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Effects of assortative mixing in the second-order Kuramoto model
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In this paper we analyze the second-order Kuramoto model in the presence of a positive correlation between
the heterogeneity of the connections and the natural frequencies in scale-free networks. We numerically show
that discontinuous transitions emerge not just in disassortative but also in strongly assortative networks, in
contrast with the first-order model. We also find that the effect of assortativity on network synchronization can be
compensated by adjusting the phase damping. Our results show that it is possible to control collective behavior
of damped Kuramoto oscillators by tuning the network structure or by adjusting the dissipation related to the
phases’ movement.
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I. INTRODUCTION

Synchronization is pervasive in nature, society, and technol-
ogy [1]. This collective behavior emerges from the interaction
of neurons in the central nervous system, power grids, crickets,
heart cells, and lasers [1,2]. Synchronization arises due to the
adjustment of rhythms of self-sustained periodic oscillators
weakly connected [1–3] and can be treated mathematically
by the model proposed by Kuramoto [3]. The general
Kuramoto model assumes that the natural frequencies of the
oscillators are selected from unimodal and symmetric random
distributions [1]. In this case, a second-order phase transition to
synchronization can be observed [1,3]. However, the first-order
Kuramoto model can exhibit discontinuous phase transitions
[4–6]. For instance, in one of the first works on this topic,
Pazó [4] showed that, if uniform frequency distributions are
considered, first-order transitions emerge in fully connected
Kuramoto oscillators. Very recently, Gómez-Gardeñes et al.
[7] verified that a discontinuous synchronization transition can
also occur in scale-free networks as an effect of a positive
correlation between the natural frequencies and network
topology. This discovery has triggered many ensuing works,
which analyzed explosive synchronization analytically and
numerically [8–16].

The early works on explosive synchronization (e.g. [8–10])
suggested that the correlation between frequency and degree
distributions is the only condition required for the emergence
of a discontinuous synchronization transition in scale-free
networks. However, subsequent papers have shown that
different criteria to set the frequency mismatch between the
oscillators [17], the presence of time delay [18], nonvanishing
degree-degree correlation [17,19,20], or the inclusion of noise
[21] can dramatically change the type of the phase transitions,
even in the regime of fully connected graphs [17,22].
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In the case of degree-degree correlation, Li et al. [19]
verified that assortative scale-free networks no longer undergo
a discontinuous transition, even if the network presents a
positive correlation between structural and dynamical prop-
erties. This behavior was also observed in the synchronization
of FitzHugh-Nagumo (FHN) oscillators coupled in scale-
free networks under the constraint of correlating frequencies
and degrees [12]. Furthermore, Zhu et al. [17] found that
discontinuous transitions only emerge in networks subjected
simultaneously to negative degree-degree and frequency-
frequency correlations. Effects of degree-degree correlation
on general network synchronization phenomena were also
analyzed in literature (cf. [23–25] for studies in the context
of the master stability function formalism). For instance,
Bernardo et al. [24] studied scale-free networks of identical
Rössler oscillators and showed that disassortative mixing
enhances network synchronization, when compared with
uncorrelated networks [24]. On the other hand, regarding
the synchronization of weighted networks, assortative mixing
can enhance synchronization, depending on the weighting
procedure [23].

All these works considered only the first-order Kuramoto
model. However, in various systems, the second-order Ku-
ramoto model is more suitable to describing the emergence
of synchronization [26,27]. Indeed, many real-world sys-
tems, such as power-grid networks [28–36], superconducting
Josephson junctions [26], and many other applications [26,27],
can be modeled as networks whose units are second-order
Kuramoto oscillators.

In the context of explosive synchronization, the second-
order model was introduced only recently [37,38]. In contrast
to [7], where the authors verified that nodes in scale-free
network join the synchronous group abruptly giving rise to
a discontinuous synchronization transition, we have shown
that this behavior is no longer observed when an inertia
term is included [37,38]. Despite also observing a discon-
tinuous transition of the order parameter, we verified that
in the second-order Kuramoto model with frequencies pro-
portional to degrees, nodes join the synchronous component
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successively grouped into cluster of nodes with the same
degree, a phenomenon called cluster explosive synchronization
(CES) [37].

The influence of network structure on the emergence
of explosive synchronization in the second-order Kuramoto
model proposed in [37] has not been addressed yet, since only
uncorrelated networks have been considered [37,38]. Among
important network properties, the degree-degree correlation is
observed in several complex networks [39–41] and it plays
a fundamental role in many dynamical processes, such as
epidemic spreading and synchronization [42]. For example,
the degree-degree correlation can change the type of phase
transitions of the first-order Kuramoto model with a posi-
tive correlation between frequency and degree distributions
[17,19,43]. In this way, since the frequency mismatch between
oscillators has been shown to play a crucial role in the
emergence of abrupt transitions in the first-order Kuramoto
model, it is natural to ask about the effects of degree-
degree correlations on the overall dynamics in models with
inertia.

In this paper we study the second-order Kuramoto model in
networks with degree-degree correlations, i.e., nonvanishing
assortativity. We find that the synchronization diagrams have
a strong dependence on the network assortativity, but in
a different fashion compared to the first-order model [19].
In fact, for negative and positive assortativity values, the
synchronization is observed to be discontinuous, depending
on the damping coefficient. Moreover, the upper branch in
the synchronization diagrams associated to the case in which
the coupling is decreased is barely affected by different
assortativity values, again in contrast with the first-order
Kuramoto model [13,14,17,19,20,43]. In other words, we
show here that one is able to control the hysteretic behavior
of the second-order Kuramoto model by tuning the network
properties, a phenomenon that was not investigated before.
In order to compare with different choices of frequencies
distributions, we also investigate the dynamics of damped
Kuramoto oscillators in assortative networks using unimodal
and even distributions, without being correlated with the local
topology. Similarly, as in the case of frequencies proportional
to degrees, we again observe very similar behavior for the onset
of synchronization over networks with different degree-degree
correlations.

II. SYNCHRONIZATION IN CORRELATED NETWORKS

We consider networks where each node is a phase oscillator
evolving according to the second-order Kuramoto model [1,3]

d2θi

dt2
=−α

dθi

dt
+ �i + λ

N∑
j=1

Aij sin[θj (t) − θi(t)], (1)

where α is the dissipation parameter, λ is the coupling strength,
and �i is the natural frequency of oscillator i (i = 1, . . . ,N),
defined according to a given probability distribution g(�).
The heterogeneity of the network connections is accounted for
by the adjacency matrix A = {Aij }, whose elements Aij = 1
if oscillators i and j are connected, and Aij = 0 otherwise.
The collective dynamics of the oscillators is measured by the

macroscopic order parameter, defined as

r(t)eiψ(t) = 1

N

N∑
j=1

eiθj (t), (2)

where the modulus 0 � r(t) � 1 and ψ(t) is the average phase
of the oscillators. The system governed by Eq. (1) exhibits
hysteretic synchrony [27,44]. The onset of synchronization
(r > 0) is characterized by a critical coupling λI

c when the
coupling strength is progressively increased from a given λ0.
On the other hand, starting at synchronous state and decreasing
progressively the coupling strength, the oscillators fall into an
incoherent state (r ≈ 0) at coupling λD

c � λI
c [27,44].

Here we study the second-order Kuramoto model
[see Eq. (1)] in which the natural frequency distribution g(�) is
correlated with the degree distribution P (k) as �i = ki − 〈k〉
[37], where ki is the degree of the oscillator i and 〈k〉 is the aver-
age degree of the network. At first glance that particular choice
for the frequency assignment could sound odd; however, it is
not difficult to find physical scenarios where this configuration
is plausible. For example, such correlation between dynamics
and network topology can arise as a consequence of a limited
amount of resources or energy supply for the oscillators. In
fact, studies on optimization of synchronization in complex
networks [45–47] have shown that, for a given fixed set of
allowed frequencies {�1,�2, . . . ,�N }, the configuration that
maximizes the network synchronization is reached for cases
in which frequencies are positively correlated with degrees.
Therefore, this correlation between frequencies and local
topology can be seen as an optimal scenario for the emergence
of collective behavior in complex networks.

We study networks presenting nonvanishing degree-degree
correlation. Such a correlation is quantified by a measure
known as assortativity coefficient, A, which is the Pearson
coefficient between degrees at the end of each link [39], i.e.,

A = M−1 ∑
i jiki − [

M−1 ∑
i

1
2 (ji + ki)

]2

M−1
∑

i
1
2

(
j 2
i + k2

i

) − [
M−1

∑
i

1
2 (ji + ki)

]2 , (3)

where −1 � A � 1, ji and ki are the degrees associated to
the two ends of the edge i (i = 1, . . . ,M), and M is the total
number of edges in the network. In order to tune the degree
of assortativity of each network, we use the method proposed
in [48]. The algorithm allows us to obtain networks with a
desired value of assortativity without changing the degree of
each node. At each step, two edges are selected at random and
the four nodes associated to these edges are ordered from the
lowest to the highest degree. In order to produce assortative
mixing (A > 0), with a probability p, one new edge connects
the first and the second node and another new edge links the
third and fourth nodes. In the case when one of the two new
edges already exists, the step is discarded and a new pair
of edges is chosen. This same heuristic can also generate
disassortative networks (A < 0) with only a slight change in
the algorithm. After selecting the four nodes and sorting them
with respect to their degrees, one must rewire, with probability
p, the highest degree node with the lowest one and, likewise,
the second and third nodes. After rewiring the network, if the
degree of assortativity is higher or smaller than the designed
A, p is decreased or increased respectively and the network

052805-2



EFFECTS OF ASSORTATIVE MIXING IN THE SECOND- . . . PHYSICAL REVIEW E 91, 052805 (2015)

is rewired following the procedures described above. In order
to avoid dead loops, the increasing and decreasing steps of p

should not be equally spaced.

III. NUMERICAL RESULTS

In this section we present the results obtained by numer-
ically evolving the equations of motions considering Eq. (1)
in assortative networks constructed according to the model
described in the previous section. In all simulations the initial
networks are constructed through the Barabási-Albert (BA)
model with 〈k〉 = 6 and N = 1×103.

The order parameter r is calculated with forward and
backward continuations of the coupling strength λ. More
specifically, by increasing the value of λ adiabatically, we
integrate the system long enough and calculate the station-
ary value of r for each coupling λ0,λ0 + δλ, . . . ,λ0 + nδλ.
Similarly, for the backward continuation, we start at the value
λ = nδλ + λ0 and decrease λ by amounts of δλ until λ = λ0.
In both processes we use δλ = 0.5.

We investigate the dependence of the hysteresis on the
dissipation parameter α. Figure 1 shows the forward and
backward synchronization diagrams r(λ) for networks with
assortativity A = −0.3, but different values of α within the
interval [0.2,1]. As we can see, the area of hysteresis and
the critical coupling for the onset of synchronization in the
increasing branch tends to decrease as α is increased, which
also contributes to increase the maximal value of the order
parameter.

Next, we fix the dissipation coefficient α = 1 and vary the
network assortativity in the interval [−0.3,0.3]. Figure 2 shows
the synchronization diagram r(λ) for networks with different
values of assortativity. As A increases, the hysteresis becomes

(a) (b)

(c) (d)

FIG. 1. Synchronization diagram r(λ) with (a) α = 0.2,
(b) α = 0.4, (c) α = 0.6, and (d) α = 0.8 for assortativity A = −0.3.
With increasing α, onset of synchronization and hysteresis decrease.
The natural frequency of each oscillator is �i = ki − 〈k〉 and the
networks have N = 103 and 〈k〉 = 6. The degree distribution follows
a power law P (k) ∼ k−γ , where γ = 3. Curves in which points are
connected by solid lines (dashed lines) correspond to the forward
(backward) continuations of the coupling strength λ.

(a) (b)

(c) (d)

FIG. 2. Synchronization diagram r(λ) for (a) A = −0.3,
(b) A = −0.1, (c) A = 0.1, and (d) A = 0.3. The dissipation
coefficient is fixed at α = 1 with natural frequencies given by
�i = ki − 〈k〉, as in Fig. 1. All networks considered have N = 103,
〈k〉 = 6, and P (k) ∼ k−γ , where γ = 3.

less clear and the onset of synchronization in the decreasing
branch tends to increase. Surprisingly, the critical coupling
of the increasing branch for the second-order Kuramoto
model is weakly affected, which is in sharp contrast with
results concerning models without inertia [19,20,43]. More
precisely, in the first-order Kuramoto model with frequencies
correlated with degrees, the critical coupling for the onset
of synchronization in scale-free networks increases as the
network becomes more assortative [19,20,43]. The same
phenomenon was observed in the synchronization of FHN
oscillators [12].

In order to evaluate more accurately the dependence of
the synchronization transitions on the level of assortativity
and the dissipation parameter, we introduce the maximal order
parameterMO, the maximal order parameter differenceMD,
and the hysteresis area S in the synchronization diagrams as a
function of A and α, respectively, as follows:

MO = 〈max (r(λ))〉, (4)

MD = 〈max |r I(λ) − rD(λ)|〉, (5)

S =
〈∫

|r I(λ) − rD(λ)|dλ

〉
, (6)

where λ ∈ [λ0,λ0 + nδλ], 〈�〉 denotes the average of different
realizations, and | � | the absolute value. r I(λ) and rD(λ) are
the order parameters for increasing and decreasing coupling
strength λ, respectively. If r(λ) increases as λ grows, then
MO is usually obtained at the maximal coupling strength
λ0 + nδλ, i.e., MO = r(λ0 + nδλ). MD ∈ [0,1] quantifies
the hysteresis difference. If the system shows a continuous
phase transition with a perfect match between increasing and
decreasing coupling strength diagrams, then S � 0. In this
way, S is a quantitative index to evaluate the hysteretic behavior
related to the emergence of synchronization.
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(a) (b) (c)

FIG. 3. (Color online) Contour plot on α-A plane colored according to (a) the maximal order parameter MO, (b) the maximal order
parameter difference MD, and (c) the hysteresis area S. A and α are varied within the interval [−0.3,0.3] and [0.2,1], respectively. For each
pair (α,A), 40 times simulations are performed with the coupling strength in the interval as in Fig. 1, i.e., λ ∈ [0,25].

Comparing Figs. 1 and 2 we observe a clear dependence
of the synchronization diagrams on the assortativity A and
on the dissipation parameter α. Moreover, note that it is also
possible to obtain similar dependencies of r on λ by selecting
different values of α and A. In order to better grasp this
apparent equivalence in the dynamical behavior of the system
for different choices of the parameters A and α, we show
in Fig. 3 the quantities defined in Eqs. (4), (5), and (6) as a
function of α and A. As we can see in Fig. 3(a), similar values
for the maximal order parameter MO are obtained according
to the initial setup of the model. More specifically, the level
of synchronization of the network can be chosen by tuning
the assortativity or the dissipation parameter in the dynamical
model. Therefore, for the second-order Kuramoto model in
the case of frequencies positively correlated with degree, high
levels of coherent behavior are obtained by either strongly
assortative or disassortative networks, once the dissipation
parameter α is properly selected. Interestingly, the maximal
gap between the increasing and decreasing branches quantified
by MD [Fig. 3(b)] has a maximum around A � −0.1 and
α ∈ [0.4,0.5], showing that the area of metastability in the

(a) (b)

(c) (d)

FIG. 4. Parameters are the same as in Fig. 1, except that the
natural frequencies are randomly selected from a Lorentzian distri-
bution g(�) = 1/[π (1 + �2)].

stability diagram of the model [37] is maximized for this set
of parameters.

A similar effect can also be observed for the hysteresis
area S in Fig. 3(c). The maximal S in the synchronization
diagram is reached for networks with A = −0.1 and α = 0.2.
Furthermore, similar values of S are obtained by different sets
of α and A, which shows an interesting interplay between the
topological parameter (assortativity) and the dynamical one
(dissipation). More precisely, topological properties related
to degree-degree correlations can be counterbalanced by the
dissipation parameter in the dynamical model. This property
could have interesting applications in the control of synchro-
nization in networks modeled by the second-order Kuramoto
model. In particular, if one is interested in reducing hysteresis
in a system, such a task can be accomplished by either
increasing the dissipation or the degree mixing in the network.
Therefore, the question usually addressed in studies regarding
the first-order Kuramoto model that is whether assortativity
could enhance synchronization or not [17,19,43] turns out to
be harder to answer for the damped version of the model. The
reason for that is that the asymptotic behavior of the system
strongly depends on the combination of parameters A and α,

(a) (b)

(c) (d)

FIG. 5. Parameters are the same as in Fig. 2, except that natural
frequencies are randomly selected from a Lorentzian distribution
g(�) = 1/[π (1 + �2)].

052805-4



EFFECTS OF ASSORTATIVE MIXING IN THE SECOND- . . . PHYSICAL REVIEW E 91, 052805 (2015)

(a) (b) (c)

FIG. 6. (Color online) Contour plots similar as in Fig. 3 for networks with a natural frequency distribution given by g(�) = 1/[π (1 + �2)].

which allows at the same time much more options to control
the system by tuning such parameters.

In order to analyze how assortative mixing influences the
dynamics of networks of damped Kuramoto oscillators without
the constraint of having �i ∝ ki , we also compute the same
forward and backward synchronization diagrams considering
a Lorentzian distribution g(�) = 1

π(1+�2) for different values
of degree assortativity A. Similarly, as before, as a first
experiment, we fix the assortativity at A = −0.3 and vary
the dissipation parameter α as indicated in Fig. 4. Again, as
we increase α the hysteresis area tends to decrease. The same
effect is observed for a fixed α with varying A, as depicted in
Fig. 5.

CalculatingMO as a function of α andAwe note, however,
a slightly different dependence compared to the case where
frequencies are proportional to degree. As we can see in
Fig. 6(a), for a fixed value of α, MO is weakly affected
by the change of the degree mixing, except for the case
α = 0.2. Nonetheless, the model with frequencies correlated
with degrees presents larger fluctuations for the maximum
value of coherent behavior, comparing Figs. 3(a) and 6(a).
Furthermore, the maximum value of MD [Fig. 6(b)] for
Lorentzian frequency distributions is obtained for slightly
disassortative networks with low values of the dissipation
parameter α. We also note that, for large α, the maximum gap
MD starts to decrease, in contrast to the case with frequencies
correlated with degree [Fig. 3(b)], where MD is close to
zero for almost the entire range considered of α for which
A > 0. Finally, analyzing S in Fig. 6(c) we note the same
interplay between topological perturbations in the networks,
accounted for by changes in assortative mixing, and dynamical
features in the oscillator model characterized by the dissipation
parameter α. As shown in this figure, similar values of S are
achieved by controlling the parameters α andA, and highly and
poorly hysteretic synchronization diagrams can be obtained by
different strategies, i.e., changing the network structure (A) or
the dynamical nature of the oscillators (α).

IV. CONCLUSIONS

First-order synchronization transitions for the Kuramoto
model in complex networks have been known as a consequence
of positive correlation between network structure, repre-
sented by the degree distribution, and the intrinsic oscillatory

dynamics, represented by the natural frequency distribution of
the oscillators [7–10].

Here, we have numerically shown that such transitions
for the second-order Kuramoto model also depend on
the degree mixing in the network connection. More pre-
cisely, discontinuous transitions of networks of second-order
Kuramoto oscillators can take place not only in disassortative
ones but also in strongly assortative ones, in contrast to
what has been observed for the first-order Kuramoto model
in which the correlation between topology and dynamics is
also present [17,19,43]. The reason behind this phenomenon
can be regarded as an effect of the dynamical equivalence of
changes in the network structure, played by assortative mixing,
and changes in the oscillator model (dissipation parameter).
In other words, a given final configuration of a network
of second-order Kuramoto oscillators can be achieved by
tuning the network structure or by adjusting the dissipation
related to the phase’s movement. As previously mentioned, this
finding can have important applications on controlling network
synchronization where, for instance, there are costs associated
to lead the system to a given desirable state, allowing the
adoption of different strategies to accomplish such a task.

Our results show that the hysteretic behavior of the
order parameter vanishes for some assortativities, suggesting
that the transition might become continuous. However, to
properly determine the nature of the phase transition, a more
detailed study should be addressed. Moreover, the theoretical
description of sychronization in correlated networks is still an
open problem and mean-field theories that account for degree-
degree correlations should also be developed. As a future study,
it would be interesting to further analyze the present model
relating the recent approaches on mean-field approximation of
first-order Kuramoto oscillators in assortative networks [49]
and the low-dimensional behavior of the second-order model
[50].
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