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We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the

presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-

trapping) case and verify that subdiffusive spreading is always observed. We then carry out a

statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present

evidence of different chaos behaviors, for various groups of particles. Integrating the equations of

motion for times as long as 109, our probability distribution functions always tend to Gaussians and

show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and

that diffusion continues to spread chaotically for arbitrarily long times. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4871477]

The absence of diffusion in disordered media, often called

Anderson localization, is a general phenomenon that

applies to the transport of different types of classical or

quantum waves. An interesting question is what happens

to the diffusion if nonlinearity is introduced. Many stud-

ies so far have focused on the evolution of an initially

localized wave packet showing that it spreads subdiffu-

sively for moderate nonlinearities; while for stronger

ones, a substantial part of it remains self-trapped.

Currently, a greatly debatable problem concerns the long

time spreading of the wave packet. It has been conjec-

tured that chaotically spreading wave packets will

asymptotically approach Kolmogorov-Arnold-Moser

torus-like structures in phase-space, while numerical sim-

ulations typically do not show any sign of slowing down

of the spreading behavior. Here, we introduce the con-

cept of q-exponential statistics to shed new light on this

problem. Thus, in the case of a high-dimensional Klein-

Gordon disordered particle chain, we concentrate on a

low energy (subdiffusive) and a higher energy (self-trap-

ping) case and verify that subdiffusive spreading always

occurs following specific power-laws. Integrating the

equations of motion for long times and computing proba-

bility distributions of sums of the positions of particles,

we find convincing evidence that the dynamics does not

relax onto a quasi-periodic Kolmogorov-Arnold-Moser

torus-like structure, but continues to spread chaotically

along the Klein-Gordon chain of particles for arbitrarily

long times.

I. INTRODUCTION

Probability distribution functions (pdfs) of chaotic tra-

jectories of dynamical systems have been studied for many

decades and by many authors, aiming to understand the tran-

sition from deterministic to stochastic dynamics.1–3 One of

the most relevant and fundamental questions concerns the

existence of an appropriate invariant probability density (or

ergodic measure), characterizing chaotic motion in phase

space regions, where solutions generically exhibit exponen-

tial divergence of nearby trajectories. If it is possible to

define such an invariant measure for almost all initial condi-

tions (i.e., except for a set of measure zero), then one has a

firm basis for studying the system from a statistical mechan-

ics point of view.

Now, if this invariant measure is a continuous and suffi-

ciently smooth function of the phase-space coordinates, one

can invoke the Boltzmann-Gibbs microcanonical ensemble

and attempt to evaluate all relevant quantities of equilibrium

statistical mechanics, like partition function, free energy, en-

tropy, etc., of the system under study. On the other hand, if

the measure is absolutely continuous (as, e.g., in the case of

the so-called Axiom A dynamical systems), one might still

be able to use the formalism of modern ergodic theory to

study the statistical properties of the model.3

Since the existence of an invariant measure is not known

a priori, one may still proceed in the context of the Central

Limit Theorem4 (CLT) and consider the values of one (or a

linear combination) of components of a chaotic solution at

discrete times ti, i¼ 1,…,M as realizations of N independent

and identically distributed (iid) random variables XðjÞðtiÞ;
j ¼ 1;…;N . If the motion under study is uniformly chaotic

(ergodic) in some region of phase space, one typically finds

that the pdfs of the sums of these variables converge rapidly

to a Gaussian distribution, whose mean and variance are
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those of the X(j)’s. In such cases (which we call “strongly”

chaotic), at least one Lyapunov exponent is positive and the

respective subset of the constant energy manifold is uni-

formly covered by chaotic orbits, for all but a (Lebesgue)

measure zero set of initial conditions.

What happens, however, if the motion is not uniformly

chaotic and the orbits “stick” for long times on the bounda-

ries of islands surrounding stable periodic orbits, where

Lyapunov exponents become very small and may even van-

ish? In such regimes, the motion is often termed “weakly”

chaotic, as trajectories get trapped within complicated sets of

cantori and diffuse slowly through multiply connected

domains in a highly non-uniform way.5–7 Many such exam-

ples occurring in physically realistic systems have been stud-

ied in the recent literature (see, for example, Refs. 8–11).

In this paper, we investigate the existence of possible

connections between such regimes of “weak” and “strong”

chaos and subdiffusive motion in the presence of disorder by

considering a Hamiltonian particle chain in the presence of

nonlinearity and disorder. In particular, we demonstrate first

that pdfs of sums of position variables, in this system, do not
rapidly converge to a Gaussian distribution, but are well

approximated for long times by the so-called q-Gaussian

distribution12

PðsÞ ¼ a expqð�bs2Þ � a 1� ð1� qÞbs2
� � 1

1�q; (1)

where the q entropic index satisfies 1< q< 3, b is an arbi-

trary parameter, and a is a normalization constant.

Eventually, of course, chaotic orbits seep out from smaller

regions to larger chaotic seas, where obstruction by islands

and cantori is less dominant and the dynamics is more uni-

formly chaotic. This transition is signalled by the q entropic

index of the distribution (1) decreasing towards q¼ 1, which

represents the limit at which the pdf becomes a Gaussian

distribution.

Thus, we shall speak of “weak” chaos when the value of

the entropic index q is greater than unity by at least one deci-

mal point, e.g., q¼ 1.1 or higher (with q< 3) and the corre-

sponding pdfs are distinctly different from a Gaussian pdf.

On the other hand, if q is closer to 1, we speak of “strong”

chaos, where the associated pdfs become practically indistin-

guishable from a Gaussian pdf, see, e.g., our Fig. 1 in the

text, where panel (a) depicts a strongly chaotic and panel (b)

a weakly chaotic case, respectively.

Concerning subdiffusion in a Hamiltonian system repre-

senting a disordered Klein-Gordon (KG) chain of N¼ 1000

particles,13,14 we find that even though there are intervals of

weak chaos, strongly chaotic dynamics eventually prevails

characterized by q-Gaussian pdfs that always approach a

Gaussian pdf for long enough times. Thus, we suggest that

the motion of this system will never approach a

Kolmogorov-Arnold-Moser (KAM) regime of invariant tori

as suggested by some authors.15,16

This paper is organized as follows: In Sec. II, we outline

the details of our study of the statistical distributions corre-

sponding to weakly and strongly chaotic behaviors and Sec.

III describes diffusive motion in a disordered Klein-Gordon

chain. Finally, Sec. IV contains our conclusions.

II. COMPUTATION OF STATISTICAL DISTRIBUTIONS
OF WEAK AND STRONG CHAOS

In this work, we investigate the statistical properties of

chaotic diffusion in a disordered Klein-Gordon chain. It is

described by an autonomous N degree of freedom

Hamiltonian of the form

H � HðxðtÞ; pðtÞÞ ¼ Hðx1ðtÞ;…; xNðtÞ; p1ðtÞ;…; pNðtÞÞ ¼ E;

(2)

where (xl(t), pl(t)), l¼ 1,…, N are the positions and momenta,

respectively, of the system in continuous time t. As is well-

known, the solutions (or orbits) can be periodic, quasi-

periodic, or chaotic depending on the initial conditions and

the values of their parameters. What we wish to explore here

is the statistics of their diffusive dynamics in regimes of

weakly chaotic motion, where Lyapunov exponents are posi-

tive but very small. Such situations often arise when solu-

tions move slowly through thin chaotic layers, wandering

through a complicated network of higher order resonances,

often sticking for very long times to the boundaries of islands

constituting the so-called “edge of chaos” regime.12

Many interesting questions can be asked in this context:

How long do these weakly chaotic states last? What type of

pdfs characterizes them and how can one connect them to

the diffusion properties of the system? Does disorder in the

FIG. 1. Panel (a): Plot of the numerically computed pdf (dashed curve) for the observable g1 in the time interval [0, 108] with q1¼ 0.993 6 0.009 taken from

fitting with a q-Gaussian distribution (1) in solid thick. Panel (b): Similar plot of the numerically computed pdf (dashed) for the observable g29 and a time inter-

val [0, 108] with q29¼ 1.22 6 0.01. In both panels, N¼ 1000 and E¼ 0.4 that corresponds to the subdiffusive case. Note that the vertical axes are in logarithmic

scale, while the dotted curve is the Gaussian pdf (i.e., q¼ 1).
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choice of their parameter values play a role in these

considerations?

To answer such questions, we use the solutions of the

equations of motion of our Hamiltonian system to construct

pdfs of suitably rescaled sums of M values of a generic

observable gi¼ g(ti), i¼ 1,…, M, which depends linearly on

the position coordinates of the solution. Viewing these as iid

random variables (in the limit of M!1), we evaluate their

sum

S
ðjÞ
M ¼

XM

i¼1

gðjÞi (3)

for j¼ 1,…, Nic different initial conditions and study the

statistics of Eq. (3) centered about their mean value hSðjÞM i
¼ 1

Nic

PNic

j¼1

PM
i¼1 gðjÞi and rescaled by their standard deviation

rM

s
ðjÞ
M �

1

rM
S
ðjÞ
M � hS

ðjÞ
M i

� �
¼ 1

rM

XM

i¼1

gðjÞi �
1

Nic

XNic

j¼1

XM

i¼1

gðjÞi

0
@

1
A;

(4)

where

r2
M ¼

1

Nic

XNic

j¼1

S
ðjÞ
M � hS

ðjÞ
M i

� �2

¼ hSðjÞ2M i � hS
ðjÞ
M i

2: (5)

Plotting the normalized histogram of the probabilities PðsðjÞM Þ
as a function of s

ðjÞ
M , we then compare our pdfs with a q-

Gaussian of the form

PðsðjÞM Þ ¼ a expqð�bs
ðjÞ2
M Þ � a 1� ð1� qÞbs

ðjÞ2
M

h i 1
1�q

; (6)

cf. (1), where q is the so-called entropic index. Note that

this is a generalization of the well-known Gaussian pdf

since in the limit q! 1, we have expqð�bx2Þ ! expð�bx2Þ.
Moreover, it can be shown that the q-Gaussian distribution

(1) is normalized when

b ¼ a
ffiffiffi
p
p C 3�q

2ðq�1Þ

� �

ðq� 1Þ
1
2C 1

q�1

� � ; (7)

where C is the Euler C function. Clearly, Eq. (7) shows that

the allowed values of q are 1< q< 3 for this normalization.

The index q appearing in Eq. (1) is connected with the

Tsallis entropy12

Sq ¼ k

1�
XW
i¼1

Pq
i

q� 1
with

XW
i¼1

Pi ¼ 1; (8)

where i¼ 1,…, W counts the microstates of the system, each

occurring with a probability Pi and k is the well-known

Boltzmann constant. Just as the Gaussian distribution

represents an extremal of the Boltzmann-Gibbs entropy

SBG � S1 ¼ k
PW
i¼1

Pi lnPi, so is the q-Gaussian (1) derived by

optimizing the Tsallis entropy of Eq. (8) under appropriate

constraints.

Systems characterized by the Tsallis entropy are said to

lie at the “edge of chaos” and are significantly different than

Boltzmann-Gibbs systems, in the sense that their entropy is

nonadditive and generally nonextensive.12 In fact, a q-Central

Limit Theorem has been proved17 for q-Gaussian distributions

(1) that is of the same form as the classical CLT.

Let us now describe the numerical aspects of the calcu-

lation of the above pdfs. First of all, in every case under

study, we specify an observable denoted by g(t) as one (or a

linear combination) of the position variables of a chaotic

solution.

Then, we divide the time interval of the evolution of the

orbit into a predefined fixed number of Nic equally spaced,

consecutive time windows, which are long enough to contain

a significant part of the orbit. Next, we subdivide each of the

Nic time windows into a fixed number M of equally spaced

subintervals and calculate the sum S
ðjÞ
M of the values of the

observable g(t) at the right edges of these subintervals (see

Eq. (3)). In this way, we treat the point at the beginning of

every time window as a new initial condition and repeat this

process Nic times to obtain as many sums as required for reli-

able statistics.

As we shall see in Sec. III B, in regions of weak chaos,

these distributions are well-fitted by a q-Gaussian for fairly

long evolution intervals, whose q value is distinctly greater

than 1. It may happen, of course, for longer times that the

orbits begin to diffuse through domains of strong chaos, in

which case q tends to 1 and the well-known form of a

Gaussian pdf is recovered.

III. DIFFUSIVE DYNAMICS OF THE DISORDERED
KLEIN-GORDON CHAIN

A. The disordered quartic Klein-Gordon model

The absence of diffusion in disordered media (the so-

called Anderson localization18) is a general phenomenon

that applies to the transport of different types of classical or

quantum waves, like electromagnetic, acoustic and spin

waves. It is interesting to ask what happens if nonlinearity is

introduced to the disordered system. Understanding the

effect of nonlinearity on the localization properties of wave

packets in disordered systems has attracted the attention of

many researchers to date.9,11,13,14,19–28 Most of these studies

consider the evolution of an initially localized wave packet

and show that it spreads subdiffusively for moderate nonli-

nearities, while for strong enough nonlinearities a substantial

part of it is self-trapped. In such works, one typically

analyzes normalized norm or energy distributions zl �
El=
PN

i¼1 Ei � 0; l ¼ 1;…;N and measures the second

moment

m2 ¼
XN

l¼1

ðl� �lÞ2zl; (9)

024405-3 Antonopoulos et al. Chaos 24, 024405 (2014)
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where �l ¼
PN

l¼1 lzl, which is an efficient measure of the

wave packet’s spreading. In particular, for single-site excita-

tions the wave packet’s spreading leads to an increase of the

second moment according to m2� t1=3, both in the diffusive

as well as the self-trapping case.9,11,19,21

Currently, a greatly debatable problem is the long time

behavior of wave packet spreading in disordered nonlinear

lattices. Recently, it was conjectured15,16 that chaotically

spreading wave packets will asymptotically approach KAM

torus-like structures in phase-space, while numerical simula-

tions typically do not show any sign of slowing down of the

spreading behavior.13,14,29 Nevertheless, for particular disor-

dered nonlinear models some numerical indications of a pos-

sible slowing down of spreading have been reported.30,31

Thus, we decided to implement the ideas of Tsallis statistics

to shed new light on this problem.

For this purpose, we consider the quartic Klein-Gordon

lattice described by the Hamiltonian of N degrees of freedom

HKG ¼
XN

l¼1

p2
l

2
þ ~�l

2
x2

l þ
1

4
x4

l þ
1

2W
ðxlþ1 � xlÞ2 ¼ E; (10)

where xl and pl are, respectively, the generalized positions

and momenta on site l, and ~�l are chosen uniformly randomly

from the interval 1
2
; 3

2

� �
to account for the disorder present at

each site l. This Hamiltonian conserves the value of the total

energy E� 0 of the system, which, for fixed disorder strength

W, serves as a control parameter of the nonlinearity. In our

study, we follow the evolution of single site excitations by

solving the equations of motion

€xl ¼ �~�lxl � x3
l þ

1

W
ðxlþ1 þ xl�1 � 2xlÞ; l ¼ 1;…;N; (11)

and monitor normalized energy density distributions.

In Sec. III B, we first present the results of our numerical

experiments describing the chaotic dynamics of wave pack-

ets in a KG chain of N¼ 1000 particles for the low energy

(subdiffusive) as well the high energy (self-trapping) case.

We then carry out an analysis of the statistics of the motion

in the sense of the CLT and find, in both cases, convincing

evidence of initially weak and eventually strong chaos, for

times as long as 109! Indeed, our results show no sign of

quasi-periodic KAM behavior and serve to further strengthen

the conjecture that waves spread subdiffusively and chaoti-

cally for arbitrarily long times in nonlinear disordered

media.

We use two representative examples of energies,

E¼ 0.4 (subdiffusive spreading) and E¼ 1.5 (self-trapping)

as reported in the work of Skokos et al.11 and integrate

numerically the KG chain using a fourth order Yoshida’s

symplectic integrator,32 which is very efficient for long inte-

grations (e.g., up to 109 time units) of lattices having typi-

cally N¼ 1000 sites, to keep the required computational time

at feasible levels, preserving at the same time the energy of

the system to satisfactory accuracy. In particular, an integra-

tion time step s¼ 0.05 typically keeps the relative energy

error at about 10�6. In both cases, we consider one disorder

realization, i.e., one random sequence of ~� in Hamiltonian

(10) and a single site initial excitation of the form

x500(0)> 0, xi(0)¼ 0 for 1� i� 1000, i 6¼ 500, and pj(0)¼ 0

for 1� j� 1000. For the computation of the Lyapunov expo-

nents, we apply the tangent map method,33,34 which is suita-

ble for the evolution of deviation vectors in the tangent

space of the orbit under study. Having, thus, access to the

deviation vectors, we compute the Lyapunov exponents in

descending order (i.e., k1> k2…> k2N) following the

so-called standard method.35–37

B. Complex statistics shows persisting chaos in the
Klein-Gordon chain

In this section, we shall view the values of one (or a lin-

ear combination) of coordinates of our solutions of Eq. (11),

at discrete times ti, i¼ 1,…, M, as realizations of N iid ran-

dom variables X(j)(ti), j ¼ 1;…;N . If these variables are ran-

dom, according to the CLT, the distribution of their sums

will yield a Gaussian pdf, whose mean and variance are

those of the X(j)’s. As described in Sec. I, this is what hap-

pens in many dynamical systems in regions of strong (or uni-

form) chaos, where correlations decay exponentially and the

system obeys Boltzmann-Gibbs statistics. In weakly chaotic

regions, however, pdfs of sums of orbit components do not
rapidly converge to a Gaussian, but are well approximated,

for long times, by the q-Gaussian (1) distribution character-

ized by 1� q< 3 (q¼ 1 corresponding to a Gaussian pdf).

Let us start by examining, in detail, the statistical

properties of the lattice as the initial excitation of a central

particle starts to be transmitted to its neighboring sites. We

focus on the time evolution of the q entropic index for a class

of observable functions that start with the central particle

(i.e., g1¼ x500) and gradually take into account more and

more sites symmetrically to the initially excited one, up to

the whole extent of the lattice, i.e., g1¼ x500, g5 ¼ x498

þ…þ x502; g9 ¼ x496 þ…þ x504, g19 ¼ x491 þ…þ x509;
g29 ¼ x486 þ…þ x514, g39 ¼ x481 þ…þ x519; g1000 ¼ x1

þ…þ x1000, where the subscript of g denotes the number of

particles considered in the computation of the observable

function.

In Fig. 1, we show two representative examples of nu-

merical distributions with different q entropic indices for the

low energy subdiffusive case, i.e., E¼ 0.4 (the initial value

of x500(0) is adjusted so that E¼ 0.4). In panel (a), we plot

the numerical distribution (dashed curve) for the observable

g1 computed in the time interval [0, 108] and find that it is

well fitted by a q-Gaussian distribution (solid thick curve)

with q1¼ 0.993 6 0.009. This is a case where the numerical

distribution is indistinguishable from a Gaussian (q¼ 1) plot-

ted as a dotted curve. On the other hand, panel (b) which is

the same plot as (a), for the observable g29, reveals a clear

q-Gaussian distribution (1), over nearly four decades on the

vertical axis, with q29¼ 1.22 6 0.01. Note that we always

plot the Gaussian pdf (i.e., q¼ 1) as a dotted curve to guide

the eye.

Now, let us present the corresponding probability distri-

butions for the self-trapping case E¼ 1.5 in Fig. 2 keeping

everything else the same as in Fig. 1 (similarly, the initial

value of x500(0) is adjusted so that E¼ 1.5). We see that, in
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this case, not only the entropic index q1 but also q29 is closer

to the q¼ 1 value of a Gaussian compared to that of Fig. 1(b).

Next, in panel (a) of Fig. 3, we see that in the subdiffu-

sive case (E¼ 0.4), the central 5 to 29 particles initially per-

form a weakly chaotic motion depicted by the tendency of

the corresponding q1-q29 entropic indices to attain values

considerably higher than 1 (even though they later decay

towards 1). On the other hand, if one includes more particles

and studies g39, for example, the motion is more chaotic

since the corresponding entropic index now tends more

quickly to 1 at t¼ 109, while if we consider all particles (i.e.,

for g1000) strong chaos becomes clearer as q1000 tends to 1

even more rapidly.

These results suggest that the behavior of the central

part of the lattice is more weakly chaotic, while the whole

lattice behaves in a strongly chaotic way. This is also appa-

rent in panel (b) of Fig. 3, where the three largest Lyapunov

exponents k1, k2, k3 initially show a tendency to decrease

towards zero, however, after t¼ 105 they suddenly jump to

higher values and then decrease with a slope smaller than 1.

Recently,29 it was found that, for this case, the maximum

Lyapunov exponent k1 decreases as k1 / t�0.25. This behav-

ior is also seen in Fig. 3(b). We note that we computed only

a few Lyapunov exponents because the computation of many

of them in a high dimensional system is a very hard compu-

tational task. From the results of Fig. 3(b), it is evident that

the evolution of these exponents is determined by the evolu-

tion of the maximum Lyapunov exponent k1, as all of them

show similar behaviors. As we see from panel (c) of Fig. 3,

the expected behavior of the second moment, i.e., m2 / t1=3,

is well reproduced by our numerical results, which serves as

additional evidence for our computational accuracy.

By contrast, in Fig. 4, where the same study is repeated

for the higher energy E¼ 1.5 of the self-trapping case, the

dynamics is somewhat different. Panel (a) shows that all q
entropic indices of Fig. 3 are now much closer to 1, even

those of the central particles. Comparing the three largest

Lyapunov exponents in the two cases, we see that at the

higher energy of the self-trapping case (which corresponds

to stronger nonlinearity), they jump to higher values at about

FIG. 3. Panel (a): Plot of the time evo-

lution of the q entropic indices q1, q5,

q9, q19, q29, q39, and q1000 for N¼ 1000

and E¼ 0.4 that corresponds to the

subdiffusive case. Panel (b): Plot of the

evolution of the corresponding three

largest Lyapunov exponents k1, k2, k3,

and of t�1, t�0.25 to guide the eye.

Panel (c): Plot of the corresponding

second moment m2 in time together

with t1=3 to guide the eye. Note that all

horizontal axes are logarithmic.

FIG. 2. Panel (a): Plot of the numerically computed pdf (dashed curve) for g1 in the time interval [0, 108] with q1¼ 1.062 6 0.008 fitted by a q-Gaussian distri-

bution (solid thick curve). Panel (b): Plot of the pdf (dashed curve) for g29 and the time interval [0, 108] fitted by a q-Gaussian distribution (solid thick curve),

with q29� 1.08 6 0.01. In both panels, we use N¼ 1000 and E¼ 1.5. Note that the vertical axes are in logarithmic scale, while the dotted curve is the Gaussian

pdf (i.e., q¼ 1).
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t¼ 104, i.e., one order of magnitude earlier than in the case

of the lower energy of the subdiffusive case. After that point,

the Lyapunov exponents start decaying to zero but a bit

faster than the one (/ t�0.25) observed in the subdiffusive

case of Fig. 3. We note again that m2 grows in time as t1=3 as

it can be evidenced in panel (c) of Fig. 4.

The reader may wonder, at this point, how representa-

tive are the results presented in panel (a) of Figs. 3 and 4,

since they are based on the computation of only two trajecto-

ries. For this reason, we wish to clarify that we actually stud-

ied 10 additional trajectories and averaged their results for

t¼ 108. The curves we obtained were not significantly differ-

ent than what is shown in Figs. 3(a) and 4(a). There was a

tendency of the q values to fall towards 1 but since calcula-

tions for t¼ 109 are very time consuming; we decided to

postpone a more detailed study for a future publication.

A comment on the numerical evaluation of k1, k2, k3 is

useful here. In our computation, we use three initially line-

arly independent deviation vectors, namely (1, 0, 0, 0,…, 0),

(0, 1, 0, 0,…, 0), and (0, 0, 1, 0,…, 0), which correspond to

initial perturbations at the first three lattice sites. These oscil-

lators remain practically unexcited for the duration of the nu-

merical simulation, as long as the lattice size and the final

integration time are chosen so that the wave packet does not

reach the lattice boundaries. Nevertheless, due to the cou-

pling between the oscillators, these perturbations eventually

propagate throughout the whole lattice. The choice of the ini-

tial deviation vectors influences the initial phase of the

Lyapunov exponents but not their asymptotic behavior, as

any set of deviation vectors eventually leads to the same esti-

mation. During this initial phase, the estimated Lyapunov

exponents behave as in the case of regular orbits, exhibiting

a / t�1 decrease. Different choices of the initial deviation

vectors result in changing the duration of this phase, or even

lead to its disappearance.29 Nevertheless, using the same set

of deviation vectors in both cases of Figs. 3 and 4 allows for

a direct comparison between them.

IV. CONCLUSIONS

In this paper, we have studied the dynamics and statis-

tics of diffusive motion in a 1-dimensional Klein-Gordon

chain in the presence of disorder. Our statistical approach is

based on the computation of sums of position coordinates, in

the spirit of the Central Limit Theorem, approximating their

pdfs by q-Gaussians, whose index q> 1 is connected with

weak chaos, while q¼ 1 corresponds to strong chaos.

In particular, we considered a disordered KG chain of

N¼ 1000 particles focusing on a low energy (subdiffusive) and

on a higher energy (self-trapping) case and verified that subdif-

fusive spreading always occurs following specific power-laws

with exponents smaller than 1 as pointed out in the literature.

Subsequently, integrating the equations of motion for times as

long as 109 and computing the corresponding pdfs, we found

evidence that the dynamics does not relax onto a quasi-periodic

KAM torus, as it has been conjectured, but continues to spread

chaotically along the chain for arbitrarily long times.

One might argue that, since the strength of the nonlinear-

ity diminishes during spreading, it is somewhat counter-

intuitive that the motion should become more chaotic with q
! 1 as time grows. We conjecture, however, that this may be

due to the fact that, as diffusion progresses and more particles

become activated, the effective dimensionality of the phase

space becomes higher and hence the orbits have to wander

over wider chaotic domains, while stickiness on the boundaries

of multidimensional islands becomes less likely to happen.

Recently, we carried out a preliminary study of systems

of N coupled 2-dimensional symplectic maps that may be

regarded as simple examples of Hamiltonian particle chains.

Indeed, it would be highly desirable to find such examples,

FIG. 4. Panel (a): Plot of the time evo-

lution of the q entropic indices q1, q5,

q9, q19, q29, q39, and q1000 for E¼ 1.5.

Panel (b): Time plot of the correspond-

ing three largest Lyapunov exponents

k1, k2, k3, and of t�1, t�0.25 to guide

the eye. Panel (c): Plot of the corre-

sponding second moment m2 in time

together with t1=3 to guide the eye.

Note that all horizontal axes are

logarithmic.
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as they would permit a much more detailed investigation of

diffusive phenomena, owing to their great computational

advantage over systems of ordinary differential equations.

However, even though we do find examples of such systems

that display subdiffusive motion with pdfs of the q-Gaussian

type, there are important differences that, at present, pre-

clude their use as alternative models for the type of diffusive

dynamics, we have studied in this paper. This is an interest-

ing topic which we plan to address in a future publication.
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