960-97. The spatial coverage of the data was the same as for the fishery data. 155 

These environmental variables were chosen as those likely to influence fisheries at a 156 

relatively small spatial scale (areas about 11,500 km² to 26,500 km²). Sea surface 157 

temperature may affect changes in lobster behaviour and catchability (McCleese and 158 

Wildner, 1958; Tremblay and Drinkwater, 1997; Schmalenbach and Buchholdz 2013; 159 

Watson and Jury 2013; Green et al., 2014). Sea level pressure, the interaction between air 160 

and sea temperature, and wind speed may help to describe valuable meteorological 161 

information for the lobster fishery and highlight differences between sites, and therefore 162 

they were selected as explanatory variables for this investigation.  163 
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To eliminate seasonal patterns in the data, the annual, spring and autumn arithmetic mean 164 

estimates of SST, AT, SLP and WS were obtained.  165 

Interactions between variables 166 

Patterns in individual exploratory variables were visually inspected, with further 167 

exploration of the temporal patterns of individual variables carried out with the auto-168 

correlation function (ACF). The ACF was applied to the environmental data series (38 169 

years, 1960-97) and was also used for preliminary investigation of the short fishery data 170 

series, as well as short environmental data series (Hebrides 11 years and Southeast 13 171 

years). To detect relationships between the series, the cross-correlation function (CCF) was 172 

used.  173 

Further data exploration was carried out with multivariate techniques as implemented in the 174 

statistical program Brodgar (2014, www.brodgar.com Highland Statistics Ltd.). Initial 175 

investigations suggested that the relationships were likely to be linear, and therefore 176 

Principal components analysis (PCA) and Redundancy Analysis (RDA), were applied to 177 

the fishery and environmental data from both areas to highlight the most important 178 

gradients (Blackith and Reyment, 1971; Kshirsagar, 1972; Gauch, 1982; ter Braak, 1987). 179 

PCA and RDA have been previously used to detect species-environmental relationships in 180 

ecological data (Depczynski et al., 2009) as well as for fisheries data (Hamon, 2009; 181 

Suprenand et al., 2014) and further technical descriptions can be found in Zuur (1999) and 182 

Ieno (2000). 183 

184 
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Results 185 

Data structure 186 

Initial inspection of the environmental data highlighted differences in the environmental 187 

conditions between areas. Sea surface temperature and air temperature were warmer for the 188 

Hebrides, especially in spring. Autumn sea surface temperature was higher by about 6 oC at 189 

both sites. Wind speed was also higher in the Hebrides with an increasing trend over time 190 

for the period of 1960-97. In contrast, sea level pressure was higher for the Southeast (Fig. 191 

2). 192 

The results of the ACF analyses are given in the appendix (Tables i and ii). ACF analysis 193 

showed that the mean annual data of SST, AT and WS showed significant auto-correlation 194 

for over the period 1960-97, with time lags of +1 to +6 yrs. Annual data over the shorter 195 

time scales were mostly not significantly auto-correlated. In the Hebrides, the fishery 196 

variables were mostly positively auto-correlated at a lag time of +1 year, and only f sf and U 197 

Lsf were significantly auto-correlated in the three series (spring, autumn and annual). For 198 

the Southeast fishery variables, significant auto-correlation at time lags of between +1 and 199 

+5 years, were obtained only for the annual and autumn series. These results encouraged 200 

further investigation of interactions between individual series. 201 

Investigating relationships between variables 202 

The CCF analysis suggested possible relationships between environmental and fishery 203 

variables. Relationships between all fishery variables were also obtained, although 204 

emphasis was made to the most significant correlations. Significant relationships were 205 

observed in the comparisons of the correlation between the different data series suggesting 206 

temporal changes. Full details of the significant correlations are provided in Tables iii, iv 207 
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and v of the appendix. For a better interpretation of the results, only the significant 208 

relationships between environmental and catch rates annual, spring and autumn data were 209 

included for both areas (Table iii and iv).  210 

In the Hebrides, significant correlations were obtained between the catch rates and the 211 

tested environmental variables on annual, spring and autumn bases and these were more 212 

significant for the legal sized lobsters.  213 

In spring, at large spatial scale SST and AT were positively correlated to total landings but 214 

negatively correlated with U Lsf at lag time of 0 years.  215 

In autumn, wind speed and sea level pressure presented the strongest correlations with 216 

catch rates of both legal and undersized lobsters for both the sampled fleet and individual 217 

vessel (Table iii).  218 

Annual series of all environmental variables were highly correlated to the catch rates of all 219 

lobsters only at large spatial scale. 220 

In the Southeast, catch rates and total landings were significantly correlated with the 221 

environmental variables at all spatial scales in spring and autumn, whilst annually, the 222 

relationships were significant at small spatial scale (Table iv). The spring time series 223 

showed negative correlations with SLP, WS and AT. In autumn, TL and catch rates were 224 

correlated with SST and AT (lagged between +2 to +4 yrs). Annually, U Siv showed a 225 

positive correlation with SST and AT, whilst the U Liv was negatively correlated with AT 226 

with a 3 year lag.  227 

The correlation between fishery variables was highly significant for the Hebrides data 228 

series and moderately significant for the Southeast. For both areas, the CCF analysis 229 

identified fishing effort as a significant correlate with most of the other fishery variables.  230 
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 231 

Multivariate analysis: relationships between variables 232 

Adopting a multivariate approach, RDA revealed the relationships between environmental 233 

and fishery variables for each of the time series (Figs.3-5).  234 

 235 

The Hebrides fishery 236 

In the Hebrides, significant correlations were obtained between the catches and catch rates 237 

and the tested environmental variables at any time of the year. In spring, sea surface 238 

temperature is the most significant variable and most noticeable at larger spatial scale (Fig. 239 

3a). This is reflected in the high catches of undersized and legal lobsters obtained, 240 

corresponding to a high fishing effort, hence indicating a significant and negative 241 

relationship with catch rates.  242 

In autumn, the short arrows of the triplot showed that environmental conditions have less 243 

significant impact (interaction) on the fishery. In contrast, fishery variables are highly 244 

correlated at large and small spatial scale (Fig. 3b).  245 

Annually, total landings seemed to be strongly influenced by the environmental conditions, 246 

and this also coincided with the catches of legal sized lobsters of the sampled fleet. Annual 247 

data series of wind speed showed to be the most important variable at large spatial scale 248 

(Fig. 5a).  249 

 250 

The Southeast fishery 251 

The spring fishery varied spatially, with differences between the sampled fleet and the 252 

individual vessel selected. There were strong and positive relationships between fishing 253 
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effort, pre-recruits and recruits at each spatial scale. Sea level pressure was highly 254 

correlated with the fishery data at large spatial scale, whereas wind speed was found to be 255 

correlated to fishery data at small spatial scale. (Fig. 4a). 256 

In the autumn, wind speed was the environmental variable with the highest, and positive, 257 

correlation with fishery data, although the relationship between fishing effort, legal and 258 

undersized lobsters varied at small and large spatial scale (Fig. 4b). 259 

The analysis of the annual data series showed that for this fishery both, air and sea surface 260 

temperature strongly correlate with the data series of catches of recruits and pre-recruits, at 261 

small and large spatial scale (Fig. 5b). 262 

 263 

Multivariate analysis: quantifying variability 264 

In the Hebrides, based on PCA, the proportion of variability explained by the interaction 265 

between fishery variables was greater (71.24%) for the autumn and annual (71.13%) time 266 

series than the spring (63.55%). In the Southeast, less variability was explained, and while 267 

the greatest proportion was also explained in the autumn (62.14%), the proportion 268 

explained for the spring series (57.47%) was greater than for the annual data 269 

(52.42%)(Table 2). From the redundancy analysis, in the Hebrides, the explanatory 270 

variables account for the 88.99% of the variance in autumn, and 84.77% in spring. For the 271 

Southeast, the environmental variables account for more of the variance in spring (84.81%) 272 

than in autumn (69.38%). The RDA analysis, with the four explanatory variables studied, 273 

best described the processes that contribute with most of the variation in the fisheries of 274 

both areas.  275 

276 
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Discussion 277 

The long annual time series (1960-97) of environmental variables were different between 278 

areas with marked differences in the trends of the three temporal components, spring, 279 

autumn and annual. Overall, sea surface temperature and air temperature were higher in the 280 

Hebrides and also stronger wind speed was observed. These long annual time series were 281 

mostly auto-correlated, while the shorter series (1983-97) were generally not. The lack of 282 

auto-correlation of the short annual time series may be indicative of widely disperse data 283 

points or abrupt changes in the patterns over time as for the sea level pressure and wind 284 

speed (Fig. 2).  285 

The analysis of the fishery data indicated that fishery processes are markedly different 286 

between geographic areas and at different spatial scales. Both fisheries are strongly 287 

influenced by the oceanographic conditions with wind speed, sea surface temperature and 288 

air temperature contributing with relevant information in the interactions.  289 

Data series of exploratory and explanatory variables at three temporal scales revealed that 290 

fisheries of the Hebrides and Southeast can be divided into two component fisheries, spring 291 

and autumn and this was supported by the CCF, PCA and RDA analyses. 292 

For the Hebrides fishery, the information obtained from the sampled fleet represented the 293 

fishery processes at larger spatial scale whilst the individual vessel fished over a reduced 294 

area (Table v). The analysis of the spring fishery indicated sea surface temperature as a 295 

highly relevant variable with significant correlation with the catch rates over the whole 296 

area. High catch rates were inversely correlated to high fishing effort and high catches.  297 

In autumn, although there were weaker relationships between the environmental conditions 298 

and catch rates, wind speed was significant. Catch rates were highly correlated at small and 299 
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large spatial scales (f, L and S), as depicted by the arrows of the triplots (Fig. 4b).  300 

Annually, wind speed seemed to be important for this fishery for legal lobsters at larger 301 

spatial scale. The PCA indicated the proportion of variability explained by the interaction 302 

between fishery variables was greater for the autumn time series and the RDA also 303 

accounted for a higher variance in autumn. 304 

Similar to the Hebrides fishery, in the Southeast the information obtained from the sampled 305 

fleet represented the fishery processes at larger spatial scale whilst the individual vessel 306 

fished over a reduced area but there were marked differences between data series (Table v). 307 

In spring, all the environmental variables tested were correlated with the fishery data at 308 

both spatial scales (Fig. 4a). However, pre-recruits were found to be more correlated to 309 

environmental variables than legal lobsters as this was shown in the triplots with longer and 310 

positively correlated closer arrows (Fig. 4a). 311 

In contrast, in autumn wind speed was highly correlated to the fishery data at both spatial 312 

scales but this was only revealed by the RDA analysis (Fig. 4b). For the autumn fishery the 313 

triplots showed undersized lobsters to be more correlated to environmental variables at the 314 

small spatial scale than legal lobsters. 315 

The analysis of the annual data series showed that for this fishery both, air and sea surface 316 

temperature, are the prevailing conditions that strongly correlate with the data series of 317 

catches of recruits and pre-recruits, at small and large spatial scale (Fig. 5a-b).  318 

As a comparison, and derived from the RDA analysis, less variability could be explained by 319 

the interaction between the environmental and fisheries variables for the Southeast, with the 320 

greatest variation being explained in the autumn but environmental variables explained 321 

greater variance of the relationships in spring (84.81%).  322 
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The RDA analysis, with the four explanatory variables studied, best described the processes 323 

that contribute with most of the variation in the fisheries of both areas. 324 

Although there was a lack of correlation between sea level pressure and wind speed there is 325 

close relation between them product of a wind formation on gradients of sea level pressure 326 

(Parker, 1989). Stronger winds were observed in the Hebrides in spring and autumn whilst 327 

sea level pressure was higher for the Southeast, suggesting weather conditions vary 328 

between areas.  329 

In the Hebrides the influence of more regional scale events of temperature in spring, 330 

including the incursion of air masses to the area seems to affect directly the lobster fishery. 331 

For the Southeast in autumn, local events of wind speed have repercussions on the fishery 332 

success, specially affecting the deployment of creels. These events could also produce 333 

strong vertical mixing of the water column which enhance and/or inhibit the growth of 334 

some species of phytoplankton that are the main source of food for the early stages of 335 

crustacean larvae (Zheng and Kruse, 2000). In addition, turbid or dull conditions can 336 

enhance adult lobster activity (Smith et al., 1999) and strong water flow near the seabed can 337 

weakened juvenile lobster mobility (Howard and Nunny, 1983).  338 

Previous to this investigation, Shelton et al. (1978) demonstrated the importance of 339 

partitioning the fishery elements into two main fisheries, spring and autumn. The biological 340 

interpretation relies on the fact that lobsters increase their activity, hence increase 341 

catchability and availability to traps, in spring as a response to increasing temperature. 342 

When lobsters start moulting, from June-July (Thomas, 1958), the fishery ceases or stops 343 

only to start again in August when all the recruits have incorporated to the exploitable 344 



 17

stock. Although the autumn fishery component is important, the influence of environmental 345 

variables decreases.  346 

In spring, however, pre-recruits were found to be more correlated to environmental 347 

variables than legal lobsters. For the autumn fishery undersized lobsters, the triplots 348 

showed stronger correlation to environmental variables at the small spatial scale than legal 349 

lobsters. 350 

Studies by Green et al (2014) stressed the need for cautious interpretation when assessing 351 

relationship between environmental variables and the interaction with lobsters and crabs. 352 

Independent assessment may show clearer trends relating temperature to increasing growth 353 

rates of all life stages whereas an assessment of a combination of variables would often 354 

magnify the resulting relationships. 355 

In this study, we corroborated the role water temperature and wind have on the lobster 356 

biology and fishery at all spatial-geographic scales. Similar observations have been made 357 

for the Homarus americanus fishery in Canadian waters on the interaction of wind, 358 

temperature and catch rates (Koeller, 1999; Comeau and Drinkwater, 1997; Comeau et al., 359 

1997; Tremblay and Drinkwater, 1997; Drinkwater et al., 2006). Results obtained by 360 

Koeller (1999) showed differences in the correlation between variables and between 361 

adjacent localities (landing districts or ports), at the smallest temporal and spatial scales. 362 

This author found that at the largest spatial and temporal scale (Atlantic coast of Nova 363 

Scotia, 50 yr), these variables were significantly correlated at short lags (0-3 yr) prior to 364 

1974. He also suggested that lobster activity or changes in growth were temperature 365 

induced, and as a consequence affected catch rates.  366 
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Homarus gammarus in some lobster reserves in Norwegian waters experienced sea 367 

temperatures ranging from 2°C during late winter (February to March) to 18°C during late 368 

summer (August to September) with seasonal variations in lobster activity levels being 369 

correlated to water temperature (Moland et al., 2011). Lobster juvenile moulting and 370 

locomotory activity is optimal at temperatures of between 12-14 ºC (Schmalenbach and 371 

Buchholz, 2013) and a similar range of temperatures was observed in this study for the 372 

Hebrides and Southeast in autumn throughout the studied period.  373 

Koeller (1999) argued that at intermediate scales, catches alone do not accurately reflect 374 

changes in lobster abundance. At smaller spatial and temporal scales changes in fishing 375 

effort were driven by wind, and wind event affected water temperature. In addition, he 376 

concluded that fishing effort must be considered as an important variable at the smallest 377 

temporal and spatial scales for stock assessment.  378 

Wiig et al (2013) studied the behaviour of individual acoustic tagged European lobsters in 379 

Norwegian Skagerrak coasts in relation to home-range and fishing practices. They found 380 

that behaviour and exposure to coastal fishery varied a small geographical scale of less than 381 

1km. They also observed fishermen´s knowledge and selection on fishing grounds may 382 

reflect a high rate of lobster removal. This may cause a clear displacement of big lobsters 383 

that move from high quality habitats (where most of the fishing effort concentrates) to low 384 

quality habitats where fishing effort is low. 385 

In the present investigation, fishing effort of the sampled fleet and individual vessels from 386 

both areas was one of the most significant response variables (appendix Tables v-vi and 387 

Figs. 3a-b and 5a). This may indicate the representativeness of the data highlighting 388 

fishermen´s knowledge and preferences of fishing grounds as well as stressing differences 389 
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in fishing practices at small and large spatial scale. In the Hebrides lobsters are caught 390 

mostly in individual creels whereas for the Southeast creels are arranged in strings of up to 391 

10. Catch per unit effort is standardised for all areas as lobster catches per hundred creels. 392 

Therefore care must be taken when interpreting a combination of fishery variables, such as 393 

catch rates, and lobster abundance on different temporal-spatial-geographic scales 394 

(Addison, 1995).  395 

Catch rates of undersized lobsters is strongly correlated to the environmental variables, at 396 

any temporal and spatial-geographic scale, and do not necessarily reflects direct changes in 397 

fishing effort. The opposite response was detected in the catch rates of legal lobsters, where 398 

it may validate relative abundance of legal lobsters depending on temporal changes in effort 399 

(increase in deployment of creels) and fishing strategies (differences between individual 400 

vessel and overall sampled fleet). 401 

In this investigation, we found that the years 1986, 1990 and 1996 presented peak values in 402 

some of the environmental and fisheries variables. The spring of 1990 was a period of 403 

extremely high wind speed, sea surface and air temperature in both studied areas, and sea 404 

level pressure only in the Southeast. The fishery data showed similar extraordinary values 405 

with catches of legal and undersized lobsters, fishing effort for the Hebrides and catches of 406 

legal and undersized lobsters for the Southeast. For the autumn fishery in 1990, catches of 407 

both, discarded and landed lobsters, and fishing effort were also high in the Hebrides while 408 

in the Southeast only sea surface temperature was greater than normal. This may suggest 409 

that the Hebrides fishery is highly susceptible to environmental conditions at any time of 410 

year, which were favourable in 1990, while it is the Southeast spring fishery which is 411 

susceptible to the changes in the environment, where catches of undersized lobsters highly 412 
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contribute to the total output of the fishery. In addition, the fact that sea level pressure, 413 

wind speed and sea surface temperature were high in 1990 may indicate that there was a 414 

possible oceanographic regime shift which affected the studied areas. These findings may 415 

be corroborated by the work of Nunn et al. (2010) who found possible evidences of shift in 416 

fish growth and recruitment success linked to changes in the North Atlantic Ocean for the 417 

mid 1990s. In addition, Hannesson (2007) also analysed variation in catches of several 418 

species of fish in relation to ocean temperature recorded along the coasts of the North Sea, 419 

Norwegian Sea and Barents Sea for a period of more than 50 years (mid 1940´s to early 420 

2000´s). In an attempt to detect past changes he found differences in the correlations 421 

between temperature and catches and recruitment between sites, suggesting that some 422 

species need to past certain thresholds of temperature in order to show changes, other 423 

factors may also influence those variations and that study at big spatial scales may not 424 

necessarily show displacements of stocks.  425 

Most recently, a study by Mills et al (2013) found that for the American lobster fisheries in 426 

American coasts, a strong heat wave in 2012 strongly affected the lobster populations by 427 

altering the moulting processes as well as evidencing a shift in temporal landings that 428 

matched a shift in temperatures. These authors also highlighted these type of changes are 429 

likely to occur and caution must be taken.  430 

In a climate change context, there is need for a better estimate of the predicted long-term 431 

increases in water temperatures and its effects on the lobster size at maturity, possible 432 

implications in the abundance decline and increase in lobster diseases and shifts in the 433 

increase in catches. Monitoring of the recruitment components becomes relevant and this 434 

leads to consider downscale climate change models to a spatial and temporal scale relevant 435 
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to lobster stocks as well as considering the uncertainties in the climate change projections 436 

and their effect on the ecosystem (Caputi et al., 2013). 437 

In conclusion, based on our statistical analyses, the CCF analysis and RDA triplots showed 438 

similarities in their results. The former indicated the presence of a relationship between two 439 

variables. In contrast, the later allowed comparisons of multiple variables at the same time. 440 

In the triplots, the length of the arrows graphically highlighted the importance of the 441 

relationships tested.  442 

The percentage of variation obtained with the use of multivariate analysis techniques (PCA 443 

and RDA), helped to interpret the fishery-environmental interactions. Studying the data 444 

structure in all its components proved to be necessary and a valid approach to explain most 445 

of the variation occurring between and within the interactions of all the variables tested. 446 

The PCA analysis gave account of the cumulative percentage of variation obtained from the 447 

fishery variables in two main dimensions. This variation differed between areas, data series, 448 

and axes where the leading eigenvalue contributed most (Table 2). The cumulative 449 

percentage of variance of fishery data proved to be higher for the Hebrides on an annual 450 

and autumn basis and for the Southeast on a spring and autumn basis (Table 2). However, 451 

with the RDA analysis, the variance of the fishery data was generally lower than in the 452 

PCA. In the Hebrides the highest variance was obtained on annual basis and lowest in 453 

spring. For the Southeast, spring variance was highest and autumn lowest (Table 3). 454 

Redundancy analysis showed that the variables used represented a reasonable amount of 455 

variation. In the Hebrides the environmental variables represented about 88.99% of the total 456 

42.33% variance obtained from all environmental-fishery variables in autumn (Table 3). In 457 

the Southeast, the percentage of variance of environmental-fishery relationships was higher 458 
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in spring (84.81%). The low percentage of variance obtained in this analysis may indicate 459 

that there are other biological and environmental factors contributing with the total 460 

variation that were not considered in this study. The difference in estimates between PCA 461 

and RDA indicate that redundancy analysis helped in explaining the source of the variation 462 

obtained specifically from the environmental variables chosen for this study.  463 

The fact that for the Hebrides the cumulative eigenvalues of total variance on annual basis 464 

was higher than in spring may be caused by the irregularity and scarce data, in spring, 465 

which are directly affected by the starting period of the fishery as well as the number of 466 

fishing vessels contributing with the information.  467 

In the fishery context, our findings confirm that the fisheries of the Hebrides and Southeast 468 

can be divided into two component fisheries, spring and autumn and this was supported by 469 

the CCF, PCA and RDA analyses.  470 

The results also suggested that fishery processes are markedly different between geographic 471 

areas and at different spatial scales.  472 

For the Hebrides, fishery data were highly correlated to environmental variables with high 473 

catch rates inversely correlated to high fishing effort and high catches in spring and 474 

autumn.  475 

For the Southeast fishery pre-recruits were found to be more correlated to environmental 476 

variables than legal lobsters in spring and autumn emphasising at the small spatial scale. 477 

This may be an indicative of the importance of recruitment processes affecting the lobster 478 

catches. 479 
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Finally, care must be taken when considering the abundance index as a valid tool for stock 480 

assessment purposes it may bias or misrepresent the abundance of undersized and legal size 481 

lobsters at any temporal and spatial-geographic scale. 482 

483 
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LIST	OF	TABLES	
	
Table 1. Description of variables selected for this study. Environmental and fishery data 

series from overall sampled fleet (sf) and individual vessel (iv) for the Hebrides (1983-93) 

and Southeast (1985-97) areas. 

 
Source Acronym	 Variable Units	of	

measurement	
Environment
al	data	

AT	 Air	temperature	 °C	

	 SLP	 Sea	level	Pressure	 mb	
	 SST	 Sea	surface	Temperature °C
	 WS	 Wind	Speed	 m/sec	
Overall	
sampled	fleet	

f	sf	 Fishing	Effort	 Creels	(thousands)	

	 L	sf	 Catch	of	Legal	size	lobsters	 Numbers	
(thousands)	

	 S	sf	 Catch	of	Sub‐legal	lobsters	 Numbers	
(thousands)	

	 TL	 Total	commercial	landings	 Kg	(thousands)	
	 U Lsf	 Catch	rates	of	Legal	size	

lobsters	
#	lobsters	per	100	
creels	lifted	

	 U	Ssf	 Catch	rates	of	Sub‐legal	
lobsters	

#	lobsters	per	100	
creels	lifted	

Individual	
vessel	

f	iv	 Fishing	Effort	 Creels	(thousands)	

	 L	iv	 Catch	of	Legal	size	lobsters	 Numbers	
(thousands)	

	 S	iv	 Catch	of	Sub‐legal	lobsters	 Numbers	
(thousands)	

	 U	L	iv	 Catch	rates	of	Legal	size	
lobsters	

#	lobsters	per	100	
creels	lifted	

	 U	S	iv	 Catch	rates	of	Sub‐legal	
lobsters	

#	lobsters	per	100	
creels	lifted	

	
	
 
 
 
	 	



Table 2. Techniques applied to mean monthly (M), annual (An), spring (Sp) and autumn 

(Au) environmental and fishery time series for the Hebrides and Southeast of Scotland in 

different periods. 

 
Data	series	 Period	 Time basis Uni	 or	 bi‐

variate	
Multi-
variate 

Hebrides 
AT,	SST,	SLP	&	WS	 1960‐97	 An	 ACF	 	
AT,	SST,	SLP	&	WS	 1983‐93 An,	Sp,	Au ACF 	
All	Fishery	(sf	and	iv)	 1983‐93	 An,	Sp,	Au	 ACF	 PCA	
Pairs	 of	 all	 fishery	
variables	(sf	&	iv)	

1983‐93	 An	 CCF	 	

Pairs	 of	 all	
environmental	with	 all	
fishery	 variables	 (sf	 &	
iv)	

1983‐93	 An,	Sp,	Au	 CCF	 RDA	

Southeast 
AT,	SST,	SLP	&	WS	 1960‐97	 An	 ACF	 	
AT,	SST,	SLP	&	WS	 1985‐97	 An,	Sp,	Au	 ACF	 	
All	Fishery	(sf	&	iv)	 1985‐97	 An,	Sp,	Au	 ACF	 PCA	
Pairs	 of	 all	 fishery	
variables	(sf	&	iv)	

1985‐97	 An	 CCF	 	

Pairs	 of	 all	
environmental	with	 all	
fishery	 variables	 (sf	 &	
iv)	

1985‐97 An, Sp, Au CCF RDA	

	
Note: fishery data are related to catch, CPUE, fishing effort and total landings for the 

overall sampled fleet and individual vessels; environmental data are those referred to air 

temperature, sea surface temperature, sea level pressure and wind speed, included in table 

1.  

	
	
	



Table 3. Variability of the factors involved in the PCA analysis with emphasis to the 

contribution of the response variables for mean annual, spring and autumn data series for 

the Hebrides (1983-93) and 1985-97 Southeast of Scotland. 

 
Data series Axis Eigenvalue	 Cumulative percentage of 

variance	of	fishery	data	
Hebrides 

Annual	 1	 48.61	 48.61	
	 2	 22.53 71.13
Spring	 1	 39.92	 39.92	
	 2	 23.63 63.55
Autumn	 1	 49.45	 49.45	
	 2	 21.80	 71.24	
Southeast 

Annual	 1	 26.88	 26.88	
	 2	 25.54 52.42
Spring	 1	 35.41	 35.41	
	 2	 22.05 57.47
Autumn	 1	 32.00	 32.00	
	 2	 30.14 62.14

	
	 	



Table 4. Variability of the factors involved in the RDA analysis with emphasis to the 

contribution of the explanatory variables for mean annual, spring and autumn data series for 

the Hebrides (1983-93) and Southeast (1985-97) of Scotland. 

 
Data	series	 Axis Eigenvalue Cumulative percentage of 

variance of fishery data 
Cumulative	percentage	of	
variance	of	fishery‐
environmental	relationships	

Hebrides 

Annual 1	 33.22	 33.22	 51.29	

	 2	 17.05	 50.27 77.62
Spring	 1	 28.29	 28.29	 62.32	
	 2	 10.19	 38.47 84.77
Autumn	 1	 36.41	 36.41	 76.55	
	 2	 5.92	 42.33 88.99
Southeast 

Annual	 1	 17.85	 17.85	 55.87	
	 2	 8.47	 26.31	 82.38	
Spring	 1	 17.50	 17.50 43.94
	 2	 16.27	 33.77	 84.81	
Autumn	 1	 13.86	 13.87	 38.65	
	 2	 11.02	 24.89 69.38

	
	 	



APPENDIX 
	
Table i. Auto-correlation function analysis of time series of environmental data (mean 

annual estimates) for the Hebrides and Southeast of Scotland period 1960-97. For variables 

description refer to Table 1. 

 
Variable	 r	 Lag	time	(yrs)	 r	 Lag	time	(yrs)	
	 Hebrides Southeast
Air	temperature	 >0.5	 +1,+2,+3	 >0.5	 +1,+2	
Sea	surface	
temperature	

>0.5	 +1,+2 >0.5 +1	to	+6	

Wind	speed	 >0.5	 +1	to	+6	 >0.5	 +1,+2,+4,+5+6	
Sea	level	pressure	 n.s.	 ‐	 n.s.	 ‐	
	
n.s.	is	not	significantly	auto‐correlated	at	the	5%	significance	level.	
	
	 	



Table ii. Significant auto-correlated individual data series of the explanatory-fishery 

variables for the Hebrides, 1983-93 and Southeast, 1985-97. The auto-correlation function 

(ACF) analysis was set at the 5% level of significance. For variables description refer to 

Table 1. 

 
Data	series	 Variable	 r	 	Lag	time	

(yrs)	
Variable	 r	 Lag	time	

(yrs)	
	 Hebrides	 	 	 Southeast	 	 	
Annual	 f	sf 0.70 1 TL 0.50	 1	
	 L	sf	 0.70	 1	 S	sf	 ‐0.50	 3	
	 S	sf 0.50 1 U S	sf ‐0.50	 2	
	 U	L	sf	 0.70	 1	 f	iv	 0.60	 1	
	 f	iv	 0.50	 1	 L	iv	 ‐0.50	 3,4	
	 L	iv 0.70 1 S	iv ‐0.50	 4,5	
	 S	iv	 0.70	 1	 U	S	iv	 ‐0.50	 5	
Spring	 f	sf 0.65 1 SST 0.54	 1	
	 SLP	 0.54	 3	 ‐	 ‐	 ‐	
	 S	sf 0.53 1 ‐ ‐ ‐	
	 U	L	sf	 0.60	 1	 ‐	 ‐	 ‐	
Autumn	 f	sf 0.73 1 AT ‐0.57	 3	
	 L	sf	 0.65	 1	 S	sf	 ‐0.54	 3	
	 TL	 ‐0.61	 2	 U	L	iv	 0.52	 1	
	 U	L	sf	 0.70 1 U S	iv 0.60	 1,2	
	 L	iv	 ‐0.64	 1	 ‐	 ‐	 ‐	

	
	
	 	



Table iii. Significantly correlated interactions of the environmental-fishery relationships for 

the Hebrides, 1983-93. The cross-correlation function (CCF) analysis was set at the 5% 

level of significance. For variables description refer to Table 1. 

 
Data	series	 Response	

Variable	
Explanatory	
Variable	

r	max	 	Lag	time	
at	r	max	
(years)	

Lags	of	sig.	
correlation	
(years)	

Annual	 U	S	sf	 Wind	speed	 0.63	 +1	 +1	
	 U	S	sf	 Sea	level	pressure	 ‐0.69	 0	 0,+1,+2	
	 U	L	sf	 Air	temperature 0.75 +2 +2	
	 U	L	sf	 Sea	surface	

temperature	
0.64	 +2	 +2	

Spring	 U	L	sf	 Sea	surface	
temperature

‐0.60	 0	 0,+1,+2	

	 U	L	sf	 Air	temperature	 ‐0.77	 +2	 0,+2,+3	
	 TL	 Sea	surface	

temperature	
0.57	 0	 0,+2	

	 TL	 Air	temperature	 0.67	 0	 0,+2	
Autumn	 U	L	sf	 Sea	level	Pressure ‐0.52 +3 +3	
	 U	S	sf	 Air	temperature	 0.54	 0	 0	
	 TL	 Wind	speed ‐0.64 +3 +3	
	 U	S	iv	 Wind	speed	 0.51	 +2	 +2	
	 U	L	iv	 Sea	level	Pressure 0.52 0 0	
	
	 	



Table iv. Significantly correlated interactions of the environmental-fishery relationships for 

the Southeast, 1985-97. The cross-correlation function (CCF) analysis was set at the 5% 

level of significance. For variables description refer to Table 1. 

 
Data	series	 Response	

Variable	
Explanatory	
Variable	

r	max	 	Lag	time	
at	r	max	
(years)	

Lags	of	sig.	
correlation	
(years)	

Annual	 U	L	iv	 Air	temperature	 ‐0.64	 +3	 +3	
	 U	S	iv	 Air	temperature	 0.73	 0	 0	
	 U	S	iv	 Sea	surface	

temperature	
0.64 0 0	

Spring	 U	S	sf	 Wind	speed ‐0.50 0 0	
	 U	S	sf	 Sea	level	Pressure	 ‐0.50	 +1	 +1	
	 U	S	sf	 Air	temperature ‐0.59 +2 +2	
	 U	S	iv	 Sea	level	Pressure	 ‐0.72	 0	 0,+1	
	 U	S	iv	 Air	temperature ‐0.56 +2 +2	
	 U	S	iv	 Sea	surface	

temperature	
‐0.50	 0	 0	

Autumn	 TL Sea	surface	
temperature	

‐0.62 +2 +2	

	 U	L	sf	 Sea	surface	
temperature	

‐0.52 +2 +2	

	 U	L	sf	 Air	temperature ‐0.53 +2 +2	
	 U	S	iv	 Sea	surface	

temperature
‐0.52	 0	 0	

	 U	L	iv	 Air	temperature	 0.65	 +4	 +4,+5	
	 U	L	iv	 Sea	surface	

temperature	
0.53	 +4	 +4	

	
  



Table v. Significant correlated interactions of the fishery-fishery relationships for the 

Hebrides, 1983-93 and Southeast, 1985-97 on annual basis only. The cross-correlation 

function (CCF) analysis was set at the 5% level of significance. For variables description 

refer to Table 1. 

 
Response	
Variable	

Explanatory	
Variable	

r	max	 	Lag	time	at	r	
max	(yrs)	

Lags	of	sig.	
correlation	(yrs)	

Hebrides	
L	sf	 f		sf		 0.90 0 ‐1,0,+1	
S	sf	 f		sf		 0.82	 0	 0	
TL	 f		sf		 ‐0.81 +1 0,+1
TL	 L	sf	 0.84	 0	 0,+1	
TL	 L	iv	 ‐0.77	 0	 0,+1	
TL	 S	sf	 0.71 0 0,+1
f	sf		 f		iv	 0.83	 +2	 +1,+2,+3	
L	iv	 f		iv	 ‐0.80 +2 +2,+3
S	iv	 f		iv	 ‐0.70	 +2	 +1,+2	
L	sf	 L	iv	 ‐0.80 +1 +1,+2
S	sf	 S	iv	 ‐0.78	 +2	 +1,+2	
L	sf	 S	sf	 0.85 +1 0+,+1,+2	
L	iv	 S	iv	 0.81	 +2	 +1,+2	
U	L	sf	 U	S	sf	 0.68	 +4	 +4	
U	L	iv	 U	S	iv	 0.66 0 0

Southeast	
L	sf	 f		sf		 0.77 0 0
S	sf	 f		sf		 0.63	 0	 0	
S	iv	 f		iv	 0.58	 0	 0	
L	sf	 S	sf	 0.78	 0	 0	
L	iv	 S	iv	 0.67	 0	 0	
U	L	sf	 U	L	iv	 0.78	 0	 0	
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Fig. 1a. Map of the area of study for the Scottish Homarus gammarus fishery in the 

Hebrides and Southeast. 
 
Fig. 1b. Map of the study area according to ICES rectangles, the Hebrides, where 

fishery data of overall sampled fleet (sf) and an individual vessel (iv) where 
obtained for the period 1983-93.  

 
Fig. 1c. Map of the study area according to ICES rectangles, the Southeast, where 

fishery data of overall sampled fleet (sf) and an individual vessel (iv) where 
obtained for the period 1985-97.  

 
Fig. 2. Long time series of Sea Surface Temperature, Air Temperature, Wind Speed 

and Sea Level Pressure for the Hebrides and Southeast of Scotland in spring 
and autumn for the period of 1960-1997. Spring time series with lower values. 
Regression lines of a biomial regression with spline lines at 0.5 are included 
as dark continuos lines for each data series, except for wind speed and sea 
level pressure data series where a common regression line between the spring 
and autumn series was plotted. 

 
Fig. 3a. Triplot of the redundancy analysis for the spring Hebrides data series during 

1983-93. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 
indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1.  

 
Fig. 3b. Triplot of the redundancy analysis for the autumn Hebrides data series from 

1983-93. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 
indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1.  

 
Fig. 4a. Triplot of the redundancy analysis for the spring Southeast data series from 

1985-97. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 
indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1. 

 
Fig. 4b. Triplot of the redundancy analysis for the autumn Southeast data series from 

1985-97. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 



indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1.  

 
Fig. 5a. Triplot of the redundancy analysis for the annual Hebrides data series from 

1983-93. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 
indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1.  

 
Fig. 5b. Triplot of the redundancy analysis for the annual Southeast data series from 

1985-97. Long arrows indicate strong relationship. Arrows in the same 
direction indicate positive correlation, whilst arrows in opposite direction 
indicate negative correlation. An angle of 90º between arrows refers to not 
significant correlated variables. The acronyms of the variables are included in 
Table 1.  
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