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a b s t r a c t

C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK
cell discrimination between self and non-self. In recent years, additional genes at this locus have been
identified with patterns of expression that extend to cells of the myeloid lineage where many of the
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encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In
the present review we highlight the roles of some of these receptors including recent insights gained with
regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and
activation, regulated expression within different cellular and immune contexts, as well as functions that
include the regulation of bone homeostasis and involvement in autoimmunity.
yeloid cell
mmune homeostasis

. Introduction

.1. C-type lectin receptors

C-type lectin receptors (CLRs) are characterised by the pres-
nce of one or more C-type lectin-like (CTLD) domains. The CTLD,
eferred to as a carbohydrate-recognition domain (CRD) in cases
here carbohydrates are recognised, comprises a distinctive, com-
act protein fold arising from disulphide bridges formed between
ix conserved canonical cysteine residues [1] and is marked by its
bility to recognise a diverse repertoire of structurally dissimilar
icrobe-associated or endogenous ligands. Classical CLRs consti-

ute the largest and most diverse group and bind carbohydrates
n a calcium-dependent manner. These C-type lectins harbour

annose-binding EPN (Glu-Pro-Asn) or galactose-binding QPD
Gln-Pro-Asp) triplets in their CRDs [2]. Their non-classical coun-
erparts, while being structurally homologous, lack the residues
equired for calcium-dependent carbohydrate binding and are
eferred to as C-type lectin-like receptors (CLLRs) [3]. These recep-
ors either use alternative mechanisms in carbohydrate recognition
r recognise non-carbohydrate ligands such as proteins.

Membrane-bound CLRs were initially divided into two types:
ype I CLRs (mannose receptor family) have multiple CRDs at

heir NH2 terminus which facilitate the binding and internalisa-
ion of glycosylated antigens by receptor-mediated endocytosis.
ype I CLRs include the macrophage-mannose receptor (MMR)
nd DEC205, as well as selectins which mediate tethering
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and rolling of leukocytes on endothelial cells. Type II CLRs
(asialoglycoprotein-receptor family) have a single CRD at the
COOH-terminus and include hepatic asialoglycoprotein recep-
tors (ASGPRs), macrophage lectin, DC-specific ICAM3-grabbing
non-integrin (DC-SIGN), Langerin, DC-associated C-type lectin
(dectin-1) and DC immunoreceptor (DCIR) [4]. More recently how-
ever, these functionally heterogeneous lectins have been divided
into 17 groups based upon domain organisation and phylogeny [3].

1.2. The natural killer gene complex (NKC)

The natural killer gene complex (NKC) located on chromosome
6F3 in the mouse and on chromosome 12p13.1 in humans, is a
genetic locus encoding numerous activating and inhibitory recep-
tors originally identified based upon their predominant expression
on natural killer (NK) cells [5] (Fig. 1). These receptors play criti-
cal roles in enabling NK cell discrimination between self, non-self,
missing-self and induced self where they regulate the fine balance
between NK cell activation and inhibition. Many of these recep-
tors are group-II and -V C-type lectins which are also expressed
on cells of the myeloid lineage including neutrophils, dendritic
cells (DCs), monocytes and macrophages. In this context, they
recognise endogenous and/or exogenous ligands and as such,
may have roles in homeostatic regulation of the immune system.
Table 1 provides a summary of selected CLRs expressed on myeloid
cells.
In mice, NKC-encoded receptors include members of the NKRP1
and Ly49 families (Fig. 1). Independent control of Ly49 gene
transcription allows for mono-allelic expression on overlapping
subsets of NK cells and T-lymphocytes. Members of the Ly49
family recognize polymorphic epitopes on H-2D and H-2K Class
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Fig. 1. C-type lectin receptors encoded by the natural killer gene complex (NKC). The murine NKC comprises genes located on chromosome 6F3 and spans a region of
approximately 2.5 Mb. In humans, its equivalent is located on chromosome 12p13.1. The dectin-1 cluster (black dashed square) comprises genes encoding group V CLRs
including MICL (G), CLEC-2, CLEC-9A, MAH (H), CLEC-1, dectin-1 (B) and LOX-1. The dectin-2 cluster (black dotted square) comprises genes centromeric to the NKC which
encode group II CLRs including BDCA-2, DCAR (A), DCIR (D), dectin-2, CLECSF8 and Mincle. The murine Ly49 family (black solid square) includes both activating receptors
such as Ly49H (C) and inhibitory receptors such as Ly49Q (I). Genes encoding MAFA/KLRG1 (humans) and its murine orthologue (klrg1) are highlighted in solid grey squares.
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ames in italics represent genes present in humans but absent from the mouse NK
oth in order of chromosomal localisation from left (centromeric) to right (telome
inases and inhibitory receptor substrates such as protein tyrosine phosphatases SH
gE-mediated Fc�RI aggregation, (G) human MICL ligation suppresses TLR-induced

MHC molecules and play important roles in regulating NK
ytotoxicity, where cells inappropriately expressing reduced cell
urface Class I MHC or related molecules are destroyed [6]. The
y49 family includes activating receptors such as Ly49D and
y49H (Official name: Klra8) which associate with immunoreceptor
yrosine-based activation motif (ITAM)-bearing adaptor proteins
uch as DNAX Activating Protein of 12 kDa (DAP-12) (Fig. 1C).
nhibitory receptors within this family include Ly49Q which har-
our immunoreceptor tyrosine-based inhibition motifs (ITIMs) in
heir cytoplasmic domains. ITIM tyrosine phosphorylation results
n the recruitment of the protein tyrosine phosphatases SHP-1 and
HP-2, the inhibition of cytokine production, the suppression of NK
ytotoxicity and the consequent prevention of self-killing of target
ells by NK cells [7–9]. Furthermore, activating and inhibitory Ly49
eceptors may be expressed simultaneously allowing for the selec-
ive elimination of virus-infected or transformed target cells that
how lost or reduced expression of inhibitory receptor ligand but
etain the expression of ligand for activating receptors [10].
The human equivalents of the Ly49 family are referred to as
iller cell Ig-like receptors (KIRs) and they recognize human leuko-
yte antigens such as HLA-A, HLA-B and HLA-C. The human NKC
lso encodes group V CLRs such as CD69, CD94 and members
f the NKG2 family which recognise HLA-E or ligands expressed
er panels show activating receptors and bottom panels show inhibitory receptors,
AM: ; ITIM: �; ITAM-like: ©. Activating receptor substrates such as Src and Syk
and SHIP are also shown. (E) Rat MAFA inhibits the secretory response induced by
ses within specific immune and cellular contexts.

on stressed, virally infected or tumourigenic cells [5,11] (Fig. 1).
Many NKC-encoded CLR genes expressed in myeloid cells occur in
two distinct clusters: The dectin-1 cluster includes genes encoding
group V CLRs such as dectin-1, lectin-like receptor for low den-
sity lipoprotein-1 (LOX-1), myeloid inhibitory C-type lectin-like
receptor (MICL), C-type lectin-like receptor (CLEC)-1, CLEC-2, CLEC-
9A and macrophage antigen h (MAH) (CLEC-12B) [12,13] (Fig. 1).
Group V CLRs are non-classical type II trans-membrane proteins
harbouring a single CTLD, a stalk region of variable length and a
cytoplasmic tail which may contain consensus signalling motifs.
The dectin-2 cluster which occurs centromeric to the NKC includes
genes encoding group II CLRs including dectin-2, CLECS-F8, Mincle,
BDCA-2, DCAR and DCIR (Fig. 1). Group II CLRs are generally classi-
cal C-type lectins with similar structures to those of group V CLRs
but have shorter cytoplasmic tails [3].

1.3. Activating and inhibitory receptors
CLRs may be activating or inhibitory based upon their ability
to associate with signalling molecules or the presence of specific
motifs in their cytoplasmic tails. Most Group II CLRs such as
dectin-2, DCAR, BDCA-2 and Mincle are predicted to be activating
receptors based upon the association of a positively charged
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Table 1
Selected activating and inhibitory C-type lectin receptors expressed in myeloid cells.

Group CLR Expression Ligand/s Signalling References

II
Calcium-dependent CRD

BDCA-2 pDC, Mo, MØ,
Neu.

Unknown FcR�: activating and
inhibitory. Syk, PLC�2,
BLNK, BTK

[114–116]

DCAR DC, Mo, MØ, B. Unknown FcR�: activating [67]
DCIR mDCs, pDCs,

Mo, MØ, B, Neu.
PRR for HIV-1 ITIM: inhibitory.

SHP-1/SHP-2
[63,65,71]

Dectin-2 mDCs, pDCs,
Mo, MØ, B, Neu.

PRR for various fungi
and house dust mites

FcR�: activating. Src
kinases and Syk

[117–119]

CLECS-F8 MØ Unknown Unknown [120]
Mincle mDCs, Mo, MØ Damaged cells; PRR for

Malassezia species,
Mycobacteria, Candida

FcR�: activating. SYK
and CARD9

[121–124]

DC-SIGN mDCs PRR for numerous viral,
bacterial and fungal
species. E.g. M.
tuberculosis and HIV-1.
Endogenous ligands:
ICAM-2, ICAM-3,
CEACAM-1, CEA.

No motif or adaptor.
Mostly activating. Src
kinases, Ras, RAF1,
PAKs, RHOA, LSP1,
LARG.

[125–148]

Langerin LCs, dermal DC
subset

PRR for HIV-1 and
fungal species.
Endogenous ligands:
Type I pro-collagen.

Proline-rich domain.
Unknown signalling
function.

[149–156]

MGL mDCs, MØ PRR for Filoviruses,
Influenza virus and S.
Mansoni. Endogenous
ligands: CD45,
gangliosides, MUC-1.

Unknown [157–162]

V
Non-calcium-dependent CTLD

MICL mDCs, Mo, MØ,
Neu.

Unknown endogenous
mMICL ligands
detected in several
tissues.

ITIM. Inhibitory.
SHP1/SHP2, ERK.

[51–56]

CLEC-2 Platelets,
peripheral
blood
neutrophils

Podoplanin, Snake
venom rhodocytin, PRR
for HIV-1.

ITAM-like YxxL.
Activating. Syk, PLC�2,
RAC1, LAT, Vav1/3,
SLP-76, Btk.

[163–173]

CLEC9A BDCA3+ DCs,
Mo, B.

Necrotic cells ITAM-like YxxL, Syk.
Activating

[174–177]

MAH MØ Unknown ITIM, SHP-1, SHP-2 [59]
CLEC-1 DCs Unknown Unknown [163,178]
Dectin-1 mDCs, Mo, MØ,

B.
PRR for M. tuberculosis
and various fungal
species. Recognises an
endogenous ligand on
T cells.

ITAM-like YxxL.
Activating. Syk, PLC�2,
CARD9, Bcl10, MALT1,
NIK, RAF-1.

[25–27,179–191]

LOX-1 MØ, platelets,
endothelial
cells, smooth
muscle cells.

Scavenger receptor for
oxidised LDL and red
blood cells. PRR for
bacterial species
including E. coli and S.
Aureus.

Activating. [192–209]

OCIL MØ, DCs,
Osteoblasts

NKRP1d Inhibitory [83,88,90,92,93]

VI
Calcium-dependent CRD (Classical)

Mannose
receptor

mDCs, MØ PRR for Mycobacteria,
various bacterial
species, HIV-1, fungal
species, allergens.
Endogenous ligands:
l-selectin, MUC-1.

Cdc42, ROCK1, PAKs,
RHOB.

[210–217]

DEC205 mDCs Unknown Unknown [218–221]

D ; MØ,
r

r
s
l
a
k
k
e
r

C, dendritic cell; pDC, plasmacytoid dendritic cell; mDC, myeloid dendritic cell
ecognition receptor.

esidue in their trans-membrane region with adaptor proteins
uch as Fc�R which in turn harbour ITAMs (Fig. 1A). Following
igand binding and receptor clustering, the tyrosine residues of

n ITAM (YxxI/Lx(6–12)YxxI/L) are phosphorylated by Src family
inases which in turn promote the recruitment of Syk family
inases [14–17]. The initiation of a series of downstream signalling
vents usually culminates in the activation of various cellular
esponses [18–21].
macrophage; Mo, monocyte; Neu, Neutrophil; LC, Langerhans cell; PRR, pattern

Other activating CLRs such as the fungal pattern recognition
receptor (PRR) dectin-1 harbour ITAM-like motifs (Fig. 1B). These
motifs are defined by the presence of a dispensable membrane

distal N-terminal tyrosine residing within a YxxxL/I sequence as
opposed to the YxxL/I motif in a conventional ITAM [22–27].

Inhibitory CLRs exemplified by DCIR and MICL may be defined
by the presence of ITIMs (I/V/L/SxYxxI/L/V) in their cytoplasmic
tails. Here, receptor engagement leads to ITIM tyrosine phospho-
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ig. 2. Isoforms of inhibitory C-type lectin receptors. (A) Three alternatively splice
v1–v4). (C) Four splice variants of the ly49q1 gene in mouse strains JF1, MSM and

ylation by Src kinases, the recruitment and activation of protein
yrosine phosphatases such as SHP-1 and SHP-2 and the dephos-
horylation of substrates regulated by immunoreceptors leading to
he inhibition of cellular activation [10,28] (Fig. 1D and G).

Several examples also exist of ITIM-bearing receptors paradox-
cally mediating cellular activation. In such cases, the receptors

ay recruit novel substrates to their cytoplasmic domains or they
ay inhibit other inhibitory receptors in a more conventional SHP-

/2-dependent manner: the platelet co-stimulatory ITIM receptor
REM-like transcript-1 (TLT-1) recruits SHP-2 yet augments Fc�RI-
ediated calcium signalling. It has been suggested that this may be
ediated by a unique poly-proline-rich region in TLT-1 which could

ecruit SH3 domain-containing substrates [29]. Another example is
hat of signal regulatory protein-� (Sirp-�), a receptor belonging to
he immunoglobulin superfamily (IgSF) [30–35] that is expressed
n myeloid cells and neurons [36–41]. Binding of SIRP-� to its
idely expressed endogenous ligand, CD47 has both inhibitory

s well as activating effects. The inhibitory effects, mediated by
he recruitment of SHP-1 and SHP-2 [42–46] include the inhibi-
ion of red blood cell phagocytosis by macrophages [43] and the
nhibition of DC maturation and cytokine production [40]. The acti-
ating effects of this ITIM-bearing receptor may be mediated by the
ecruitment of JAK-2 to its cytoplasmic C-terminal tyrosine. This
riggers the JAK-2/STAT, PI3K/Rac-1/NADPH oxidase/H2O2 path-
ays, enhancing the retention of SHP-1 and SHP-2 and abrogating

heir inhibitory effects [47]. In this regard, SIRP-� has been shown
o play a role in the promotion of antigen-specific cytotoxic T-
ymphocyte activation by DCs [41], the induction of nitric oxide and
eactive oxygen species production in macrophages [47] as well
s the development of Th17-driven auto-immune diseases such
s contact hypersensitivity, collagen-induced arthritis and experi-
ental autoimmune encephalomyelitis [48–50].
The present mini-review will highlight selected myeloid cell-

xpressed CLRs including MICL, MAH, DCIR, Ly49Q, OCIL and MAFA
ith an emphasis on their roles in the regulation of immune home-

stasis as well as their ability to have both inhibitory and activating
ffects.
. Myeloid inhibitory C type-like lectin (MICL)

MICL (DCAL-2, CLL-1, KLRL1) (Official name: CLEC12A) has been
dentified independently by several groups [51–54]. It is a type
I trans-membrane glycoprotein comprising an extracellular C-
CL isoforms (�, �, �). (B) Four different forms of alternatively spliced DCIR mRNA
(Cyt, �CRD1, �CRD2, �CRD3). Arrows indicate translation stop codons.

terminal CTLD, a stalk, trans-membrane region and an N-terminal
cytoplasmic tail (Fig. 1G). The CTLD of human MICL (hMICL) shares
∼30% identity with that of other dectin-1 cluster CLLRs (Fig. 1),
and 49% identity with the CTLD of murine MICL (mMICL) [54,55].
Marshall et al. [53] also reported three alternatively spliced hMICL
isoforms �,� and � (Fig. 2A). The �-isoform lacks the exon encoding
the trans-membrane region while the �-isoform has a stop codon
after the exon encoding the trans-membrane region. The extra-
cellular portion of hMICL comprises six potential N-glycosylation
sites with the two most C-terminal sites of the stalk region con-
tributing the majority of cell-specific N-glycosylation. This feature
is thought to prevent its dimerisation despite the presence of two
conserved cysteine residues [53,56]. In contrast, mMICL has one
less stalk N-glycosylation site and has been reported to exist as a
dimer.

At the protein level hMICL expression has been detected in the
spleen and on myeloid cells including DCs, monocytes and granu-
locytes in human peripheral blood and bone marrow [52,54,56,57],
but has been shown to be absent from blood NK cells. Fur-
thermore, it is specifically expressed on primary acute myeloid
leukaemia (AML) blasts and in a leukemic CD34 + CD38-stem cell
compartment, which has highlighted its potential as a diagnos-
tic and therapeutic target in AML [52,58]. mMICL protein appears
to have a broader cellular distribution and has been found to be
expressed in the spleen and on peripheral blood monocytes, neu-
trophils, eosinophils and basophils as well as on B-lymphocytes,
bone marrow-derived DCs and thioglycolate-elicited macrophages
and neutrophils. While mMICL is absent from blood NK cells, it is
expressed on bone marrow NK cells [55,57].

Both MICL orthologues show a down-regulation in their expres-
sion in response to myeloid cell activation, migration to peripheral
tissues and recruitment to sites of inflammation [52,53,55,56].
MICL harbours an ITIM (human: VTYADL; mouse: IVYANL) in its
cytoplasmic tail which associates with SHP-1 and SHP-2 (Fig. 1G).
A chimera comprising a portion of the MICL stalk, trans-membrane
region and cytoplasmic tail fused with the extracellular portion of
dectin-1 was able to suppress zymosan-induced TNF-� production
through full-length dectin-1, supporting MICL’s primary role as an

inhibitory receptor [53]. A down-regulation in its expression may
thus attenuate these inhibitory effects and potentiate myeloid cell
activation.

Apart from its ability to inhibit activating receptors, MICL has
been shown to mediate antigen uptake and presentation [53,57].
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MICL-expressing CD8+ conventional DCs (cDCs) were success-
ully targeted with an anti-mMICL rat monoclonal antibody and
licited robust anti-rat Ig responses in conjunction with the TLR4
gonist, LPS. Furthermore, conjugation of OVA to this monoclonal
ntibody induced the proliferation of OVA-specific T-lymphocytes
57].

In immature DCs and in the absence of TLR agonists, cross-
inking of hMICL induced tyrosine phosphorylation, ERK and
38MAPK activation, an up-regulation of CCR7 expression and the

nduction of IL-6 and IL-10 production [54]. However, in the pres-
nce of TLR agonists or T-lymphocyte-dependent CD40L signalling
MICL ligation appeared to have different effects on DCs. Here,
LR-induced IL-12 expression and the induction of Th1 cells was
uppressed by hMICL cross-linking while in response to CD40L
ignalling, IL-12 production and Th1 polarization was enhanced
y hMICL ligation [54]. Similar antibody-mediated cross-linking
pproaches had no effects on primary murine leukocyte responses
55]. This, together with differences in the ability of hMICL and

MICL to dimerise as well as the broader cellular distribution of
MICL suggests that these orthologues may play different roles in

ivo as homeostatic receptors.
As an orphan receptor, the ligand/s of MICL are as yet unknown.

sing an Fc-mMICL fusion protein together with a BWZ.36 reporter
ell system, Pyz et al. [55] detected putative ligand expression in
everal tissues including bone marrow, thymus, heart, spleen and
idney. Such a broad expression of ligands suggests a possible role
or mMICL as a regulator of immune homeostasis where it may
nteract with endogenous ligands in the blood or at sites of immune
rivilege where MICL-expressing myeloid cells are not normally
ctivated [53,55].

. Macrophage antigen H (MAH)

Macrophage antigen H (MAH) (Official name: CLEC12B) was
dentified based on a search for homology with the NK cell receptor
KG2D (36% similarity) [59]. MAH is located within the dectin-
cluster of the NKC and within this cluster it shares the highest

omology with MICL (Clec-12A) (34% similarity) (Fig. 1H). Human
AH (hMAH) is a type II trans-membrane glycoprotein that is

xpressed on in vitro differentiated macrophages. Unlike NKG2D,
hich is an activating receptor that harbours a charged residue in

ts trans-membrane region, both mouse and human MAH contain
n ITIM (VTYATL) in their cytoplasmic tails. Furthermore, follow-
ng receptor phosphorylation, this ITIM is able to recruit SHP-1 and
HP-2. As such, MAH triggering was not only able to inhibit NKG2D-
ediated NK cell activation but could also inhibit activating signals

manating from other NK receptors such as 2B4 [59]. To date the in
ivo role as well as the identity of MAH ligands remain unknown.

. Dendritic cell immunoreceptor (DCIR)

Human DCIR (hDCIR) (CLECS-F6, LLIR) (Official name: CLEC4A)
as identified based upon homology with the macrophage lectin

42%) and hepatic asialoglycoprotein receptors (ASGPR)-1 and
2 (35–37%) [60]. It is expressed on monocytes, neutrophils,
acrophages, monocyte-derived DCs, myeloid DCs, plasmacytoid
Cs (pDCs) and B-lymphocytes but not on NK cells [60–63]. hDCIR

s a 237 amino acid glycoprotein with a single N-glycosylation site
60] (Fig. 1D). It has a calcium-binding CRD containing an EPS (Glu-

ro-Ser) motif that enables binding to galactose-containing ligands.
owever, to date the identity of these ligands remains unknown.
urine DCIR (mDCIR) shares 54% identity and 65% homology
ith its human orthologue and has two additional predicted N-

lycosylation sites.
ology Letters 136 (2011) 1–12 5

Alternate splicing results in the generation of four different
forms of DCIR mRNA (v1–v4) which have been detected in several
tissues and cell-types (Fig. 2B) [60,62]. In neutrophils, this includes
a short form missing the neck region of 33 amino acids (v2) while
in DCs, two trans-membrane deletion variants have been found (v3
and v4) [64]. The fourth (long) form of DCIR (v1) is predicted to have
the ability to form functional oligomers at the cell surface, a pos-
sible requirement for efficient ligand binding and inhibitory signal
transmission. The short form-encoded protein on the other hand
lacks a neck region cysteine residue required for oligomerization
and as such is predicted to exist as a non-functional monomer.

Like MICL, DCIR harbours a canonical ITIM (ITYAEV) in its
cytoplasmic tail that recruits phosphorylated SHP-1 and non-
phosphorylated SHP-2. In support of its role as an inhibitory
receptor, Kanazawa et al. [61] showed that a chimeric receptor
comprising the cytoplasmic tail of mDCIR and the extracellular por-
tion of Fc�RIIB, was able to inhibit protein tyrosine phosphorylation
and Ca2+ mobilisation following colligation with the B-cell receptor
(BCR) and that this was dependent upon an intact tyrosine within
the ITIM of DCIR.

DCIR may modulate immune responses by exhibiting inhibitory
cross-talk with other receptors. In the case of human pDCs,
antibody-mediated cross-linking of DCIR resulted in its clathrin-
dependent internalisation and trafficking to endosomal compart-
ments where it inhibited TLR9-induced TNF� and IFN� production
[63]. Furthermore, in human monocyte-derived DC’s, antibody-
mediated cross-linking resulted in a similar internalisation of
DCIR and the inhibition of TLR 8-induced TNF� and IL-12 pro-
duction [65]. Internalised DCIR was also able to present antigens
to T-lymphocytes [63] and in this regard Klechevsky et al. [66]
recently showed that in human DCs, DCIR mediated potent anti-
gen cross-presentation and the induction of antigen-specific CD8+
T lymphocyte immunity that was augmented with TLR 7/8 agonists.

DCIR may form part of an inhibitory-activating receptor pair
without a requirement for receptor-mediated endocytosis. The
dendritic cell activating receptor (DCAR) (Official name: clec4b1)
shares a 91% amino acid sequence identity with DCIR in its
CRD suggesting that the two receptors may recognise similar or
even identical ligands. As an activating receptor DCAR transmits
signals via an association between a charged arginine in its trans-
membrane region and the ITAM-containing adaptor FcR� (Fig. 1A)
[67]. These activating signals may be inhibited via the ITIM of DCIR
[68].

Cellular activation and inflammation may be achieved by reduc-
ing the ability of DCIR to engage ligand or by decreasing its surface
expression. In DC’s DCIR surface expression was down-regulated
in response to signals inducing DC maturation [60]. Similarly, in
pDCs, TLR9-induced maturation reduced DCIR expression [63]. In
neutrophils, pro-inflammatory stimuli such as LPS, TNF-� and IL-
1� mediated their effects by blocking the inhibitory effect of DCIR
through a reduction in its surface expression [62]. Similarly, IL-3,
IL-4, IL-13 and GM-CSF induced cellular activation and consequent
inflammation by promoting an accumulation of mRNA encoding
shorter non-functional DCIR which competes for translation with
that encoding the long form of DCIR (Fig. 2B), reducing its surface
expression and its ability to engage ligands and transmit inhibitory
signals [62].

In light of its likely role as an inhibitory CLR, the possible in
vivo functions of DCIR have been investigated in DCIR knockout
mice. Here, DCIR deficiency was associated with the spontaneous
development of a late onset disease resulting in joint abnormalities.

Histologically, this was characterised by enthesitis and sialadeni-
tis as well as elevated levels of auto-antibodies. Moreover, these
animals showed increased populations of DCs and activated CD4+

T cells. Young DCIR−/− mice were susceptible to collagen-induced
arthritis marked by excessive DC expansion in the lymph nodes, an
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ncrease in cytokines IL-4, IL-10 and IL-17 as well as increased IgG1
nd IgG3 production. In support of the role of excessive DCIR−/− DC
xpansion in collagen-induced arthritis, the authors also reported
nhanced DCIR−/− bone marrow-derived DC (BMDC) proliferation
n response to GM-CSF and enhanced STAT-5 phosphorylation sug-
esting that DCIR negatively regulated DC expansion and GM-CSF
ignalling [69]. In human studies, rheumatoid arthritis has been
ssociated with the widespread and abundant expression of DCIR
n NK cells, CD4+ and CD8+ T cells, monocytes, B cells, DCs and
ranulocytes suggesting that synovial inflammation induces DCIR
xpression. Furthermore, DCIR+ T-cells in synovial fluid were acti-
ated and found with a greater abundance as compared with
eripheral blood. However, the function of DCIR within this T lym-
hocyte population remains as yet unknown [70].

In addition to the recognition of endogenous ligands, DCIR also
inds exogenous ligands. The neck region has been shown to play
key role in the ability of DCIR to act as an HIV-1 attachment

actor to DCs where the efficient oligomerisation mediated by
his region enables multivalent recognition of HIV-1 gp120 by the
CIR CRD. DCIR facilitates viral capture and CD4+ T-lymphocyte

rans-infection by promoting increased interactions between HIV-1
p120 and CD4 and/or mediating viral endocytosis into non-
egradative endosomes permitting the intracellular storage of

ntact virions. Successful and productive de novo virus production
n DCs may also lead to cis-infection of CD4+ T-lymphocytes [71].

. Ly49Q

The gene encoding Ly49Q (Official name: Klra17) was originally
loned using RNA from fetal liver mononuclear cells. It encodes
273 amino acid type II membrane glycoprotein harbouring five
otential N-glycosylation sites in its extracellular region (Fig. 1I).
ike other Ly49 family members, the CTLD of Ly49Q lacks the
esidues required for calcium binding or recognition of galactose-
r mannose-containing carbohydrates. As an inhibitory recep-
or, the cytoplasmic domain of Ly49Q harbours a canonical ITIM
VxYxxV) and its recruitment of SHP-1 and SHP-2 is essential for
ignal transduction [72]. The lack of a cytoplasmic internalisation
otif makes it unlikely that Ly49Q plays a role in antigen uptake

nd internalisation.
At least 3 alleles of Ly49Q (ly49q1a, ly49q1b, ly49q1c) have been

dentified in different mouse strains. These alleles were found to
arbour 4 amino acid variations in their stalk regions and 3 vari-
tions in their CTLDs. All of the resultant proteins were shown to
e expressed at the cell surface. Furthermore, in mouse strains JF1,
SM and SV129, the ly49q1 gene was reported to comprise three

dditional exons as well as the potential to generate four splice vari-
nts, none of which however were shown to be stably expressed
Fig. 2C) [73].

Unlike most receptors within the Ly49 family which are
xpressed exclusively as disulphide-linked dimers on T lympho-
ytes and NK cells, Ly49Q is uniquely absent from NK cells but is
nstead predominantly expressed as a dimer or oligomer on imma-
ure bone marrow Gr-1+ myeloid cell precursors and immature

onocytes. Ly49Q expression decreases upon monocyte matura-
ion where it disappears from peripheral blood monocytes and
eappears following their activation in the periphery. In certain DC
aturational stages, Ly49Q expression is up-regulated by IFN� or

FN� suggesting its potential role in anti-viral immune responses.
n GM-CSF-induced bone marrow derived myeloid DCs, Ly49Q

xpression decreases upon differentiation while in pDCs, Ly49Q
xpression increases upon maturation [74].

In macrophages Ly49Q expression is up-regulated by IFN�.
n these cells, antibody-mediated Ly49Q engagement and ITIM-
ependent signalling results in actin cytoskeleton reorganization,
ology Letters 136 (2011) 1–12

polarization, cell adhesion and spreading, a process which may
permit rapid cell migration leading to enhanced surveillance and
ingestion of pathogens in inflamed tissues [72]. Ly49Q has similar
effects in neutrophils where it may act as an inhibitory receptor
in the steady state and as an activating receptor in the presence of
chemo-attractant stimuli.

In the steady state, SHP-1 recruitment by the ITIM of Ly49Q
inhibits PI3 and src kinases and suppresses the formation of focal
adhesion complexes, inhibiting the inappropriate adhesion and
spreading of neutrophils. In the presence of chemo-attractant
stimuli, Ly49Q is endocytosed where it plays a role in the spa-
tiotemporal regulation of membrane rafts and raft-associated
signalling molecules. This is associated with raft internalisa-
tion and redistribution where SHP-2 recruitment to membrane
lipid raft compartments containing Ly49Q results in rapid neu-
trophil polarization and consequent infiltration of neutrophils into
extravascular tissues. In this regard, it has been postulated that as
one of the more ancient members of the Ly49 family, the regu-
lation of membrane lipid dynamics by Ly49Q in more primitive
phagocytes has involved cis-interactions with class I MHC ligands
and that this has been followed by the evolutionarily more recent
development of trans-interactions between these ligands and Ly49
members expressed on NK cells [75].

The maturation-dependent expression of Ly49Q is influenced
by �2 microglobulin-associated Class I MHC-like molecules in the
periphery which suggests that like other Ly49 members, the likely
ligand for Ly49Q is a class I MHC or a related �2 microglobulin-
associated molecule. H-2Kb has been identified as a high affinity
class I MHC cis-ligand of Ly49Q [76]. Clusters of this ligand on
activated B lymphocytes were able to up-regulate the expression
of co-stimulatory molecules on pDCs and induce their maturation
[77]. Counter-intuitively, Ly49q-H2Kb interactions positively reg-
ulated TLR signals and subsequent cytokine production in pDCs.
These interactions were not only required for IFN� secretion by
pDCs but also for the production of cytokines including IFN� and
IL-12p70 in response to TLR-7 and -9 stimulation.

As described previously for neutrophils under conditions of
chemo-attractant stimulation, Ly49Q affects TLR9 signalling in
pDCs through the spatiotemporal regulation of membrane traf-
ficking. Here it plays a critical role in the development of tubular
endolysosomes during intracellular trafficking of TLR9 and its lig-
and, CpG. This is achieved by the internalisation of Ly49Q in cis
with its class I MHC ligand, a process dependent upon the ITIM-
mediated recruitment of SHP-1 and SHP-2 [78]. The mechanism
by which this so-called “inhibitory” CLR increases IFN� production
in response to TLR-7 and -9 agonists remains unknown although
it may be occurring in the presence of inhibitory DAP-12 coupled-
receptors in pDCs or the Ly49Q ITIM may be acting as an ITAM under
these conditions [79].

Recently, the role of Ly49Q in osteoclast development (osteo-
clastogenesis) has been investigated [80]. RANKL (Receptor
activator of NF-�B ligand) stimulation of bone marrow-derived
monocyte-macrophage precursor cells resulted in selective Ly49Q
induction. Following short hairpin RNA knockdown of Ly49Q, there
was a significant impairment of osteoclastogenesis in vitro as
well as a significant reduction in the formation of RANKL-induced
tartrate-resistance acid phosphatase (TRAP)-positive multinucle-
ated cells and reduced expression of osteoclast-specific genes [80].
In this context it has been suggested that Ly49Q promotes osteo-
clastogenesis by inhibiting an inhibitory receptor. Here, it may
compete for SHP-1 association with another paired ITIM-bearing

receptor, immunoglobulin-like receptor B (PIR-B), which is a nega-
tive regulator of osteoclast differentiation [80]. This highlights one
of the mechanisms by which ITIM-harbouring receptors can acti-
vate cellular responses. A mouse Ly49Q knock-out had no effects on
bone volume, osteoclast differentiation or function suggesting that
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compensatory mechanism may exist for Ly49Q deficiency in vivo
80]. Interestingly, recent data demonstrating the ability of human

onocyte-derived osteoclasts to function as antigen-presenting
ells and to activate T-lymphocytes may point to additional roles for
y49Q in this respect and merits further investigation [81]. While
y49Q may function as a positive regulator of osteoclast differ-
ntiation, another C-type-like lectin-like NK receptor, osteoclast
nhibitory lectin (OCIL) has been identified as an inhibitor of osteo-
last development.

. Osteoclast inhibitory lectin (OCIL)

OCIL (Official name: CLEC2D) is also referred to as C-type lectin-
elated molecule-b (clr-b) and lectin-like transcript-1 (LLT-1).
urine OCIL (mOCIL) is a 207 amino acid type II membrane-bound

-type lectin-like NK receptor belonging to a family of osteoclast
ormation inhibitors (Fig. 1F) [82–84]. Other members of this family
nclude OCILrP1, OCILrP2 and OCILrP2b and like OCIL are encoded
y genes within the murine NKC on chromosome 6 (Fig. 1). These
-type lectins are evolutionarily related and appear to have arisen
s a result of gene duplication as is the case for receptors within the
y49 and NKRP1 families [82,83,85].

The extracellular domains of the OCIL family, in particular the
TLDs, are well conserved and display a high degree of amino
cid sequence identity, sharing a similar structure and biological
unction [5,85]. Furthermore, the CTLD of OCIL shares 36% homol-
gy with that of another group V C-type lectin within the NKC,
D69 [82]. In both murine and human OCIL, the CTLD lacks the
esidues required for calcium-dependent carbohydrate recogni-
ion. However, OCIL has been shown to bind with a high affinity to
arge sulphated glycosaminoglycans [86]. In addition to the CTLD,
he extracellular domain includes a neck region and a C-terminal
xtension as well as three potential N-glycosylation sites and
ve conserved cysteine residues [82]. While the trans-membrane
egion of OCIL lacks charged residues required for an association
ith adaptor proteins and the short cytoplasmic tail shows an

bsence of consensus signalling motifs, the cytoplasmic domain
oes include a casein kinase II (CKII) phosphorylation site while

n the case of mOCILrP1 there are two protein kinase C (PKC) phos-
horylation sites [83].

With respect to its roles in osteoblast differentiation and osteo-
last development, OCIL expression mirrors that of RANKL and both
roteins appear to occupy the same osteoblast membrane compart-
ents. OCIL expression is regulated by hormones and cytokines

ctive in bone including retinoic acid, IL-1�, IL-11, calcitriol and
arathyroid hormone (PTH). While RANKL is an established pro-
oter of osteoclastogenesis, OCIL and other family members inhibit

steoclast formation primarily in the proliferative phase and in a
anner that is neither dependent on osteoprotegerin (OPG) nor

n the ability of OCIL to bind sulphated glycosaminoglycans [83].
nlike Ly49Q, where knockout studies showed functional redun-
ancy in the ability to promote osteoclastogenesis, Kartsogiannis
t al. [87] found that OCIL-deficient mice, while showing no appar-
nt defect in immune function, displayed phenotypic abnormalities
n bone physiology. This was characterised by increased osteoclas-
ogenesis and reduced bone formation confirming the role of OCIL
s a negative regulator of bone homeostasis. In addition to this,
nd independent of its effects on osteoclasts, OCIL also inhibits the
ifferentiation of osteoblasts and adipocytes [88].

The human homologue of OCIL is encoded by a gene on chro-

osome 12 and is a 191 amino acid type II membrane protein

isplaying a 53% identity with rat OCIL and mOCIL. Its expression
s similarly up-regulated as that of its murine counterpart and it
hows comparable biological effects on osteoclastogenesis [84]. In
his regard, an association has been demonstrated between a sin-
ology Letters 136 (2011) 1–12 7

gle nucleotide polymorphism, generating an Asn19Lys substitution
and bone mineral density in older women [89].

Apart from its expression on osteoblasts, OCIL is also expressed
in chondrocytes, extraskeletal tissues, DCs, lymphocyte and
macrophage populations [82,83,90,91]. With regard to its expres-
sion on immune cells, NKRP1d, an NKC-encoded, ITIM-bearing NK
cell-associated C-type lectin, has been identified as an OCIL ligand
[90,92]. Binding of OCIL to this inhibitory receptor suppresses NK
cell-mediated killing of target cells. In support of this, Aust et al.
[93] demonstrated that NKRP1d+ NK cells, while readily killing
target cells expressing low levels of OCIL, were unable to kill trans-
fected cells expressing high OCIL Levels. It has been suggested that
this may represent a parallel means of missing-self recognition by
regulating NK cell activation following NKRP1d binding to OCIL on
potential macrophage, DC or tumour targets [90,92].

7. Mast cell function-associated antigen (MAFA)

Mast cell function-associated antigen (MAFA) (Official name:
Klrg1) is a highly glycosylated 188 amino acid type II membrane
glycoprotein originally identified in the rat where its expression is
restricted to mast cells and basophils as a monomer or disulphide-
linked homodimer [94–97].

MAFA has been shown to inhibit the secretory response induced
by IgE-mediated aggregation of the activating receptor Fc�RI in rat
RBL-2H3 mast cells (Fig. 1E) [94]. This secretory response, following
aggregated Fc�RI signalling from membrane lipid raft microenvi-
ronments, is characterised by the release of de novo synthesised
cytokines and granular mediators such as histamine.

The MAFA extracellular domain comprises 11 conserved cys-
teine residues which form intra-chain disulphide linkages to
generate a CTLD that displays significant homology with those
of other C-type lectins including the NK receptors CD94, Ly49A,
NKG2D and CD69 [95,96]. However, unlike these receptors, MAFA
does not bind class I MHC ligands although it is able to bind
mannose-terminated glycans [98,99]. MAFA comprises a short
cytoplasmic tail which harbours an ITIM (SIYSTL) that differs at
the Y-2 position from the canonical ITIM sequences present in
most other inhibitory receptors. The cytoplasmic tail also includes
a PAAP motif that is able to bind SH3-domain-containing proteins
such as the protein tyrosine kinase Lyn, the recruitment of which
is an important step in ITIM phosphorylation [100,101]. Antibody-
mediated MAFA clustering induced ITIM tyrosine phosphorylation
and the recruitment of the protein tyrosine phosphatases SHP-2
and SHIP but not SHP-1 as is the case with many other ITIM-
bearing receptors [100,102]. SHIP is the principal mediator of
MAFA’s inhibitory function where the hydrolysis of PIP3, the
decrease in PLC-� activity, and the inhibition of transient intra-
cellular calcium elevation, suppressed the secretory response to
Fc�RI activation [100,103]. Notably, unlike other inhibitory recep-
tors, MAFA-mediated inhibition does not require co-clustering with
Fc�RI although such co-clustering potentiated its inhibitory capac-
ity [104,105]. In this regard, it has been shown that MAFA functions
within membrane lipid raft microdomains and in close proximity
to Fc�RI [106–108]. Other functions of MAFA include an involve-
ment in mast cell adhesion [95,96,109] and the inhibition of mast
cell proliferation [102].

The mouse homologue of MAFA, also known as killer cell lectin-
like receptor G1 (Klrg1) is encoded by a gene centromeric to and
outside the NKC on chromosome 6 [110] (Fig. 1). Unlike rat MAFA,

it is absent from mast cells but is expressed on a subset of memory
T cells in naïve mice. Furthermore, klrg1 expression was induced
on CD8+ T-lymphocytes during viral and parasitic infection and
on CD4+ T-lymphocytes during parasitic infection [111]. Cytokine
activation of NK cells also induced Klrg1 expression where it may
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nhibit NK cell effector functions [111,112]. The human MAFA-like
eceptor (MAFA-L) (KLRG1) is expressed on peripheral blood NK
ells but unlike its rat counterpart, it may inhibit responses to
eceptors other than Fc�RI [113].

. Conclusions

In ensuring the critical discrimination between self and non-self
s well as the balance between immune activation and inhibition,
he natural killer gene complex has evolved to encode numer-
us activating and inhibitory C-type lectin receptors with patterns
f expression that extend to several myeloid cell populations. In
he present review we have highlighted some of the important
nd increasingly diverse and complex roles of inhibitory C-type
ectin receptors in these cell populations. The ability of these
eceptors to paradoxically activate cellular responses under certain
ircumstances underscores their versatility in response to alter-
tions in receptor ligation, cellular compartmentalisation, receptor
o-localisation and the ability of ITIMs to recruit both inhibitory
roteins and to modulate activating molecules. Knock-down and
nock-out studies have provided valuable insights into the func-
ioning of these receptors in vivo including the extent of their
unctional redundancy. Efforts to similarly elucidate the in vivo
unctions of other CLRs such as MICL and MAH as well as attempts at
dentifying their endogenous and/or exogenous ligands promises to
ncrease our understanding of their roles as regulators of immune
omeostasis.
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