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An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field
coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a
much richer scenario is observed. The “synchronized” phase, which emerges upon increasing the coupling
strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics
of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the
nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the
often-invoked balance between excitation and inhibition and might provide an alternative basis to account
for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is
further strengthened by its (microscopic) linear stability, which makes it quite suited for computational
tasks. The overall study has been performed by combining analytical and numerical studies, starting from
the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto
order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the
interspike intervals.

DOI: 10.1103/PhysRevX.6.011015 Subject Areas: Complex Systems,
Nonlinear Dynamics, Statistical Physics

I. INTRODUCTION

Most of the challenging questions that arise in the attempt
to improve our understanding of the natural (and artificial)
world involve multicomponent systems, whose overall
dynamics is the result of many nonlinear interactions.
The difficulty of the task is often mitigated by the
assumption that many phenomena are universal; i.e., they
do not crucially depend on the details of the underlying
models. It is therefore customary to deal with relatively
simple setups in the hopes that relevant details are not
missed.
The mammalian brain is the most prominent example

where this approach is absolutely necessary if we wish to
make some substantial progress. There, even after disre-
garding several ingredients—such as themultiple degrees of
freedom involved in the dynamics of realistic neurons (as in
multicompartmental models [1]), the diversity among the
single units, the topology, and the plasticity of the con-
nections—the range of possible dynamical phenomena is
still very rich and not yet entirely understood. Self-
consistent partial synchronization is a simple but enlight-
ening example. The phenomenon, discovered by van

Vreeswijk in an ensemble of leaky integrate-and-fire neu-
rons (LIF) [2], was believed, for a long time, to be a
nonperturbative effect. However, it has recently been clari-
fied [3] that it is equivalent to the rotating waves observed in
the weak-coupling limit [4] and can indeed be observed and
characterized in Kuramoto-Daido oscillators [5] as well.
In general, the problem of characterizing the collective

dynamics of an ensembleof oscillators is deeply connected to
the question of how different levels of descriptions are linked
tooneanother. Incomputationalneuroscience, it is customary
to consider subpopulations of neurons, under the assumption
that the firing rate is the single relevant variable, as in the
seminal paper byWilson and Cowan [6] and in several other
publications (see, e.g., Refs. [1,7,8]). However, it is not clear
whether such models can be derived starting from more
microscopic setups based on single spiking neurons. Some
recent studies have shown that a low-dimensional collective
dynamics may emerge in networks of theta (or, equivalently,
quadratic-integrate-and-fire, QIF) neurons [9,10]. More than
that, a reformulation of pulse-coupled oscillators in terms of
firing-rate models has been accomplished in Refs. [11,12].
The validity of these results is due to the existence of
relationships such as the Ott-Antonsen Ansatz [13] and the
Watanabe-Strogatz theorem [14], which allow one to express
the collective behavior in terms of a few variables, the others
being essentially slaved. Such theoretical pillars are, how-
ever, based on strong simplifying assumptions on the nature
of the interoscillator coupling [13,14].
To what extent is the compression of degrees of freedom

effective in more general setups? The background activity
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of the brain in the resting state, when no specific task is
performed [15–17], testifies to a collective irregular dynam-
ics. Moreover, the ongoing discussion about rate versus
temporal coding [18,19] suggests that the firing rate may
not be sufficient to ensure the necessary computational
capability of the mammalian brain.
Altogether, one should thus expect an irregular collective

behavior. It is often conjectured that the self-sustained
activity is the result of a balance between activation and
inhibition [20,21]. Mathematically, this means that the
effect of the coupling is zero on average, so it is essentially
controlled by stochastic or chaotic fluctuations. However, it
is not clear how such a balance can be durably ensured in
self-organized networks of firing oscillators. A conceptu-
ally different possibility to account for a macroscopic
irregularity is offered by the nonlinear character of the
Liouville-type equation (which, strictly speaking, applies to
an ensemble of infinitely many oscillators). This functional
equation operates in an infinite-dimensional phase space
and can, thereby, generate a dynamics of arbitrary complex-
ity. This result has indeed been observed in an abstract
model of coupled maps [22] and in globally coupled Stuart-
Landau oscillators [23]. In both cases, the single dynamical
units are intrinsically more complex than phase oscillators:
The logistic maps are chaotic by themselves, Stuart-Landau
oscillators can behave chaotically under the action of a
periodic modulation. In the case of phase oscillators, there
is only preliminary evidence in an ensemble of LIF neurons
with delayed interactions [24].
In this paper, we present a model whose overall activity

is intrinsically high dimensional. As this dynamical phase
is rather robust against variations of several parameters,
it may provide an alternative mechanism for the self-
sustainment of the resting brain activity. More precisely,
we study an ensemble of pulse-coupled phase oscillators,
whose phase-response curve (PRC) is derived by smooth-
ing the PRC of LIF neurons. Other than that, our setup is
the same as in the standard Kuramoto model [25,26]: The
single oscillators are characterized by a distribution of bare
frequencies, while the coupling is homogeneously all-to-
all. As in the Kuramoto model, a synchronization transition
is observed upon increasing the coupling strength, but the
analogies end here since, above criticality, the order
parameter, rather than being constant, exhibits complex
high-dimensional oscillations.
As briefly discussed in Sec. III, in theweak-coupling limit

(and for a small dispersion of the frequencies), our system
reduces to a Kuramoto-Daido model, with a coupling
function composed of several Fourier harmonics. Recent
studies have revealed that such a model exhibits a rich
phenomenology (see, e.g., Refs. [27–29]). For instance, in
the presence of a second harmonic, a high degree of multi-
stability is observed, with many different cluster states being
simultaneously stable, termed “multibranch entrainment”
[27,28,30,31]. However, no stationary irregular collective

dynamics has been observed so far (the order parameter
exhibits, at most, regular periodic oscillations). The only
mechanism that has been found to trigger macroscopic
fluctuations is the presence of two distinct populations
[32], and yet the oscillations are a manifestation of low-
dimensional chaos. In our setup, a single population of
oscillators is instead able to exhibit high-dimensional chaotic
dynamics. The macroscopic fluctuations are present in the
“activity” field aswell, i.e., in the sumof all spikes emitted by
the neurons. This variable is akin to the electric potential
recorded while measuring EEGs.
Another feature that makes the observed scenario strik-

ingly different is the existence of a fully negative spectrumof
Lyapunov exponents. This inconsistency is nothing but a
manifestation of stable chaos [33], an irregular dynamics of
cellular-automaton type, which is self-sustained because of
the high (infinite) dimensionality of the phase space (in other
words, it dies out in finite ensembles). In neural systems,
stable chaos was first found in a diluted network of LIF units
[34] and later discussed in more disordered setups [35,36].
At variance with deterministic chaos, accompanied by an
exponential separation of orbits and thereby a loss of
memory, stable chaos is identified by a “microscopically”
stable dynamics,which is definitelymore appropriate for the
performance of computational tasks. The potentiality of
stable chaos for information processing has been prelimi-
narily explored in Refs. [37,38]. The onset of a macroscopic
irregular dynamics, as discussed in this paper, makes this
perspective even more intriguing for the richness of the
collective behavior.
In Sec. II, we introduce the setup and justify its choice. In

Sec. III, we reconstruct the asynchronous state and inves-
tigate its stability properties. Differences and analogies
with the standard Kuramoto model are emphasized. In
particular, we find that the asynchronous regime loses its
stability when a complex eigenvalue is born out of the line
containing the continuous spectrum. In the last part of the
section, the proper order parameters for the characterization
of the transition are introduced: They are the Kuramoto
order parameter, whose definition requires passing to more
appropriate phase variables, and the activity field.
Sections IV and V are devoted to a careful numerical
analysis of the synchronized phase at the collective and
microscopic levels, respectively. Because of the difficulty
of dealing with finite-size corrections, we study the
resulting behavior sufficiently far from the transition. In
Sec. IV, we first illustrate the phase diagram and the initial
part of the Lyapunov spectrum. We then show the power
spectrum of the order parameter and carry on a time-series
analysis to determine the fractal dimension. In Sec. V, we
focus our interest on the behavior of the single neurons,
computing the effective frequency and the conditional
Lyapunov exponents: They are all negative, indicating that
we are in the presence of generalized synchronization. The
presence of phase slips is also unveiled. Finally, in the last
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section, we summarize the main results and discuss the
several perspectives that are opened by the scenario
discussed in the paper.

II. THE MODEL

The starting point of this paper is the model of delayed
LIF neurons studied in Ref. [24]. Here, the model is
modified to make it simpler, more generic, and more
amenable to both numerical and analytical studies.
In this perspective, we consider an ensemble of pulse-

coupled phase oscillators in the presence of δ-like pulse and
characterized by a suitable PRC ΓðϕÞ,

_ϕi ¼ ωi − g
N
ΓðϕiÞ

X
j

δðt − tjÞ; ð1Þ

where ϕi ∈ ½0; 1� is the local phase, ωi the bare oscillator
frequency (i.e., in the absence of coupling), g the coupling
strength, and N the system size. Whenever any oscillator
reaches the threshold ϕi ¼ 1, a δ spike is sent and received
by all neurons. The above formulation is quite general for
two reasons: (i) Any model where the velocity field _ϕi is
phase dependent (in the absence of coupling) can always be
rephrased as Eq. (1) upon suitably changing variables [39];
(ii) finite-width pulses can be mapped onto δ-like ones
upon suitably adjusting the shape of the PRC [3] (at least in
the weak-coupling limit).
An important ingredient of the model studied in Ref. [24]

is the presence of a delay between spike emission and
reception. In the weak-coupling limit, when the dynamics is
nearly homogeneous, one can simulate the presence of a
delay as a suitable phase shift of the PRC, and this is what
has been assumed here. The phase shift should be different
for the different oscillators. However, here, for the sake of
simplicity, we assume the same PRC for all the oscillators.
In the LIF model, ΓðϕiÞ ¼ a expðbϕiÞ, where ϕi is

assumed to be taken modulus 1. As a result of the phase
shift, the discontinuity originally present when passing
from 1 to 0 moves inside the unit interval. For the sake of
generality and simplicity, we prefer to remove the dis-
continuity, considering a piecewise linear PRC, such as

ΓðϕÞ ¼
8<
:

B01 þ b1ϕ if 0 ≤ ϕ < ϕl

B02 − b2ϕ if ϕl ≤ ϕ ≤ ϕr

B03 þ b1ϕ if ϕr < ϕ < 1;

ð2Þ

where the various parameters are chosen so as to ensure
continuity in ϕl, ϕr and equality between ϕ ¼ 0 and 1.
Considering that the amplitude of the PRC is controlled by
the coupling constant g, there are three truly independent
parameters: one controlling the vertical shift of the PRC,
and two that identify the junction points. As for the first
parameter, it basically controls whether the coupling has an
average excitatory or inhibitory effect, thereby inducing a
speeding up or slowing down of the spiking activity. Since

we are not interested in such effects, but rather in the mutual
attraction or repulsion among the oscillators, we have
decided to assume that the PRC has zero average. The
two remaining parameters are identified by the phase shift s
(defined as the distance of the midpoint of the central
region from 1—see Fig. 1) and the width δ of the central
interval. Altogether, b2 ¼ b1=δ, B01 ¼ b1ðs − 1=2Þ,
B02 ¼ b1ð1 − sÞ=δ, and B03 ¼ b1ðs − 3=2Þ, while ϕl ¼
ð1 − sþ δ=2 − δsÞ=ðδþ 1Þ and ϕr¼ð1−sþ3δ=2−δsÞ=
ðδþ1Þ. The parameter b1 has been set equal to 1.5 (in
principle, it can be absorbed in the definition of g), while
the two other parameters have been set as s ¼ 0.14, δ ¼ 0.1
in all of the following simulations. The resulting shape of
the PRC is presented in Fig. 1.
Finally, we have chosen to work with a uniform

distribution of frequencies PðωÞ centered in ω̄ ¼ 1.4.
The simulations reported in this paper refer to a width
Δ ¼ ðωmax − ωminÞ ¼ 1.2, but similar results have been
obtained for different values of Δ. We evolve the model,
Eqs. (1) and (2), as an event-driven process. Between two
consecutive δ spikes, the phase of each oscillator increases
linearly according to its individual bare frequencyωi. When
one of the oscillators reaches the firing threshold ϕi ¼ 1, its
phase is reset to zero and all phases are adjusted to account
for the received spike. The effect of the coupling might
bring a second oscillator beyond the firing threshold. In
such a case, that oscillator is also reset to zero plus an offset
because of the spike received from the first oscillator. We
continue this evolution, without advancing the time, until
no further spikes are triggered. In practice, “avalanches”
may occur: They do not contribute significantly to the
global behavior as their size does not increase upon
increasing the number of neurons. Notice also that in the
original model [24], avalanches do not exist.

0 0.2 0.4 0.6 0.8 1
φ ϑ

-1

0

1

2

3

Γ 
Γ∼

δ

s

,

FIG. 1. Phase response curve ΓðϕiÞ according to Eq. (2) for
the standard parameter values b1 ¼ 1.5, s ¼ 0.14, and δ ¼ 0.1
(solid line). The short- and long-dashed curves correspond to the
effective PRC ~Γ [see Eq. (13) and corresponding text] obtained
for ω ¼ ωmin ¼ 0.8 and ω ¼ ωmax ¼ 2, respectively (with
g ¼ 0.8).
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III. THEORY

Some insight can be gained by considering the thermo-
dynamic limit, as this allows us to analytically determine
the properties of the stationary asynchronous regime.
It is convenient to define the activity field EðtÞ as the

number of spikes emitted per unit time, so Eq. (1) can be
rewritten as (for the sake of simplicity, we drop the
subindex i)

_ϕ ¼ ω − gΓðϕÞEðtÞ: ð3Þ
Let us now introduce the probability density Qðϕ;ω; tÞ, as
the fraction of neurons with a bare frequency in
½ω;ωþ dωÞ, whose phase belongs to ½ϕ;ϕþ dϕÞ at time
t. Clearly,

Z
Qðϕ;ω; tÞdϕ ¼ PðωÞ;

where PðωÞ is the time-independent density of neurons
with bare frequency ω defined in the previous section. Q
satisfies the continuity equation

∂Q
∂t ¼ − ∂

∂ϕ ½ω − gΓðϕÞEðtÞ�Q; ð4Þ

while the field E satisfies the self-consistent equation

EðtÞ ¼
Z

Qð1;ω; tÞ½ω − gΓð1ÞEðtÞ�dω; ð5Þ

which implies

EðtÞ ¼
R
ωQð1;ω; tÞdω

1þ gΓð1Þ R Qð1;ω; tÞdω :

The asynchronous regime corresponds to the stationary
solution and is thereby characterized by a constant mean
field. The phase dependence of Qðϕ;ω; tÞ can be deter-
mined by setting its time derivative equal to zero. By
properly renormalizing the flux, one obtains

Q0ðϕ;ωÞ ¼
PðωÞ

Tð1;ωÞ½ω − gΓðϕÞE0�
; ð6Þ

where

Tðψ ;ω; E0Þ ¼
Z

ψ

0

dϕ
ω − gΓðϕÞE0

≡
Z

ψ

0

τðϕ;ωÞdϕ ð7Þ

is the time required by an oscillator with frequency ω to
reach the phase ψ , starting from 0, in the presence of a
constant field E0. Tð1;ω; E0Þ is thereby the interspike
interval, while τðϕi;ωÞ is the inverse instantaneous effec-
tive frequency. The field E0 can finally be obtained from
Eqs. (5) and (6),

E0 ¼
Z

PðωÞ
Tð1;ωÞ dω: ð8Þ

The above calculation yields the structure of the asyn-
chronous state, but it does not tell us whether it is stable.
The stability can be assessed by investigating the behavior
of infinitesimal perturbations. Let us define

Qðϕ;ω; tÞ ¼ Q0ðϕ;ωÞ þ qðϕ;ω; tÞ;
EðtÞ ¼ E0 þ eðtÞ;

where q and e satisfy the following equations,

∂q
∂t ¼ − ∂

∂ϕ ½ω − gΓðϕÞE0�qþ geðtÞ ∂ΓðϕÞQ0

∂ϕ
and

eðtÞ ¼
R ðω − gΓð1ÞE0Þqð1;ω; tÞdω
1þ gΓð1Þ R Q0ð1;ωÞdω

:

These two equations can be solved by introducing a
standard Ansatz, qðϕ;ω; tÞ ¼ uðϕ;ωÞeμt, eðtÞ ¼ zeμt.
One obtains

μu ¼ gΓ0E0u − ½ω − gΓE0�u0 þ gΓ0Q0zþ gΓQ0
0z ð9Þ

and

z ¼
R ðω − gΓð1ÞE0Þuð1;ωÞdω
1þ gΓð1Þ R Q0ð1;ωÞdω

; ð10Þ

where the prime denotes a derivative with respect to ϕ and
we have dropped the dependence on ϕ for simplicity of
presentation. The solution of such an equation, reported in
Appendix A, yields the eigenvalue equation (A9).
The spectrum of the linear operator consists of a

continuous and a discrete component. The continuous part
is confined to an interval along the imaginary axis and is
therefore composed of marginally stable directions. The
discrete component can be obtained by assuming
μ ¼ μR þ iμI , separating Eq. (A9) into real and imaginary
parts, and finally looking for the zeros in the complex
plane.
A numerical study reveals the presence of (at least) three

pairs of complex-conjugate eigenvalues (see Fig. 2, where
the imaginary part is not reported), two of which are
negative and one which is positive. Two pairs of exponents
arise definitely above some finite g value; the third one is
likely to follow the same scenario, but given its small real
part, we could not trace it for small coupling strengths (see
the crosses in Fig. 2). Altogether, the asynchronous
solution is marginally stable up to gc ≈ 0.72, when it
destabilizes for the onset of a pair of complex-conjugate
eigenvalues with a positive real part.
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Let us now compare our findings with the stability of the
asynchronous solution in the Kuramoto model. Below
criticality, in both cases, the probability distribution is
marginally stable (see Ref. [40] for the first such analysis in
the Kuramoto setup), the major difference being the
presence of a discrete stable spectral component in our
model. It is noteworthy that, in spite of the marginal
stability of the probability density, the order parameter
(see the next section for its definition) relaxes exponentially
in the Kuramoto model. This is a manifestation of the so-
called Landau damping [41]. Only recently has this
“inconsistency” been fully resolved by understanding that
different classes of functions may be considered in the
stability analysis [42–44]. We do not know how much of
such studies carry over to the present setup: This is an open
problem.
At criticality, a pair of complex eigenvalues with a

positive real part is born: This is at variance with the
standard Kuramoto model, where the newly appearing
eigenvalue is real. There is, instead, an analogy with the
Kuramoto model with delay [45,46], where periodic
oscillations arise. Here, however, above threshold, the
probability density, rather than oscillating periodically,
behaves irregularly, as discussed in the following sections.

A. Order parameters

The onset of synchronization is typically studied by
using the distribution of phases to determine the Kuramoto
order parameter [25]. However, here, one cannot directly
use the phase ϕ since it does not advance homogeneously
in the asynchronous regime. However, assuming a sta-
tionary field E0 (this is the signature of the asynchronous
regime), one can define a phase ϑ such that it increases
linearly with an effective frequency ~ω ¼ 1=Tð1;ω; E0Þ.
From Eq. (3), it is easily seen that this can be achieved by
assuming that [3,39]

dϑ
dϕ

¼ ~ω

ω − gΓðϕÞE0

: ð11Þ

This new phase follows the local dynamics and is described
by the equation

_ϑ ¼ ~ω − g ~ΓðϑÞðEðtÞ − E0Þ; ð12Þ

where ~ΓðϑÞ is the effective PRC

~ΓðϑÞ ¼ ~ωΓðϕðϑÞÞ
ω − gE0ΓðϕðϑÞÞ

; ð13Þ

and ϑðϕÞ is obtained by solving Eq. (11). As understood
from its definition, ϑðϕÞ depends both on g and the bare
frequency. The dependence of ϑ on ϕ is reported in Fig. 3
for the maximal and minimal frequencies at g ¼ 0.8. The
particular transformation from the phase ϕ to the new
effective phase ϑ is shown in Appendix B.
Once the proper phase ϑ has been identified, a whole

series of generalized order parameters can be defined [5],

Rk ¼
1

N

����
X
j

e2πikϑj
����with k ≥ 1;

which are nothing but the Fourier modes of the phase
probability density. The standard Kuramoto order param-
eter R1 [25] is typically used to monitor the onset of
synchronization (for the sake of simplicity, in the follow-
ing, the subscript “1” is typically dropped). Higher-order
parameters, all equal to zero in the asynchronous regime,
help to provide a more accurate characterization of the
phase distribution.
Given the complexity of the transformations needed to

determine R, and because of the relationship with neural
networks, we have often considered another order param-
eter, a smoothened version YðtÞ of the field EðtÞ. In a finite
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FIG. 2. Stability diagram of the asynchronous state. The real
part of the discrete eigenvalues is reported versus the coupling
strength g.
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FIG. 3. ϑðϕÞ for g ¼ 0.8 and two different frequencies: ω ¼ 0.8
(dashed curve) and ω ¼ 2 (solid curve).
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system, EðtÞ is just a collection of δ pulses. It is therefore
more convenient to investigate

_Y ¼ −γY þ EðtÞ:

We have selected γ ¼ 5. In the asynchronous regime, the
activity is constant, i.e., Y0 ¼ E0=γ. Above the transition
that we are going to discuss, the activity starts oscillating in
time, so it is convenient to introduce the temporal standard
deviation

σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hY2i − hYi2

q
;

where the angular brackets denote a time average. It will
also be useful to look at the fluctuation σR of the Kuramoto
order parameter R, as this indicator allows us to identify the
regimes where the degree of synchronization oscillates
in time.
We end this theoretical section by briefly commenting on

the weak-coupling, low-disorder limit. The effective PRC ~Γ
depends on the frequency of the oscillator (and on the
coupling strength). The resulting curves for ωmin and ωmax
(and g ¼ 0.8) are reported in Fig. 1: see the dashed lines.
For small frequency dispersion, the use of averaging
techniques suggests that the model becomes equivalent
to the Kuramoto-Daido model (see Ref. [47] for a general
treatment and Ref. [3] for a quantitative analysis of a much
similar setup),

_ϑi ¼ ωi − g
N

X
j

~Γðϑi − ϑjÞ:

The above equation makes one difference with the
Kuramoto model transparent: The sinusoidal coupling
function is replaced by the more structured function ~Γ
(see Fig. 1). None of the several simulations performed
with small coupling and small frequency dispersion, how-
ever, has been able to reproduce the complex scenario
discussed in this paper.

IV. MACROSCOPIC DYNAMICS

The most appropriate control parameter to study the
onset of collective dynamics is the coupling strength g. In
Figs. 4(a) and 4(b), it is used to parametrize the dependence
of the Kuramoto order parameter R, its temporal standard
deviation σR, and the standard deviation of the activity
field Y.
Each data point is based on a simulation over 500 time

units after a transient of 50 time units. All but the red curve
have been obtained by increasing the coupling strength g
stepwise, using the final condition for a given g value as the
initial condition for the next one.
The simulations performed for three different system

sizes (4000, 16000, and 64000 units) reveal the existence of

a critical coupling value gc abovewhich R grows from zero.
At variance with the Kuramoto model, the standard
deviation σR is larger than zero above gc, meaning that
the degree of synchronization fluctuates. The onset of
macroscopic oscillations is confirmed by the behavior of
the other order parameter σY. The critical value is close to
gc as estimated from the linear stability analysis discussed
in the previous section. A quantitative conclusion is,
however, problematic. The green curve in Fig. 4, which
refers to N ¼ 16000, deviates at criticality from those
obtained for both smaller (4000) and larger (64000) system
sizes. On the one hand, simulations performed for different
realizations of the bare frequencies show that such devia-
tions might just be sample-to-sample fluctuations. On the
other hand, we cannot exclude the fact that we are before a
“fuzzy” transition, i.e., a finite interval of the control
parameter, where the collective dynamics varies in an
irregular way, as found in a chain of coupled maps
exhibiting stable chaos [48].
Besides sample-to-sample fluctuations, the measure-

ments are obviously affected by statistical uncertainty as
well. Such an error has been estimated by dividing the
standard deviation of R by the square root of the numberNe
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FIG. 4. Phase diagram: Dependence of the Kuramoto order
parameter R (a), its standard deviation σR, the standard deviation
σY of the activity field Y (b), and the ten largest Lyapunov
exponents (c) versus the coupling strength g. The curves in (a)
and (b) have been obtained for N ¼ 4000 (black), N ¼ 16000
(green), and N ¼ 64000 (blue), upon increasing the coupling g.
The red curve (a and b) is a continuation by decreasing g with
N ¼ 64000, and σR and σY are represented with dashed and
dotted lines, respectively (b). The vertical lines mark the critical
point gc ≈ 0.72, where the linear stability of the asynchronous
state is lost (see Sec. III). The insets in panels (a) and (b) reveal
the zone of the fuzzy transition. The ten largest global Lyapunov
exponents in panel (c) are almost indistinguishable. The simu-
lations have been performed for N ¼ 64000, increasing g. We
introduce and discuss the global Lyapunov exponent in the last
paragraph of this section.
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of effectively independent time intervals and Ne, deter-
mined as the ratio between the total length of the time series
by the decay time of the autocorrelation function. This is
typically very small except for g ≈ 1 (see the error bars),
where the correlation decays quite slowly.
The red curve tracks the mean-field obtained by decreas-

ing g. The difference observed in the critical region with
respect to the previous curves (obtained by increasing g)
suggests the possible coexistence of an asynchronous
regime with a partially synchronized regime. Since, how-
ever, no jump is observed in the simulations performed by
increasing g, it is reasonable to conclude that the bifurca-
tion is “supercritical” and thus to attribute such deviations
to the finite sweeping time. Since the main goal of this work
is to characterize the behavior above threshold, we have
preferred to focus our efforts on larger g values, where the
asymptotic regime is much less dependent on the selection
of the initial condition.
A qualitative instance of the collective dynamics can be

appreciated in Fig. 5, where RðtÞ and YðtÞ are plotted for
g ¼ 1.3, showing that the evolution is more complex than
just periodic.
A more quantitative characterization of the collective

temporal behavior can be obtained by looking at power
spectra. The square amplitude of the Fourier transform
of YðtÞ is reported in Fig. 6 for two different coupling
strengths.
We see that the spectra possess quite a rich structure,

being neither trivially broadband nor just revealing a
periodic behavior (especially for g ¼ 0.8). A closer look
at the width of the various peaks upon increasing the
network size reveals that they do not decrease. Simulations
performed for different realizations of the bare frequencies
(data not shown) indicate that the results are almost
independent, especially for the larger system sizes. We
are thus led to conclude that the stochasticlike dynamics is
not due to finite-size effects, but it is intrinsic of the
thermodynamic limit.

According to the theory of nonlinear dynamical systems,
it is well known that an irregular evolution may well be the
manifestation of low-dimensional deterministic chaos. Can
it be the case here? In order to clarify the point, it is natural
to investigate the behavior of the activity field by perform-
ing a nonlinear time series analysis to determine its fractal
dimension. Given a time series YðtnÞ, sampled at equally
spaced times (Δt ¼ tnþ1 − tn ¼ 0.025), one starts embed-
ding the series into a space of dimension m, by building
vectors of the type ½YðtnÞ; YðtnþsÞ;…; Yðtnþðm−1ÞsÞ�, where
s is suitably selected. As often done, we have chosen s, so
that sΔt is close to the first minimum of the autocorrelation
of YðtÞ (s ¼ 5, in our case).
The fractal dimension has then been estimated by using

the nearest-neighbor method [49], as it suffers from less
fluctuations in the region of small distances. Given a
generic time series, Nr reference points are randomly
selected (Nr ¼ 105 in our case). Each of them is compared
with an increasing number n of randomly selected meas-
urement points (the other points in the time series—up
to a maximum Nm ¼ 16 × 106), monitoring the distance
εmðk; nÞ of the kth neighbor (the distance is herein
estimated using the maximum norm), for different values
of the embedding dimension m and k. A well-established
theory [49] implies that, for large n,

−hln εmðk; nÞi ≈ ln n
De

;

where the angular brackets denote the average over the
reference points, while De is the (effective) information
dimension. In order to make the dependence of De on the
resolution εm transparent, we have modified the standard
approach. After interpreting the logarithmic derivative of n
as a resolution-dependent dimension,
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FIG. 5. Time evaluation of Y (a) and R (b) for g ¼ 1.3 and
system sizes N ¼ 4000.
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FIG. 6. Power spectra of Y for g ¼ 0.8 (a) and 1.3 (b) in each
case for N ¼ 4000 (black), N ¼ 16000 (red), and N ¼ 64000
(green). The spectra are obtained by transforming time series of
819.175 time units, sampled every 0.025 units and averaged over
50 different realizations.
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DeðεmÞ ¼ − d ln n
dhln εmi

;

we have plotted it versus hεmi itself and interpreted it as an
independent variable. In fact, we have verified that DeðεmÞ
takes the same value, irrespective of the way εm has been
determined (i.e., independently of the k value). The only
differences are that larger k values yield smaller statistical
fluctuations, but they are confined to larger distances. A
good compromise has been obtained by gluing together the
data obtained for the largest k value (30) with the data
obtained for the smallest distances and a lower-order
neighbor (the fourth one).
The results for g ¼ 0.8 are reported in Fig. 7(a) and

different ensemble sizes (N ¼ 4000, 16000, and 64000).
The first point to notice is that for the lowest embedding
dimension (m ¼ 4), De nicely converges to 4 upon
decreasing ε. This clearly implies that the dimension of
the collective motion is at least 4; i.e., one needs at least
four variables to characterize such a behavior. Furthermore,
the curves obtained for the larger m values reveal an
increase, possibly hinting to m, thus suggesting that the
dynamics is high dimensional (if not even infinite dimen-
sional). Additionally, one can also appreciate a small shift
to smaller scales of the curves obtained for N ¼ 64000. In
itself, this is the indication of finite-size effects. If the shift
continues as such by further increasingm, this would mean
that part of the high dimensionality is just a consequence of
statistical fluctuations that disappear in the thermodynamic
limit. We are more inclined to attribute such discrepancies
to another type of finite-size effect: a nonperfect equiv-
alence among the various realizations of the frequency
distributions. We have, in fact, observed that different
clusters may temporarily form during the evolution, espe-
cially in the interval g ∈ ½gc; 1.2� (see a more detailed
discussion in Sec. V).
For g ¼ 1.3, the convergence to the thermodynamic limit

is more clear. In Fig. 7(b), the agreement among the
different network sizes is compelling over a wide range,

thus suggesting that the statistical fluctuations do not affect
the dimension estimates. We have also double-checked the
results by computing the correlation dimension with the
TISEAN package [50]: a rather similar pattern emerges (data
not shown).
Additional information is contained in the generalized

order parameters. Simulations performed for N ¼ 16000
reveal that all of the Rk’s depart from zero above the same
critical coupling strength gc. Additionally, several Rk’s are
significantly different from zero (actually, R3 is the largest
one). Even more interesting is that, as shown in Fig. 8, the
dynamics of R3 and R1 are substantially uncorrelated even
slightly above threshold (namely, for g ¼ 0.7). The rela-
tively large set of ðR1; R3Þ pair values reveals that the
knowledge of R1 alone is not sufficient to characterize the
collective dynamics.
Finally, we have investigated the degree of (in)stability

of the dynamics, computing the first 10 Lyapunov expo-
nents Λj. We have followed the approach described in
Ref. [51], which consists in formally interpreting the time
evolution as a series of discrete-time maps from one to the
next spike emission. The results are plotted in Fig. 4(c)
upon varying the coupling strength. We see that the
dynamics is always stable (notice that the zero
Lyapunov exponent, always present in a nonconstant
autonomous dynamics, is automatically discarded). For a
vanishing g, all the Lyapunov exponents converge to zero:
This is obvious since in this limit, all the oscillators are
uncoupled. Much less trivial is that the Lyapunov expo-
nents are all negative in spite of a dynamics that may even
be collectively irregular. This manifestation of stable chaos
strongly suggests that the connection between different
levels of descriptions (microscopic vs macroscopic) of a
given model is weak, if it exists at all.
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FIG. 7. Effective dimension De as a function of the resolution
εm for g ¼ 0.8 and g ¼ 1.3 in panels (a) and (b), respectively.
The system size is N ¼ 4000 (black), N ¼ 16000 (red), and
N ¼ 64000 (green). The different symbols belong to different
embedding dimensionsmmarked in the figure. The curves for the
same embedding dimension group, together with a similar slope
irrespective of the system size.

0 0.05 0.1 0.15 0.2

R
1

0

0.05

0.1

0.15

0.2

R
3

FIG. 8. Projection of the collective dynamics on the plane
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dots show 16384 time-discrete R1, R3 pairs sampled every 2.5
time units.
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V. MICROSCOPIC DYNAMICS

In this section, we try to shed light on the collective
dynamics by analyzing the behavior of the single neurons.
We notice that the coupling modifies the firing rate of the
neurons. This can be appreciated in Fig. 9(a), where the
effective (average) frequency ~ω is reported for the coupling
strength g ¼ 1. The dashed line corresponds to the bare
frequency of each neuron. Almost everywhere, ~ω is smaller
than the bare frequency ω. This is a consequence of the fact
that, although the PRC was chosen to be symmetric around
zero, this is no longer true for the effective PRC (see Fig. 1).
The most interesting feature to notice is, however, the
staircase structure of ~ωðωÞ with flat plateaus that corre-
spond to clusters of mutually synchronized neurons: The
synchronization does not mean a perfect phase locking but
that the phase differences never become larger than 2π.
One way to characterize the irregularity of the single-

neuron activity is through its coefficient of variation (CV),

i.e., the standard deviation of the interspike interval
rescaled to its average value. In Fig. 9(b), we see that
the CV allows us to identify synchronized clusters as those
frequency intervals where the fluctuations are significantly
smaller. Furthermore, distinct lines can be recognized
inside some clusters: They correspond to different locked
states [52] and are a manifestation of the multistability that
is, in fact, also seen at the macroscopic level. On a more
quantitative level, the neural dynamics is not significantly
irregular if compared, for instance, to the true brain activity
in the resting state. However, it should be kept in mind that
in our toy model, the only source of disorder is the
distribution of bare frequencies; no disorder has been
assumed in the synaptic connections.
Additional information can be extracted by assuming

that the self-determined activity field EðtÞ is externally
given, so each neuron can be interpreted as a forced
dynamical system. In this way, it is natural to compute
the (conditional) Lyapunov exponent λi. In Fig. 9(c), one
can observe a scenario that is qualitatively different from
what is observed in the Kuramoto model: All λi’s are
negative, including those of the neurons outside the flat
plateaus. We come back to this point later in this section.
A partially different scenario is found for g ¼ 1.3 [see

Figs. 9(d)–9(f)]. First of all, any sign of multistability has
disappeared as have all plateaus. The initial high peak of
the CV [panel (e)] is due to the fact that now the neurons
with the lowest bare frequency do not spike at all, having
undergone a kind of oscillation death. Their CV is
obviously equal to zero. As a result, the first erratically
spiking neurons are characterized by long interspike
intervals and are obviously accompanied by large fluctua-
tions. The CV of these rarely firing neurons is as large as
1.75 [not shown in Fig. 9(e) with the present scale]. The
kind of oscillation-death phenomena could be seen as an
inhomogeneous limit cycle (IHLC) because nonspiking
neurons are not trapped at a steady state but, rather, move
back and forth according to their bare frequency and the
global pulses, never reaching the threshold [53]. Hence, we
observe two groups of neurons, the quiet neurons, which
fluctuate below threshold, and the firing neurons. The
situation is a more complicated than the usual IHLC
because of the many (in the thermodynamic limit, infinitely
many) frequencies reflected in the power spectra (Fig. 6).
Moreover, the dynamics of each oscillator is rather stable.
Altogether, the microscopic analysis confirms that the

microscopic behavior is linearly stable: Each neuron is
synchronized with the self-generated mean field EðtÞ, and
yet an irregular dynamics is self-sustained. This can be
understood by noticing that in many frequency ranges, the
effective frequency is a strictly monotonous function of ω.
This means that, even though each neuron synchronizes
with the field E, the parameter (bare frequency) mismatch
induces a qualitatively different response: Such qualitative
differences are then responsible for the maintenance of the
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FIG. 9. Effective frequency ~ω [panels (a) and (d)], CV of ~ω
[panels (b) and (e)], and conditional Lyapunov exponents λi
[panels (c) and (f)] for the different oscillators, for g ¼ 1 [panels
(a)–(c)] and g ¼ 1.3 [panels (d)–(f)], all for N ¼ 4000. The red
dashed line in panels (a) and (d) show the bare frequency as a
reference for the effective frequency shown with solid black lines.
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self-generated irregularity. In a more technical way, the
response of a phase oscillator is not structurally stable: One
can slightly modify its frequency and still observe signifi-
cant changes (phase slips). A more physical (although still
qualitative) way to understand the phenomenon is as
follows: One can see each phase oscillator as a particle
moving in a potential with an inclination that depends on its
bare frequency and the mean field E. When two particles
with slightly different ω are followed, one of them may be
blocked in a (shallow) minimum that is absent for the other.
One can learn a bit more about the dependence on ω by

comparing pairs of consecutive oscillators (consecutive in
the space of bare frequencies). This can be done by
monitoring phase slips, i.e., the time instants when the
phase difference becomes larger (smaller) than 1=2 (−1=2).
Since it is possible that the phase difference will oscillate
around 1=2 (−1=2), yielding long sequences of positive
and negative slips, we have chosen to record only those
events where two or more consecutive positive (negative)
flips are observed.
In Fig. 10(a), we see that for g ¼ 1, there exist totally

empty bands: They correspond to the previously mentioned
synchronization areas. In panel (b) (which corresponds to
g ¼ 1.3), both forward and backward slips are simulta-
neously present. One can see that the phase slips happen on
a much longer time scale than the interspike intervals.
Furthermore, the bands with sparse phase slips observed for
g ¼ 1.3 are reminiscent of the synchronization bands found
for g ¼ 1.0: There, phase-slip events are rare and erratic.
The totally empty band at the bottom frequencies for
g ¼ 1.3 corresponds to the nonfiring neurons.
In the thermodynamic limit, the most appropriate way to

characterize the collective dynamics is by monitoring the
probability distribution Qðϕ;ω; tÞ introduced in Sec. III. In
Fig. 11, we give an idea of the way it looks below and
above threshold at some randomly chosen time. In panel
(a), one can recognize a reasonably smooth distribution. In
fact, for g ¼ 0.5, we are in the asynchronous regime and
thereby expect a smooth distribution of the phases ϕ [54].
Such a distribution loses stability above gc.
In fact, for g ¼ 1.3, we see a rather different structure

[see panel (b)] characterized by an alternation of highly

dense and widely spread regions. It is clear that even the
plain integration of Eqs. (4) and (5) is a highly nontrivial
task, not to mention the development of approximate
analytical schemes.

VI. DISCUSSION AND OPEN PROBLEMS

In this paper, we have analyzed an ensemble of pulse-
coupled oscillators characterized by a distribution of bare
frequencies and coupled through a homogeneous mean
field. Although the setup is reminiscent of the Kuramoto
model, the collective dynamics is much richer and accom-
panied by a linearly stable microscopic dynamics.
A linear stability analysis of the asynchronous regime

allows us to identify the transition point beyond which a
complex form of synchronization sets in. A numerical
analysis of a properly defined Kuramoto order parameter R
and of the smoothed activity field Y reveals that they not
only fluctuate in time but that their behavior involves a
large (possibly infinite) number of degrees of freedom. This
indicates that even in “simple” mean-field models, such as
the one investigated in this paper, the coarse-grained
activity of an ensemble of phase oscillators cannot be
reduced to the evolution of one or a few variables, such as
the firing rate and related observables. In principle, nothing
prevents a population of phase oscillators from self-
sustaining a macroscopic irregular dynamics: The corre-
sponding evolution equation is indeed a nonlinear
functional equation [see Eqs. (4) and (5)], which operates
in an infinite-dimensional phase space. However, it is unclear
under which conditions many degrees of freedom can be
simultaneously active. In order to make further progress, it
will be necessary to find suitable approximations of the
probability density Qðϕ;ω; tÞ: This task seems to require
clever ideas on the way to expand Qðϕ;ω; tÞ. One question
is particularly relevant: whether the dynamics is high
dimensional from the very beginning (such as in models
of balanced states [55,56]) or whether the complexity
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FIG. 10. Phase slips for g ¼ 1 [panel (a)] and g ¼ 1.3 [panel
(b)] for N ¼ 4000. Black circles correspond to forward slips; red
crosses correspond to backward slips, occurring only in panel (b).
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increases by undergoing a series of consecutive bifurcations.
The numerical analysis in the vicinity of the critical point is
affected by too-strong finite-size corrections to be able to
draw any conclusion.
Another open point is the generality of this scenario.

Several preliminary simulations performed with various
choices of the PRC reveal that it is quite robust, although
the presence of a relatively steep branch seems to be a
necessary condition. This is not too serious a limitation, as
it naturally appears in systems characterized by a slow-fast
dynamics (see the discussion in Ref. [57]). However, it
might be worth assuming a different PRC shape to enable
deeper analytical studies. We have indeed derived a very
general equation for the loss of stability of the asynchro-
nous state: If one could go beyond this, including the most
relevant nonlinear terms, it should be possible to decide
how many degrees of freedom are switched on.
Our numerical studies suggest that the transition dis-

appears when the distribution of frequencies is narrow
enough, but this is by no means a proof: Understanding
whether it is strictly necessary to go beyond the weak-
coupling, weak-disorder limit is another point that will be
worth exploring. In this perspective, it is worth noticing that
the system discussed in this paper [Eq. (1)] is an instance of
a Winfree model [58] in the limit of a δ-like coupling
strength. This model of phase oscillators, introduced in
1967, and almost forgotten for several years, was later
reconsidered for the rich phenomenology it may exhibit.
However, all the variants explored in the literature so far
(see, e.g., Refs. [32,59]) have not exhibited the complex
collective dynamics described in this manuscript. Once
again, identifying the structure of the coupling function is a
crucial objective for the next investigations.
Another intriguing property of the collective dynamics

discussed in this paper is the presence of a spectrum of
negative Lyapunov exponents. This means that it is a
manifestation of stable chaos [33]. Within the context of
computational neuroscience, the stability of themicroscopic
trajectories suggests that this model is a good candidate for
performing computational tasks. It will be worth exploring
this opportunity by studying the response of this type of
network to different classes of external stimuli.
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APPENDIX A: STABILITY ANALYSIS

Equation (9) for u can be rewritten as

du
dϕ

¼
ðgΓ0ðϕÞE0 − μÞuþ g½Γ0ðϕÞQ0 þ ΓðϕÞ dQ0

dϕ �z
ω − gΓðϕÞE0

;

which has the structure

du
dϕ

¼ ðA − μτÞuþ gPðωÞCðϕ;ωÞz; ðA1Þ

where

A ¼ gΓ0ðϕÞE0

ω − gΓðϕÞE0

; ðA2Þ

Cðϕ;ωÞ ¼ ωΓ0ðϕÞ
Tðω; E0Þðω − gΓðϕÞE0Þ3

; ðA3Þ

while τ is defined in Eq. (7). The general solution of
Eq. (A1) is

uðϕ;ωÞ ¼ eFðϕ;ωÞ−μTðϕ;ωÞ
�
uð0;ωÞ

þ z
Z

ϕ

0

dψCðψ ;ωÞe−Fðψ ;ωÞþμTðψ ;ωÞ
�
; ðA4Þ

where

Fðψ ;ωÞ ¼
Z

ψ

0

dηAðηÞ ¼ log
ω − gΓð0ÞE0

ω − gΓðψÞE0

: ðA5Þ

Notice that Fð1Þ ¼ Fð0Þ ¼ 0, while Tðψ ;ωÞ is defined in
Eq. (7). One can therefore write the solution uðϕ;ωÞ as

uðϕ;ωÞ ¼ ω − gΓð0ÞE0

ω − gΓðϕÞE0

e−μTðϕ;ωÞ
�
uð0;ωÞ

þ zgPðωÞ Vμðϕ;ωÞ
ω − gΓð0ÞE0

�
; ðA6Þ

where

Vμðϕ;ωÞ ¼
ω

Tð1;ωÞ
Z

ϕ

0

dψ
Γ0ðψÞeμðψ ;ωÞ

ðω − gΓðψÞE0Þ2
: ðA7Þ

By imposing the periodicity condition uð1;ωÞ ¼ uð0;ωÞ,
one obtains

uð1;ωÞ ¼ gz
PðωÞVμð1;ωÞð1;ωÞ

ðeμTð1;ωÞ − 1Þðω − gΓð0ÞE0Þ
: ðA8Þ

Finally, recalling the definition of z in Eq. (10), it is
possible to rewrite Eq. (A8) as the eigenvalue equation

1þ gΓð1Þ
Z

Q0ð1;ωÞdω¼ g
Z

dω
PðωÞVμð1;ωÞ
eμTð1;ωÞ − 1

: ðA9Þ
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APPENDIX B: TRANSFORMATION TO THE
APPROPRIATE KURAMOTO-LIKE PHASE ϑ

We solve the original system Eq. (1) with the PRC
Eq. (2) in terms of the nonhomogeneously advancing phase
ϕ. At each time point that we calculate the Kuramoto order
parameter R, we convert the phase ϕ into the Kuramoto-like
phase ϑ according to Eqs. (12) and (13). For simplicity and
readability, we introduce new constants similar to those
defining the piecewise linear PRC Eq. (2): B01 ¼
ðg=NÞE0B01, B02 ¼ ðg=NÞE0B02, B03 ¼ ðg=NÞE0B03,
b1 ¼ ðg=NÞE0b1, and b2 ¼ ðg=NÞE0b2. Hence, the
Kuramoto-like phase is

ϑðϕðtÞÞ ¼

8>><
>>:

~ω
b1
ln ω−B01

ω−B01−b1ϕðtÞ if 0 ≤ ϕ < ϕl

ϑl − ~ω
b2
ln ω−B02þb2ϕl

ω−B02þb2ϕðtÞ if ϕl ≤ ϕ ≤ ϕr

ϑr þ ~ω
b1
ln ω−B03−b1ϕr

ω−B03−b1ϕðtÞ if ϕr < ϕ < 1;

with the field E0 as stated in Eq. (8) and the effective
frequency defined as the inverse interspike interval, i.e.,
~ω ¼ 1=Tð1;ω; E0Þ [Eq. (7)]. The interspike interval can be
expressed explicitly for the given PRC:

Tð1;ω; E0Þ ¼
1

b1
ln

ω −B01

ω −B01 − b1ϕl

−
1

b2
ln
ω −B02 þ b2ϕl

ω −B02 þ b2ϕr

þ 1

b1
ln
ω −B03 − b1ϕr

ω −B03 − b1
:

As shown in Fig. 1, the transitions ϑl and ϑr in the
effective PRC ~Γ depend on the bare frequency ω
according to

ϑl ¼
~ω

b1
ln

ω −B01

ω −B01 − b1ϕl
;

ϑr ¼ ϑl − ~ω

b2
ln
ω −B02 þ b2ϕl

ω −B02 þ b2ϕr
:
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