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Abstract

This study underpins quantitative relationships that account for the combined effects

that starting biomass and peak pyrolysis temperature have on physico-chemical prop-

erties of biochar. Meta-data was assembled from published data of diverse biochar sam-

ples (n=102) to (i) obtain networks of intercorrelated properties and (ii) derive models

that predict biochar properties. Assembled correlation networks provide a qualitative

overview of the combinations of biochar properties likely to occur in a sample. Gener-

alized Linear Models are constructed to account for situations of varying complexity,

including: dependence of biochar properties on single or multiple predictor variables,

where dependence on multiple variables can have additive and/or interactive effects;

non-linear relation between the response and predictors; and non-Gaussian data distri-

butions. The web-tool Biochar Engineering implements the derived models to maximize

their utility and distribution. Provided examples illustrate the practical use of the net-

works, models and web-tool to engineer biochars with prescribed properties desirable

for hypothetical scenarios.
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1. INTRODUCTION1

Biochar, the product of biomass thermochemical conversion in an oxygen depleted2

environment, has gained increasing recognition as a modernized version of an ancient3

Amerindian soil management practice, with at times wide-ranging agronomic and en-4

vironmental gains (Lehmann et al., 2003; Atkinson et al., 2010; Novak and Busscher,5

2013). Some of the most commonly acclaimed benefits of biochar application to soils6

include: increased long-term C storage in soils (Atkinson et al., 2010; Joseph et al.,7

2010; Cross and Sohi, 2011; Ennis et al., 2011; Karhu et al., 2011; Novak and Busscher,8

2013), restored soil fertility (Glaser et al., 2002; Lehmann et al., 2003; Gaskin et al.,9

2008; Novak et al., 2009; Atkinson et al., 2010; Laird et al., 2010; Beesley et al., 2011;10

Lehmann et al., 2011; Enders et al., 2012; Spokas et al., 2012b; Novak and Busscher,11

2013), improved soil physical properties (Novak et al., 2009; Joseph et al., 2010; En-12

nis et al., 2011; Karhu et al., 2011; Lehmann et al., 2011; Novak and Busscher, 2013),13

boosted crop yield and nutrition (Novak et al., 2009; Major et al., 2010; Lehmann et al.,14

2011; Rajkovich et al., 2012; Spokas et al., 2012a; Novak and Busscher, 2013), enhanced15

retention of environmental contaminants (Cornelissen et al., 2005; Loganathan et al.,16

2009; Cao and Harris, 2010; Beesley et al., 2011), and reduced N-emission and leaching17

(Spokas et al., 2012b; Novak and Busscher, 2013). Examples of the specific biochar18

properties responsible for these benefits are summarized in Table 1.19

Biochar quality can be highly variable, and its performance as an amendment –20

whether beneficial or detrimental– is often found to depend heavily on its intrinsic21

properties and the particular soil it is added to (Lehmann et al., 2003; Novak et al.,22

2009; Atkinson et al., 2010; Major et al., 2010; Lehmann et al., 2011; Spokas et al.,23

2012a). As has been previously concluded, biochar application to soil is not a “one24

size fits all” paradigm (Spokas et al., 2012a; Novak and Busscher, 2013). Consequently,25

detailed knowledge of the biochar properties and the specific soil deficiencies to be reme-26

diated is critical to maximize the possible benefits and minimize undesired effects of its27

use as a soil amendment. While soil deficiencies must be identified on a site-by-site ba-28
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sis, it is conceivable that biochar properties can be engineered through the manipulation29

of pyrolysis production parameters and proper selection of parent biomass type (Zhao30

et al., 2013). The capacity to produce biochars with consistent and predictable prop-31

erties will, first, enable efficient matching of biochars to soils, and second, facilitate the32

deployment of this soil management strategy at large and commercial scales. Although33

the properties and effects of biochar samples produced from a variety of methods and34

starting biomasses have been intensively studied, as yet, the analytical techniques for35

characterization and effect quantification are not standardized. This creates a challenge36

when comparing biochar properties and effects across studies. At the same time, mak-37

ing such comparisons is imperative to gain a comprehensive understanding of alterable38

biochar properties.39

The prevailing hypothesis in the literature is that the selection of peak pyrolysis40

temperature and parent biomass –as two key production variables– fundamentally af-41

fects resulting biochar properties. Identification of relationships between production42

variables and biochar properties has been pursued by many investigators, but has been43

limited to the small number of samples produced and analyzed for each study (e.g.,44

Karaosmanoğlu et al., 2000; Zhu et al., 2005; Gaskin et al., 2008; Nguyen and Lehmann,45

2009; Cao and Harris, 2010; Joseph et al., 2010; Keiluweit et al., 2010; Cao et al., 2011;46

Cross and Sohi, 2011; Hossain et al., 2011; Mukherjee et al., 2011; Enders et al., 2012;47

Rajkovich et al., 2012; Zhao et al., 2013), with few reports combining measurements48

from more than one source (Cordero et al., 2001; Glaser et al., 2002; Atkinson et al.,49

2010; Ennis et al., 2011; Spokas et al., 2012a). The knowledge gained from the above50

studies does not provide a quantitative understanding of the relationships between pro-51

duction variables and biochar properties. The shortcomings responsible for such lack52

of systematic insight include: (i) reported trends that are primarily qualitative with53

respect to the independent effect of parent biomass or temperature (e.g., decrease in54

labile carbon with increasing pyrolysis temperature for selected samples (Cross and55

Sohi, 2011)), (ii) trends that are often in conflict with similar samples of other studies56

(e.g., positive effect (Rajkovich et al., 2012) vs. negligible effect (Nguyen and Lehmann,57
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2009) of temperature on pH for oak biochar), and (iii) correlations that are not convinc-58

ing (e.g., correlation r = 0.5 between volatile matter content and microporous surface59

area (Mukherjee et al., 2011)). A recent study by Zhao et al. (2013) reports, for the60

first time, a quantitative evaluation of the individual influence of feedstock source and61

production temperature on various biochar properties. The authors classified a variety62

of physical and chemical biochar properties as predominantly controlled by either feed-63

stock or temperature. While this initial knowledge is critical to guide the production64

of designed biochar, it falls short when the influence of both parameters is significant,65

as is the case with most properties of interest.66

The present study advances the quantitative approach one step further by con-67

structing relationships that capture the combined influence that starting biomass and68

temperature has on various biochar physico-chemical properties of agronomic and en-69

vironmental interest. The first objective was to gather comparable data from various70

sources to create an unbiased meta-data set on which to perform statistical analyses.71

The second objective was to identify groups of inter-correlated properties to gain an72

insight into how individual properties may be affected when others are manipulated.73

The third objective was to underpin quantitative relationships between production vari-74

ables and the measured properties of biochar in the meta-data, as listed in Table 1. The75

fourth objective was to implement the identified relationships in a simple-to-use web76

application, which provides an estimate of the expected properties of biochar when77

produced under a user-defined set of production variables. The overarching goal is to78

improve the efficiency in production of biochar with engineered properties so that it79

can best match the needs of a particular soil or crop system.80

2. MATERIALS AND METHODS81

2.1. Assembly of meta-data library82

A library of meta-data (summarized in Table A.1) was created using information83

from 102 different biochar samples measured for 22 unique physical and chemical char-84

acteristics. To build the library, data were gathered from published studies that: (i)85
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used slow-pyrolysis biochar, (ii) reported the production details, and (iii) extensively86

characterized the physical and chemical properties of biochar materials (Karaosmanoğlu87

et al., 2000; Cordero et al., 2001; Gaskin et al., 2008; Keiluweit et al., 2010; Mukherjee88

et al., 2011; Enders et al., 2012; Rajkovich et al., 2012). Production variable details89

for each study are summarized in Table 2. These studies were chosen because the an-90

alytical methods for characterization were similar, thus permitting the comparison of91

data across studies. Based on these selection criteria, we focused our efforts to test the92

effects of starting biomass and peak pyrolysis temperature on each of the 22 biochar93

characteristics. It is important to note that although additional pyrolysis production94

parameters varied among the samples in our meta-data, the distribution of these vari-95

ables was too skewed or not documented in a sufficient number of studies to adequately96

test their effect.97

2.2. Correlation matrix and networks98

For the first statistical analysis, a correlation matrix was built to identify the links99

among the physical and chemical properties of biochar in this study (see Fig. 1). To100

construct the correlation matrix, the Pearson product-moment correlation coefficient101

between each pair of variables was determined using all complete pairs of observations102

on those variables. Significance of the relationships was simultaneously determined with103

a confidence interval of 0.95. Absolute value of correlation and its significance (p-values104

denoted by star symbols) are reported in the matrix. A threshold for the absolute105

value of correlation coefficient, |r|, of 0.75 was arbitrarily chosen to resolve sufficiently106

strong relationships. The correlation matrix gives a great deal of information that107

is not always easy to interpret. In order to visualize the most relevant details, we108

identified the significant and strong enough correlated pairs of properties, and made a109

network graph representation (see Fig. 2). The nodes of the graph represent the biochar110

properties and edges are drawn between pairs of nodes if the properties are strongly111

correlated and the relationship is significiant (|r| ≥ 0.75 and p-value < 0.001). Edge112

thickness in the network graph is proportional to the correlation strength between node113
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pairs. From the correlation networks it is further possible to classify biochar properties114

into interdependent groups or as independent properties. Alternative network graph115

representations built with different correlation coefficient thresholds can be obtained116

from the web-tool, as described in subsequent sections. The authors note that the only117

difference between network representations of different correlation coefficient thresholds118

is the number of connections which are displayed, meaning that weak correlations are119

filtered out in order to ease analysis of network properties that are generally obscured120

by the complexity of the complete (i.e., unfiltered) network.121

2.3. Generalized Linear Model analyses122

To accommodate for the different relationships between biochar properties and pro-123

duction variables, a Generalized Linear Models (GLMs) approach was used. GLMs are124

an extension of ordinary linear regression analysis that account for non-Gaussian dis-125

tributions of the response as well as non-linear dependencies between explanatory and126

response variables (the interested readers are referred to Myers et al. (2010) for greater127

details). When there is a non-linear relation between the response and predictor, GLMs128

can be used by applying a transformation to the response variable before fitting the129

model. The other possibility consists in modelling the non-linear dependence by means130

of a non-linear link function.131

2.3.1. GLM candidates132

The following steps have been used to build GLMs for the biochar system:133

(a) In this study, the response variables are the biochar properties listed in Table 1.134

The predictors correspond to the production variables which are parameterized135

by the pyrolysis peak temperature (T : 250-650 oC) and details about the starting136

biomass, which can be introduced in the model by two categorical variables. A137

first variable denoted as biomass (B) contains the categories: bull manure, corn,138

dairy manure, digested dairy manure, food waste, grass, hazelnut, oak, paper139

waste, pine, poultry litter, and rapeseed. The second variable corresponds to a140
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nested category for B referred to as feedstock class (F ), and contains the cate-141

gories: animal waste, plant material, or combination. Variable T was introduced142

as covariate in the model, while B and F were introduced as factors.143

(b) Under GLMs, the response is assumed to follow a probability density function144

p(Resp|X) belonging to the exponential family (Myers et al., 2010). In this study145

the Gaussian and Gamma distributions were initially investigated. However, the146

Gamma distribution did not show a good fit for any of the response variables and147

therefore it will not be presented here. Instead, where the response variables did148

not meet the criteria for a Gaussian distribution, transformation of the response149

using the Log transform and the Box-Cox transform was applied. As a result,150

the data distributions we have investigated include (untransformed) Gaussian and151

two power-transformations for non-Gaussian data (Log transformed and Box-Cox152

transformed) to describe the biochar system.153

(c) A linear relation between the response (biochar property) and the predictors (pro-154

duction variables) of the form155

g(E(yi)) = βi0 +
Nc∑
j=1

βi,jxi,j +
Nc∑
j=1

Nc∑
k=1

βi,jkxi,jxi,k , (1)

is assumed, where E(yi) signifies the expected values of the i-th response, Nc is156

the number of predictors, xi,j are the values of the predictor variables (dummy157

values are used for categorical predictors), and g(·) is the link function. In par-158

ticular, the link functions identity and log were explored for all models. The β159

quantities are unknown parameters to be estimated by maximum-likelihood. The160

first contribution, βi0, is referred to as the intercept. The parameters βi,j quantify161

the effects of individual variables, while the parameters βi,jk account for combined162

effects associated with interacting pairs of variables. The predictor variables were163

assessed in all possible individual (B, T, F ) and interacting (B:T, F:T ) combina-164

tions. That is, possible formulas relating biochar property (Resp) to temperature165

(T ). starting biomass (B) and feedstock class (F ) include: Resp ∼ T , Resp ∼ B,166
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Resp ∼ B+T , Resp ∼ B : T , Resp ∼ B+B : T , Resp ∼ F , Resp ∼ F +T , Resp167

∼ F : T , Resp ∼ F + F : T .168

With all the available options, 54 iterations of GLM models (covering 9 formula169

possibilities, 3 data transformations, and 2 link functions) were tested to describe each170

biochar property. These options provide the extra flexibility in the model to describe171

the biochar system with alternative data transformations and link functions that are not172

included in ordinary linear regression models, which are limited to Gaussian p(Resp|X)173

and identity g(·).174

2.3.2. “Best” model selection and goodness-of-fit tests175

The process of “best” model selection requires, first, grouping the GLMs by initial176

data transformation type: untransformed, Log transformed, and Box-Cox transformed.177

Quantitative diagnostics were determined for each model, including Akaike Information178

Criterion (AIC) as an estimate of the quality of a model relative to the collection of179

candidate models for the data, Shapiro-Wilk (SW ) test to determine whether the sam-180

ple came from a Normally distributed population, and Durbin-Watson (DW ) test to181

detect autocorrelation in the residuals. Within each transformation group, the differ-182

ent model formulations and the different link functions were ranked by the individual183

model’s AIC score. The model with the lowest AIC was then selected as the top can-184

didate model in its group. This step reduces the list of candidate models from 54 to 3,185

one for each transformation type.186

In the second step, the three candidates belonging to each data transformation group187

were compared against each other. To do this, diagnostic plots were generated for each188

candidate model, including: (i) residual plots to illustrate the distance of the data points189

from the fitted regression, (ii) Normal Quantile-Quantile plots to graphically compare190

the probability distribution of the data against a theoretical Normal distribution, (iii)191

square root of standardized residual plots to check for heterogeneity of the variance, and192

(iv) leverage with Cook’s distance to identify outliers and points with disproportionate193

influence on regression estimates. Outlier points were removed from a data set only194
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when the Cook’s distance of a datum exceeded 0.5 and re-evaluation of the model did not195

result in new points with large Cook’s distance. Performance of the candidate models196

for SW and DW tests, together with the diagnostic plots were used as goodness-of-fit197

tests to evaluate the assumptions of the models.198

The following criteria were used to assess model adequacy. The residual plot was199

checked for a random scatter of points producing a flat-shapped trend to verify that200

the appropriate type of model was fitted. The Normal Quantile-Quantile plot was201

assessed for deviation from the theoretical distribution to confirm Normality in the202

residuals. The standardized residual plot was examined for a symmetric scatter and203

flat-shapped trend to test the homogeneity of the variance. The leverage plot was204

inspected for influential outliers when points fell far from the centroid or were isolated.205

SW quantitatively tested for assumptions of Normality (p-value ≥ 0.05), while DW206

evaluated the level of uncorrelation of the residuals (p-value ≥ 0.05). The “best” model207

was finally selected as that which satisfied the most criteria, preferring the simpler data208

transformation if diagnostics were comparable. All computations were performed using209

RStudio, version 0.96.331.210

2.4. Interactive web-tool211

The interactive web application Biochar Engineering (available at: http://spark.212

rstudio.com/veromora/BiocharEng/) was built to implement the GLMs constructed213

in this study into a user-friendly tool, which requires no prior knowledge of advanced214

statistics or programming language. It is accessible free of charge through a web browser215

as a stand-alone application hosted by Shiny-RStudio. The primary intention of the216

tool is to maximize the utility of the models herein developed so that anyone can use217

them to obtain a statistical outlook for expected physical and chemical properties of218

biochar from user-defined production values. As is demonstrated in examples to follow,219

the tool can be used to make informed decisions of the optimum selection of parent220

biomass type and peak pyrolysis temperature that is required to produce biochars with221

tailored physical and chemical properties.222
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3. RESULTS AND DISCUSSION223

3.1. Correlation matrix and networks224

Related biochar properties identified from the correlation matrix (Fig. 1) were used225

to build a network representation of the 22 responses included in this study (Fig. 2).226

From the generated networks, three groups of interdependent biochar properties were227

distinguished and five individual properties found to be independent (i.e., the correla-228

tion coefficient between any pair of properties was |r| <0.75). As illustrated in Fig. 2,229

the first correlated group includes Fe, Yield, Ash, Ca, C, FixedC, and SSA(CO2), which230

contains a mixture of positively and negatively correlated pairs. The second group in-231

cludes EC, Na, P, K, Mg, Mn, Zn, and S, which contains all positive correlations (linked232

by solid edges). The third group includes C:N and pHw, which are negatively correlated233

(linked by dashed edges). The five independent properties are represented as edge-free234

nodes and include BulkD, SSA(N2), N, MatVol, and CEC. Interestingly, SSA(N2) and235

CEC were found to have mostly very weak and insignificant relationships with all other236

biochar properties (|r| ≤ 0.53 with p-value ≥ 0.01 and |r| ≤ 0.44 with p-value ≥ 0.001,237

respectively). The exception for CEC is its relationship with BulkD, which is signif-238

icant albeit still weak (|r| = 0.58 with p-value < 0.001). As a result, SSA(N2) and239

CEC could be considered the two most independent biochar properties, which are the240

least likely to be affected when other properties are modified. It is noted that Principal241

Component Analysis (analyzed with SPSS v.21) was initially explored to find clusters242

of biochar properties. However, the meta-data contained too many samples that were243

not characterized in full, thus producing an incomplete matrix that required the omis-244

sion of a vast number of samples or of entire response variables from the analysis. As245

these omissions were considered to affect the results excessively, a correlation matrix246

and network approach was adopted being considered less biased by missing data.247

The networks of correlated properties provide an overview of which combinations of248

biochar properties are more likely to occur in a given sample. The correlation networks249

prove very useful as a tool for qualitative design of biochar samples with desired prop-250
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erties. For example, a hypothetically desirable biochar might be needed to neutralize251

soil acidity (high pHw), return lost macronutrients P and S that were removed during252

harvest (high P and S), prevent excess atrazine from leaching into the groundwater253

(high SSA(CO2) and/or high Ash), and maximize the amount of biochar produced by254

pyrolysis (high Yield). Using the network diagram of Fig. 2, it is possible for example255

to infer the following. A biochar sample engineered for high pHw will not affect the256

other desired properties, given that pHw is in a separate network to all other proper-257

ties of interest. The addition of macronutrient P will concomitantly supply S, as these258

properties belong to the same positively correlated network. The remaining three prop-259

erties belong to the same network from which we extrapolate that a single sample of260

biochar has a negative tradeoff between high SSA(CO2) and high Ash2, meaning that261

it is less probable that a sample will have both high SSA(CO2) and high Ash. Yield262

will be reduced if the sample is prioritized for high SSA(CO2) and (indirectly) maxi-263

mized when high Ash content is favored. Networks obtained from different correlation264

coefficient thresholds can be created in the web-tool as displayed in the Networks tab265

and interpreted in the fashion described above. Increasing the correlation coefficient266

threshold will simply result in the removal of weak connections from the final graphic,267

while decreasing it will result in the display of more connections.268

3.2. Generalized Linear Models269

In this section the versatility of GLMs as an extended linear regression approach is270

leveraged to model the biochar system. The candidate GLMs are compared against one271

another and the most appropriate models for each biochar property selected. Lastly,272

the “best” models are evaluated for goodness-of-fit.273

2While SSA(CO2) is not directly linked to Ash, high SSA(CO2) implies high C and FixedC which,

in turn, are negatively correlated with Ash. In other words, SSA(CO2) and Ash are indirectly anti-

correlated.
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3.2.1. GLM candidates274

As indicated in the methods section, selection of the “best” model is a two-step275

process. First, the list of candidates is reduced to three. To do so, candidate mod-276

els belonging to each of the three data transformation groups (untransformed, Log277

transformed and Box-Cox transformed) are ranked according to their AIC score. Top278

scoring models for each group are those with the lowest AIC value, and are reported279

in tables for each biochar property in section II of the supplementary data. The tables280

summarize the top candidate model for each data transformation group, where details281

of the model are reported concerning: formula, type of data transformation used, link282

function, AIC, p-value for the SW test, as well as d and p-value for the DW test.283

Second, diagnostic plots are generated for the reduced candidate list, and the overall284

“best” model is selected according to their relative performance in SW and DW tests285

and diagnostic plot criteria. Diagnostic plots of the overall “best” model are included286

in the same section of the supplementary data, and noted by a star in the table.287

Model selection required a certain level of flexibility, as very few candidate models288

met all evaluating criteria. This is a common feature of real data sets of a limited289

size. Model performance in the SW test was relatively poor, since candidate GLMs290

of 15 of the biochar properties failed SW for all types of data transformation. Nev-291

ertheless, candidate GLMs of the remaining biochar properties consistently satisfied292

this criterion for the overall “best” model. Performance in DW was useful in quanti-293

tatively evaluating the assumption for uncorrelated residuals, but not to differentiate294

the candidate GLMs against each other because often all candidates satisfied or failed295

this criterion. Diagnostic plots, on the other hand, were much more insightful in il-296

lustrating the suitability and relative performance of the models, and were given more297

consideration during “best” model selection.298

In general, all four diagnostic plots corresponding to one candidate model performed299

well above the other two, and demonstrated that the goodness-of-fit (GOF) assumptions300

were satisfactorily met. For certain biochar properties two candidate models produced301

diagnostic plots of similar performance, in which case the model corresponding to the302
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simpler data transformation was given preference; that is, untransformed is simpler than303

Log transformed, which is simpler than Box-Cox transformed. In the case of Na, for304

example, diagnostic plots for Log and Box-Cox transformation GLMs showed a nearly305

identical model improvement (see Figs. A.15 and A.16), and all three candidate models306

performed the same for SW and DW (see Table A.16). Consequently, the Log trans-307

formed model was selected as the “best” model. The models for Fe, N, and SSA(N2)308

were difficult to select given the pronounced heterogeneity in variance and heavy devi-309

ation from the theoretical Normal Quantile-Quantile distribution across all candidate310

models (see Fig. A.8, A.14 and A.21). These three models were therefore considered311

to violate too many GOF criteria to be recommended for use with confidence; the sit-312

uation would improve with additional data. Irrespective of that, the large proportion313

of properties found to be properly described by the corresponding “best” model clearly314

demonstrates the feasibility of reverse engineering multiple biochar properties simul-315

taneously. We note that initial analysis with fewer samples comprising the meta-data316

resulted in the selection of “best” models with satisfactory GOF criteria that were very317

similar to those chosen from the larger data set (presented in Table 3). This indicates318

that replication of suitable results (i.e., those that comply with GOF standards) from319

different studies are consistent.320

Table 3 summarizes the “best” models chosen for all biochar properties, where the321

last column indicates whether the model complies with GOF standards. The Maximum322

Likelihood Estimates (MLEs) of the “best” model coefficients for each biochar property323

are reported in section III of the supplementary data and can be requested from the324

web-tool in the Stats tab.325

3.2.2. “Best” GLMs326

The formulas of the “best” models (column 2 in Table 3) indicate that for the vast327

majority of cases it is imperative to have information about both starting biomass328

and peak pyrolysis temperature to properly define the relationship between biochar329

properties and production variables. In the simplest case a single predictor variable330
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statistically dominates. We find that this only occurs for S, which depends entirely on331

B, while T is not statistically significant (as shown in Fig. 3A). No response variable332

was found to depend exclusively on T . The next level of complexity is that in which333

the response depends on both B and T , but the two factors do not interact (B + T ).334

This occurs for pHw, Ash, C:N, and most micronutrients. In this type of relationship,335

B affects the response, but the rate at which T has an influence is the same across all336

types of B (illustrated in Fig. 3B). The following level of complexity is that in which337

there is a significant interaction between B and T , but no main effect of B (B : T ),338

as in the case for SSA(CO2) and FixedC. A general trend in this type of relationship339

is that the rate of change in the response with the increase in T is different for the340

different B, whereas the intercept is the same (as shown in Fig. 3C). Finally, the most341

complex relationship is given by the full model (B+B:T or F+F:T ). In this model, both342

intercept and temperature regression slope are significantly different for the different B343

(or F ). The relationships for BulkD, SSA(N2), Yield, EC, CEC, MatVol, C, N, P, Ca,344

and K fall into this category. In this case, changes in B (or F ) and T are not trivial, as345

the relationship permits the greatest level of flexibility and rules out any general trends346

(as in Fig. 3D).347

For the three simplest relationships (B, B+T , and B:T ), a change in B does not348

affect the response order relative to the other types of B. Conversely, for the most com-349

plex relationship (B+B:T or F+F:T ), a change in biomass affects the response in such350

a way that it crosses over responses from other biomass types as T changes; thereby not351

necessarily maintaining the relative order among the different types of biomass. This352

assessment of multiple predictor variable influence corroborates the perception that353

biochar properties are deeply shaped by the collective effect of both production vari-354

ables, whether additive and/or interactive. Furthermore, it warrants against statistical355

bias that is introduced when biochar production decisions are based on the dominance356

of a single variable on a biochar property of interest. Interestingly, only the “best”357

model for MatVol favored the nested starting biomass, F . All other “best” models358

performed better when this information was entered in its more detailed form, B.359
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The frequency in response variable transformation for the selected “best” models360

(column 3 in Table 3) indicates that a minority of the data are Normally distributed and361

meet the constant variance assumption. Most responses require power-transformation362

to stabilize their variance. Specifically, 7 response variables were satisfactorily modeled363

without transformation of the response values, while 9 others needed Log transforma-364

tion and the remaining 6 required the more advanced Box-Cox transformation. This365

observation draws attention to the fact that non-constant variance is ubiquitous in366

the characteristics of biochar, which requires transformation of the response variable367

to comply with Normality assumptions. Depictions of different functional shapes are368

presented in Fig. 4 for models sharing the same formula (B+T ) and identity link. In369

this figure, (A) is the reference for the untransformed response for pHw, (B) is the Log370

transformed response for Mn, and (C) is the Box-Cox transformed response for Ash. In371

these plots, it is evident that the untransformed data have a perfectly linear relation-372

ship. In contrast, Log and Box-Cox transformations are suitable to describe non-linear373

behavior associated with a more cumbersome relationship between biochar properties374

and production variables.375

Similarly, the prevalence of non-linear link functions in the “best” model population376

(column 4 in Table 3) exposes the common violation of the linearity assumption. It is377

interesting that all 7 responses that demonstrated constant variance (i.e., not requiring378

data transformation) also met the linearity assumption (favoring identity link function).379

This was also the case for 8 of the responses with unequal variances that required data380

transformation. The remaining 7 responses required transformation to address variance381

instability and the log link function to further correct for non-linearity. The log link382

function contributes to the non-linear function shape of the response in a way that383

resembles that of Log and Box-Cox data transformation. Fig. 4 illustrates this effect384

for responses that have been Log transformed. The data in (B) satisfies the linearity385

assumption and is adequately modeled with the identity link function. In contrast,386

the property in (D) needs a log link function to adjust for non-linearity. In short,387

both non-Gaussian and non-linear features were found to be ubiquitous in the biochar388
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system.389

3.3. Biochar Engineering: the web-tool390

The Biochar Engineering tool is an integrated calculator for the biochar models391

in Table 3. The web-tool can be navigated through the various tabs on display at392

the top of the page. The About tab introduces the tool, the Graphic and Table tabs393

contain the model results, the Stats tab summarizes individual model parameters, and394

the Networks tab displays networks of correlated biochar properties. The side bar panel395

is always visible and can be modified at any time to re-run the model with new input396

variable values for biomass, peak temperature, and confidence coefficient, request the397

statistical summary of a specific response model, set a correlation coefficient cutoff for398

the networks, and download the output of any tab. The model output for the user-399

defined production variables is automatically generated and updated in the Graphic400

and Table tabs. Correlation networks are similarly updated in the Networks tab for401

newly defined correlation coefficients. Ultimately, this information can be used to select402

production variable values that yield biochar with the most desirable set of properties403

for the user, thereby facilitating the possibility to efficiently engineer biochar resources404

to meet multiple agricultural demands.405

3.4. Using GLMs and web-tool to engineer a biochar406

Recommendations for the use of the GLMs in Table 3 cannot be generalized because407

they depend on the particular set of properties needed from biochar to mitigate deficien-408

cies in a specific soil or crop, as well as on the type of biomass available and limitations409

of the pyrolysis unit. Rather than attempting to examine all possible scenarios, this410

section presents two examples that demonstrate how the GLMs and the web-tool can411

be used to engineer the hypothetical biochar described in section 3.1 (requiring high412

pHw, high P and S, high SSA(CO2) and/or high Ash, and high Yield). In the first413

example we assume a situation where all production variables can be modified, and414

identify the optimum combination of starting biomass and temperature that return the415

16



desired qualities. In the second example we assume a situation where the type of start-416

ing biomass is fixed (e.g., to concurrently dispose of a byproduct from another process),417

and determine the temperature that is most suitable to obtain the desired qualities.418

3.4.1. A worked example for total optimization of production variables419

In the case where all production variables can be modified, we propose to refer to420

the prediction plots corresponding to the properties of interest. Prediction plots for all421

properties analyzed in this study are included in Fig. A.24-A.45 of the supplementary422

data; see the particular case for pHw in Fig. 5. To facilitate interpretation of the model423

results, the predictive plots are presented as composite figures where each subfigure424

corresponds to a unique type of starting biomass and the property of interest is plotted425

as a function of pyrolysis temperature. The predicted (mean) values are presented426

as a solid line, while regions corresponding to 75, 85, and 95% confidence intervals are427

indicated by the shaded regions (dark gray, gray, light gray, respectively). For reference,428

the data points from the meta-data are overlaid as solid circles.429

We begin by analyzing Fig. 5 to identify the variables that can deliver biochar with430

high pHw. This figure shows that as T increases pHw increases, and this rate is constant431

across all B. Among the different types of B included in the pHw model, biochars432

made from Poultry litter would typically result in the highest achievable pHw at any433

T , followed by Digested dairy manure, Corn, Food waste, and Paper waste. Next, we434

analyze the predictive plot for P (Fig. A.38). From this figure it is apparent that most435

Bs result in biochars with low P concentrations that are minimally variable with T ;436

crossovers associated with the B:T coupling are mainly observed on the low T range.437

Notably, samples made from Poultry litter contain the highest concentration of P (by438

orders of magnitude greater than samples of lowest P), with Food waste and Digested439

dairy manure following significantly behind in P concentration. Then, we examine the440

predictive plot for S (Fig. A.40), which is exclusively dependent onB (in agreement with441

the “best” model formula for S in Table 3). It is easy to distinguish that Poultry litter442

has the highest S content, followed by Digested dairy manure and Dairy manure. Next,443
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we consider predictions for SSA(CO2) (Fig. A.41), which also show a general increase in444

response with T at rates that depend on B (cf. formula B:T for the “best” SSA(CO2)445

model). From these predictions we identify that Hazelnut, Pine and Oak produce446

the highest possible SSA(CO2), which is enhanced as T is increased. Conversely, the447

predictive plot for Ash (Fig. A.24) indicates that this property is typically around 30%448

and generally increases with T . Paper waste, Poultry litter and Food waste are ranked449

highest among the B types to show high ash at all T levels. Lastly, the predictive plot450

for Yield (Fig. A.44) demonstrates a pronouncedly decreasing trend with increasing T451

for all B types, with crossovers throughout, as expected from the “best” model formula452

B+B:T given in Table 3 for Yield. It is evident that biochars from Paper waste and453

Poultry litter produce the highest yield for the range of T investigated.454

Based on the above observations, we conclude that Poultry litter pyrolysed at T455

above 500◦C will return a biochar that meets most of the needed hypothetical prop-456

erties. More concrete recommendations of T will depend on the producer’s choice to457

compromise between Ash and Yield, which have opposing trends with T . One way to458

facilitate this decision is to refer to the predictions made by the Biochar Engineering459

web-tool at various temperatures. By specifying in the side bar panel the Biomass460

(Poultry), Peak Temperature (a value in the range 500-600◦C), and a satisfactory Con-461

fidence Coefficient (e.g., 0.8), the web-tool automatically generates a table (located in462

the Table tab) that summarizes the expected biochar properties for the input variables.463

For discrete temperatures at 500, 550, and 600◦C, the biochar would be expected to464

have an Ash content of 56.60, 61.31, and 66.4%, and Yield of 65.76, 64.38, and 63.03%,465

respectively. Considering that Ash is increased by 10% and Yield is only reduced by466

2% when T is increased from 500 to 600◦C, one might accept the small penalty in yield467

for gaining more ash. Assuming all other considerations are satisfactory in this hypo-468

thetical scenario, one could conclude that the customized biochar with the above listed469

characteristics is best produced by pyrolysing Poultry litter at 600◦C. For a compre-470

hensive outlook on the expected range of all 22 physico-chemical properties, the user471

may refer to the output generated in the Graphic or Table tabs of the web-tool, and472
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save the results with the download buttons for future reference.473

3.4.2. A worked example for restrictions in starting biomass474

A similar approach to that followed in the first example can be used to engineer a475

biochar for cases in which the type of biomass is fixed. Take for instance a corn farm,476

which is interested in selling its corn stover resources as high quality biochar because477

livestock feed and bioenergy prices are low. The properties required from the biochar,478

as specified by the client, are assumed to be the same as those for the hypothetical479

biochar considered above. In this case, the farmer or pyrolysis contractor would be480

referred to the web-tool directly. In the side bar panel, the Biomass should be set to481

Corn and a suitable Confidence Coefficient selected (e.g., 0.8). The Peak Temperature482

slider can then be used to study the changes in biochar properties with temperature,483

as the only production variable that can be adjusted. The model output results can be484

monitored in either the Graphic tab (bar plots indicate predicted values with error bars485

marking the confidence interval range) or in the Table tab (table summary of predicted486

values with their corresponding standard error and confidence interval). By shifting487

the Peak Temperature slider from low to high temperatures it is evident that Yield488

is diminished, SSA(CO2), pHw, Ash, and P are intensified, and S remains constant.489

Assuming in addition to the required biochar properties that in order to make a profit,490

the Yield should be at least 30%, we can conclude that the corn stover should be491

pyrolysed at 467◦C, so the lower end of the expected yield range is above 30%. The492

Table tab of the web-tool (see screenshot in Fig. 6) summarizes the expected value493

and confidence interval for each biochar property, according to the production variables494

specified. For corn pyrolysed at 467◦C, the estimated range (with 80% confidence level)495

for the desired properties is: 8.6-9.9 pHw, 1647-2214 Total (mg/kg) P, and 633.1-869.9496

Total (mg/kg) S, 330.6-450.6 m2/g SSA(CO2), 11.8-16.2% Ash, and 30.0-33.1% Yield.497
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4. CONCLUSION498

Statistical results demonstrate that arbitrary choices of starting biomass or peak499

pyrolysis temperature are unlikely to produce biochar with prescribed physico-chemical500

properties. Generalized Linear Models were used to quantify the combined effect that501

starting biomass and peak temperature has on different biochar properties. These502

properties are typically non-Gaussian and exhibit non-linear dependence on the two503

predictor variables. Proper description of most biochar properties by GLMs demon-504

strates the feasibility to engineer biochar. A web-application of the GLMs together505

with correlation networks are offered as tools to guide biochar engineering.506
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Captions, Figures and Tables617

Figure 1. Correlation matrix of biochar properties. The diagonal indicates the618

biochar properties. The upper triangular sector shows the absolute value of correlation619

between pairs of properties and significance symbol (defined in the legend). Highly620

correlated pairs (with |r| ≥ 0.75) are highlighted in bold font. The lower triangular621

sector displays the respective bivariate scatterplots with a trend line.622

Figure 2. Correlation networks of inter-correlated biochar properties (|r| ≥ 0.75).623

Nodes represent individual biochar properties, and edges indicate whether the correla-624

tion is positive (solid line) or negative (dashed line). Line thickness is proportional to625

the correlation strength.626

Figure 3. Formula interpretation for GLMs of link identity. (A) Resp ∼ B. (B)627

Resp ∼ B + T. (C) Resp ∼ B:T. (D) Resp ∼ B + B:T.628

Figure 4. Data transformation interpretation for GLMs of link identity and Formula629

B+T . (A) Untransformed. (B) Log transformed. (C) Box-Cox transformed. (D) Log630

transformed of link log.631

Figure 5. Model predictions for pHw content (solid line) with confidence intervals632

for 75, 85, and 95% (dark gray, gray, light gray shading, respectively). Data points633

from meta-data are overlain (solid circles).634

Figure 6. Interface of the Biochar Engineering tool. Model output compiled in the635

Table tab.636

Table 1. Benefits from specific biochar properties.637

Table 2. Production details of meta-data.638

Table 3. Summary of “best” models selected for each biochar characteristic.639
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Table 1:

Biochar property Agronomic and environmental benefits

BulkD [Mg m−3] Low bulk density biochar can reduce the density of compacted soils, thereby improving root pene-

tration (Atkinson et al., 2010; Ennis et al., 2011; Novak and Busscher, 2013), water drainage and

aeration (Joseph et al., 2009; Laird et al., 2010). The latter may mitigate green house gas emissions

(Karhu et al., 2011).

SSA(N2), SSA(CO2) [m2 g−1] High nanopore and micropore specific surface area, respectively, may increase the sorptive affinity

of organic compounds to biochars (Cornelissen et al., 2005; Beesley et al., 2011), and improve water

holding capacity (Karhu et al., 2011).

Yield [%] Yield reflects the quantity of biochar material produced from the pyrolysis process.

EC [mS m−1] Electrical conductivity indicates the quantity of salt contained in the biochar. High EC can stabilize

soil structure (Joseph et al., 2009; Hossain et al., 2011).

CEC [Av (mmolc kg−1)] Increased cation exchange capacity can improve the soil’s ability to hold and exchange cations

(Chapman, 1965; Glaser et al., 2002).

pHw [-] Soil solution pH directly affects soil surface charge, which determines the type of exchangeable

nutrients and mineral ions it attracts (Mukherjee et al., 2011). Additionally, the buffering capacity

of biochar can neutralize acidic soils, redude aluminum toxicity and change the soil microbial

community structure (Abe, 1988; Lehmann et al., 2011).

Ash [%] Ash may improve the sorption capacity of biochar for organic compounds and metals (Cao et al.,

2011).

MatVol [%] Volatile matter affects biochar longevity in soil (Lehmann et al., 2011; Enders et al., 2012). Resid-

ual volatiles can also impact organic substance sorption by blocking pores and changing surface

chemical interactions (Sander and Pignatello, 2005; Zhu et al., 2005; Novak and Busscher, 2013).

C [mg g−1] Total carbon in organic matter benefits the soil.

N [mg g−1] Total nitrogen in the biochar supplies a macronutrient, but its availabiity is limited. Biochar may

strongly sorb ammonia and act as a nitrogen-rich soil amendment (Spokas et al., 2012b).

C:N [-] Carbon to nitrogen ratio influences the rate of decomposition of organic matter and release of soil

nitrogen (Novak et al., 2009).

FixedC [%] Fixed carbon is non-labile and therefore is a property attributed to biochar stability (Keiluweit

et al., 2010; Enders et al., 2012; Rajkovich et al., 2012).

P, S [Total (mg kg−1)] Macronutrients provided by biochar, which can improve soil fertility.

Ca, K, Mg, Na, Fe, Mn, Zn [Total (mg kg−1)] Micronutrients provided by biochar, which can improve soil fertility.

Notes: BulkD = Bulk Density, SSA = Specific Surface Area, EC = Electrical Conductivity, CEC = Cation Exchange Capacity,

MatVol = Volatile Matter, FixedC = Fixed Carbon
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Table 2:

Biomass Feedstock Milling size Moisture Reactor type Feed capacity Oxygen limitation Heat rate Holding time Peak temp. Reference

[µm] [%] [min] [◦C]

Bull manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Enders et al., 2012)

Corn plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Dairy manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Enders et al., 2012)

Digested dairy manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Food waste combo 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,400,500,600 (Rajkovich et al., 2012)

Grass (Tall fescue) plant <1500 na closed container muffle furnace na yesa na 60 300,400,500,600 (Keiluweit et al., 2010)

Grass (Tripsacum floridanum) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Hazelnut plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Oak (Quercus rotundifolia) plant 177-250 na horizontal tube furnace na N2 continuous flow 120 300,350,400,450,500,550,600 (Cordero et al., 2001)

Oak (Quercus lobata) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Oak plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Paper waste plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,400,500,600 (Rajkovich et al., 2012)

Pine (Pinus halepensis) plant 177-250 na horizontal tube furnace na N2 continuous flow 120 300,350,400,450,500,550,600 (Cordero et al., 2001)

Pine (Pinus ponderosa) plant <1500 na closed container muffle furnace na yesa na 60 300,400,500,600 (Keiluweit et al., 2010)

Pine (Pinus taeda) plant na na batch pyrolysis unit na N2 na na 400,500 (Gaskin et al., 2008)

Pine (Pinus taeda) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Pine plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Poultry litter animal na na batch pyrolysis unit na N2 na na 400,500 (Gaskin et al., 2008)

Poultry litter animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Rapeseed plant <1000 12.6 tubular reactor 30 g N2 5◦C min−1 30 400,500,600 (Karaosmanoğlu et al., 2000)

a Details not specified.
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Table 3:

Response Formula Transformation Link GOF

BulkD B + B:T Box-Cox Transf identity 3

SSA(N2) B + B:T - identity 7

SSA(CO2) B:T - identity 3

Yield B + B:T Log Transf log 3

EC B + B:T Box-Cox Transf log 3

CEC B + B:T Log Transf log 3

pHw B + T - identity 3

Ash B + T Box-Cox Transf identity 3

MatVol F + F:T - identity 3

C B + B:T - indentity 3

N B + B:T - identity 7

C:N B + T Box-Cox Transf identity 3

FixedC B:T - identity 3

P B + B:T Box-Cox Transf log 3

S B Log Transf identity 3

Ca B + B:T Log Transf identity 3

K B + B:T Box-Cox Transf identity 3

Mg B + T Log Transf identity 3

Na B + T Log Transf log 3

Fe B + T Log Transf log 7

Mn B + T Log Transf identity 3

Zn B + T Log Transf log 3
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