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The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments
called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control
to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed
that nuclear division did not occur across the septal plane. We detected the presence of nucleolar frag-
ments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally
maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR.,
while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The pre-
sented movie challenges and extends previous concepts of C. albicans cell division.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Candida albicans is a multimorphic fungus that lives as a
commensal yeast in humans and produces invasive hyphae and
pseudohyphae as an opportunistic pathogen in patient groups with
underlying immune deficiencies. Pseudohyphae are elongated
yeast cells that fail to undergo cell separation following cytokine-
sis, resulting in chains of cells with constrictions at the septa that
form at the mother-bud evagination site. In contrast, septin rings
in hyphae are deposited from the growing tip as it passes the
future site of septation (the presumptum) (Sudbery, 2001). In addi-
tion, the Spitzenkdérper, an apical ‘body’ of vesicles, appears as a
bright Mlc1-GFP (Myosin light-chain 1) spot at the hyphal tip
throughout the cell cycle (Crampin et al., 2005). Another distinctive
feature of hyphae is the lack of constrictions in the cell wall.
Although different culture conditions can enrich for one form over
the other, the yeast and hyphal morphologies comprise two ends of
a continuum and fungal lesions in infected solid organ tissues
invariably contain both cell types (Merson-Davies and Odds, 1989).

In contrast to most multinuclear filamentous fungi that undergo
organellar streaming through open septal pores, C. albicans hyphae
are compartmentalized by septa containing a 25 nm micropore
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that inhibits such traffic (Gow et al., 1980). C. albicans therefore
requires tight regulation of nuclear division to ensure that each
daughter cell contains a single nucleus prior to septum closure.
Nonetheless, unusual mitotic divisions can give rise to C. albicans
tetraploids, aneuploids or haploids (Suzuki et al, 1986;
Rustchenko-Bulgac and Howard, 1993; Hickman et al., 2013), espe-
cially after drug exposure (Selmecki et al., 2006; Harrison et al.,
2014).

Here we used high frame-rate time-lapse microscopy to report
new insights into the spatio-temporal sequence of cell-cycle events
in wild-type C. albicans cells that challenge our previous under-
standing of this process.

2. Results and discussion

The movie presented shows the growth of constitutively polar-
ized C. albicans cells after initial evagination of a germ tube from 4
mother yeast cells (Yeast Cells 1-4, Fig. 2A, Movie 1). Filamentous
growth was induced in serum at 37°C in a micro-fabricated
chamber featuring parallel walls (Brand et al., 2008). Nucleoli were
visualized by expression of ribonucleolar protein, Nop1, fused to
YFP and were used as a proxy for nuclear localization, as shown
by co-localization of Nop1 with histones inside the nuclear mem-
brane in C. albicans hyphae (Finley and Berman, 2005). Septum for-
mation was visualized using Cdc3, one of the 5 C. albicans septins
that comprise the septin ring, fused to GFP. The contrasting spatial
organization of the two marker proteins rendered them easily
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Fig. 1. Temporal and spatial sequence of cell-division events during polarized growth in Candida albicans. (A) The nucleolus and septin rings were visualized in double-tagged
strain 8860 expressing Nop1-YFP and Cdc3-GFP as markers, respectively. In a separate strain, the Spitzenkoérper was visualized using Mlc1-YFP. The timing of cell-cycle events
was normalized across strains using the appearance of the closed septum, visible in DIC in both strains, as a shared reference point. Frame rate = 1 frame/min, bar = 5 um. (B)
Time course of cell-division events (194 events observed) (S, septum; N, nucleus; DIC, Differential Interference Contrast).

distinguishable in the same fluorescence channel (Finley and
Berman, 2005).

2.1. Sequence of cell division events

During early hyphal growth, the Cdc3-GFP septins were observ-
able as a spot within the hyphal tip until they marked the position
of the first nascent septum by forming a single polymeric ring at
the internal face of the plasma membrane. After mitosis and arrival
of a sister nucleus in the daughter cell, the Cdc3-GFP signal at the
presumptum separated into two distinguishable rings to make way
for chitin deposition and formation of the septal wall. Closure of
the septum by chitin deposition was observed using DIC micro-

scopy. During septin ring separation, the Mlc1-YFP signal at the
Spitzenkoérper dimmed temporarily as a sub-population of
MIc1-YFP was seen streaming away from the Spitzenkorper to con-
centrate at the septum (Fig. 1A). After septal closure, the Mlc1-YFP
signal at the septum was lost and the fluorescent signal returned to
its previous intensity at the Spitzenkorper (Thomson et al., 2014).
The observation that a subpopulation of Mlc1 can be temporarily
relocalized to the septum suggests that the protein copy number
within apical cells is relatively stable during growth, consistent
with the idea that C. albicans hyphae grow using a constant volume
of cytoplasm pushed forwards from the previous cell (Gow and
Gooday, 1982). The sequence of cell division events and their rela-
tive timings are illustrated in Fig. 1A and B.
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Fig. 2. (A) Video Still Image at t = 0 min indicating cells numbered 1-4 from left to right. Bar = 5 um. (B and C) Multiple full-size Nop1-YFP aggregates were maintained in
some cells. Panel B is derived from Cell 1 (t = 434 min) in the movie. Panel C is derived from a movie made in parallel using the same strain. Bar = 5 pm. (D, E and F) Small,
transient Nop1-YFP nucleolar fragments (arrows) in cells originating from (from | to r) Mother Yeast Cell 1 (t =397 min), Cell 3 (t=393 min) and Cell 4 (t=388 min).

Bar=5 pm.

2.2. Nuclear division, mobility and ploidy

Nuclear division, detected with Nop1-YFP, occurred within the
compartment bounded by a mature, closed septum at one end
and a presumptum, which appeared prior to nuclear division, at
the other end. The movie revealed a previously unrecognized
degree of nuclear mobility during growth. Following mitosis, one
sister nucleus stayed within the mother cell while the other
crossed the presumptum into the daughter compartment.
Although the nucleus in dividing mother cells was highly mobile,
of the 42 nuclear divisions in the movie, none was observed to
occur across the plane of the septum. Instead, a new sister nucleus
often traveled some distance along the hypha before reaching the
presumptum. In this and other movies, we observed that some
cells generated and maintained up to 4 full-size Nop1-YFP spots,
suggesting that these cells may be tetraploid, multinucleate

and/or aneuploid and may arise more frequently than previously
thought (Fig. 2B and C).

2.3. Nuclear translocation and inheritance

Prior to nuclear division in hyphal compartments, the nucleus
was maintained centrally due to the positioning of vacuoles on
either side of it. Post-mitotic nuclei often encountered delays in
movement as they transited the presumptum, suggesting that
the aperture is partially constricted compared to main body of
the hyphal cell or that interaction of the nucleus with microtubules
requires reorganization in order to move it beyond the septin ring.
In elongating hyphae, the proximal sister nucleus remained in the
mother compartment while the distal sister migrated into the
daughter compartment. In some branching hyphae it was the
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proximal sister nucleus that migrated into the new branch (see
compartments formed from Yeast Cell 1).

2.4. Formation of rDNA circles

On several occasions, a small, discrete spot of Nop1-YFP was
spatially separated from the nucleus and remained visible for
10-23 min (Fig. 2D-F). Two of these small Nop1-YFP spots were
observed in mother hyphal compartments cells and one in a daugh-
ter compartment. These could represent autonomously replicating
circular or linear rDNA plasmids, which have been isolated from
actively-growing C. albicans cells (Huber and Rustchenko, 2000).
Nop1 is involved in pre-rRNA modification within the nucleolus
(Tollervey et al., 1991) and thus is associated with the tandem
repeats of rDNA found on ChrXIl in Saccharomyces cerevisiae and
on ChrR in C. albicans. Recombination of tandem rDNA repeats can
give rise to extrachromosomal circular molecules that have the abil-
ity to replicate autonomously. We suggest that nucleolar proteins,
including Nop1, likely remain associated with rDNA in these extra-
chromosomal plasmids, producing small nucleolar regions in addi-
tion to the major nucleolus associated with ChrR. In S. cerevisiae,
nucleolar fragmentation is more frequently detected in aging cells
(Sinclair and Guarente, 1997). This does not seem to be the case in
C. albicans hyphae, where Nop1-YFP spots were observed in hyphal
compartments during elongation but not in the older mother yeast
cell, even though yeast nuclei continued to divide to produce new
daughters. To our knowledge, this is the first demonstration of inde-
pendent localization of small nucleolar fragments in C. albicans.

2.5. Simultaneous generation of hyphae and pseudohyphae

The movie provides further evidence that both hyphae and
pseudohyphae can emanate simultaneously or sequentially from
the same parent cell. The germ tube from Yeast Cell 1 (far left) ini-
tiated a hyphal branch but then formed a new pseudohyphal cell
from the opposite side of the mother hypha. Similarly, from Yeast
Cell 3, a branch elongated from the mother compartment while a
pseudohypha, in which the septum formed at the mother-bud
neck, developed simultaneously from the same compartment.
Older cells that were proximal to the initial mother cell produced
branches prior to more distal cells (Veses et al., 2009). Of the 11
branching events shown in this movie, 3 occurred adjacent to a
septation site. In the remaining 8 branches, the mean distance
(+xSD) of branching was 4.7 £3.2 um from a septation site, with
an overall bias toward the apical septum, The site of branching is
thought to be determined by septin positioning. In Ashbya gossypii
(phylum Saccharomycotina, which includes C. albicans) branching
occurs within 10 pm of the apical septum (deMay et al., 2009),
while in A. nidulans (phylum Pezizomycotina) branches appear to
form adjacent to dividing nuclei (Dynessen and Nieldsen, 2003).
Our findings are therefore consistent with other fungi of the
Saccharomycotina phylum.

3. Summary

Improved imaging methods and microfluidic formats facilitated
the production of high-frame-rate movies that revealed the
dynamic mobility and potential formation of aneuploids, tetra-
ploids and/or multinucleate wild-type C. albicans cells under stan-
dard hyphal growth conditions. We observed that nuclei do not
divide across the septal plane in hyphal cells and we could identify
and track individual sister nuclei during migration after division.
Finally, we observed the transient formation of nucleolar frag-
ments, which may represent the first visualization of the formation
of extrachromosomal rDNA circles in C. albicans.

4. Methods

The strains used in this study were C. albicans 8860 (Nop1-YFP/
Cdc3-GFP) (Finley and Berman, 2005) and YMG7139 (Mlc1-YFP)
(Crampin et al., 2005). Cells were grown in 2% glucose and 20%
fetal calf serum at 37°C to induce filamentation. Growth was
observed in a micro-fabricated chamber cast in poly-
dimethylsiloxane (Sylgard-184, Down Corning) using a Zeiss
AxioObserver X1 running Axiovision software (v 4.8,Carl Zeiss,
Germany). Images were captured every 1min using a 16-bit
CooISNAP H? cooled camera (Photometrics, USA) with a 1's expo-
sure for GFP and a EC Plan Neofluor 40x oil-immersion objective
(NA 1.3) and a Zeiss #62 HE filter to collect both GFP and YFP emis-
sion signals simultaneously.
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