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ABSTRACT 

Developed to study long, regularly sampled streams of data, time series analysis methods are being increasingly 
investigated for the use of Structural Health Monitoring. In this research, Autoregressive (AR) models are used in 
conjunction with Artificial Neural Networks (ANNs) for damage detection, localisation and severity assessment. In the 
first reported experimental exercise, AR models were used offline to fit the acceleration time histories of a 3-storey test 
structure in undamaged and various damaged states when excited by earthquake motion simulated on a shake table. 
Damage was introduced into the structure by replacing the columns with those of a thinner thickness. Analytical models 
of the structure in both damaged and undamaged states were also developed and updated using experimental data in 
order to determine structural stiffness. The coefficients of AR models were used as damage sensitive features and input 
into an ANN to build a relationship between them and the remaining structural stiffness. In the second, analytical 
exercise, a system with gradually progressing damage was numerically simulated and acceleration AR models with 
exogenous inputs were identified recursively. A trained ANN was then required to trace the structural stiffness online. 
The results for the offline and online approach showed the efficiency of using AR coefficient as damage sensitive 
features and good performance of the ANNs for damage detection, localization and quantification. 

Keywords: Structural Health Monitoring, damage detection, Autoregressive models, time series analysis, Artificial 
Neural Networks, model updating 
 

1. INTRODUCTION 
Despite considerable research efforts that Structural Health Monitoring (SHM) has received over the past decades, a 
robust and reliable method capable of detecting, locating and quantifying damage whilst being insensitive to changes in 
environmental and operating conditions has yet to be agreed upon. It appears that vibration based SHM methods are the 
most promising. While extensive literature reviews of such methods can be found elsewhere1, 2, the focus here is 
restricted to the problems and techniques relevant for this study, namely, the applications of time series methods, 
detection of seismic damage, and the use of Artificial Neural Networks (ANNs) for recognizing patterns in responses of 
healthy and damaged structures. 

Time series techniques appear to be inherently suitable to SHM because they were developed to analyse long sequences 
of data sampled at regular intervals, which are also often obtained in SHM exercises. However, the application of these 
techniques to SHM has yet to be fully explored. Examples of studies where time series models form the basis for 
choosing damage sensitive features include Sohn et al.3 who used Autoregressive (AR) models to fit the dynamic 
response of a concrete bridge pier. By performing statistical analysis on the coefficients of the AR models the authors 
were able to distinguish between healthy and damaged systems. A later study by Sohn et al.4 applied a similar 
methodology to health monitoring of a surface-effect fast patrol boat. However, the authors did not attempt to locate or 
quantify damage. Recently, Omenzetter and Brownjohn5 used a vector Seasonal Autoregressive Integrated Moving 
Average model to detect abrupt changes in strain data collected from the continuous monitoring of the Singapore-
Malaysia Second Link Bridge. The seasonal model was used because of the strong diurnal component in the data caused 
by temperature variations. Nair et al.6 used an Autoregressive Moving Average time series to model the vibration signal 
from the ASCE benchmark structure. The authors defined a damage sensitive feature used to discriminate between the 
damaged and undamaged states of the structure based on the first three AR coefficients. The localization of damage was 
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achieved by introducing another feature, also based on the AR coefficients, found to increase from a baseline value when 
damage was near. While the previous references were concerned with linear time series models, the use of non-linear 
time series for damage detection has also begun to attract attention7-9. For the classification of damage sensitive features 
various statistical3, 10 and pattern recognition techniques, such ANNs, have been used. The applications of ANNs for 
seismic damage detection have mostly been restricted to frequency domain data11, 12, although Nakamura et al.13 directly 
analysed time histories of seismic response of a building. 

The contribution of this study is the development of a method for seismic structural damage detection that integrates the 
use of AR models to establish damage sensitive features and application of ANNs for identification of damage presence, 
location and severity. 

Two damage detection approaches were considered: an offline and an online. The data used throughout the offline study 
were measured on a 3-storey, shear-type, laboratory structure mounted on a shake-table (Fig. 1). Several damage cases 
were introduced to the structure by replacing the columns with thinner ones and damage was considered to be a 
reduction in lateral stiffness. Concurrently, simple, analytical, proportionally damped mass-spring dynamic models for 
the structure were formulated for each damage state. The laboratory structure was excited by a suite of earthquake 
motions and accelerations at each floor were measured. Firstly, experimental modal analysis was performed on both the 
healthy and damaged structures and the identified modal parameters were used to update the computer models. From 
these models the lateral stiffness of each storey was estimated. The approach to damage detection was to fit the 
acceleration time histories from each storey of the structure in the undamaged and various damaged states with AR 
models. The coefficients of these AR models were chosen as damage sensitive features and used as inputs into an ANN. 
Two damage assessment exercises of increasing complexity were conducted. Initially, the ANN was trained to recognize 
changes in the patterns of the AR coefficients and generally classify damage into states. Secondly, the ANN was trained 
to quantify the damage at each storey in terms of remaining stiffness. 

This paper also reports on preliminary investigations on an online damage detection approach. A simple analytical model 
of a system with gradually progressing damage, modelled as time varying stiffness, was considered. Accelerations of the 
system were modelled using an AR model with eXogenous inputs (ARX). Because of the time-varying stiffness, the 
ARX model was identified recursively using a Kalman filter. An ANN was again used to map the changes in the ARX 
model coefficients into the changes in structural stiffness, but this time was expected to trace the stiffness changes 
online. In both offline and the online case the ANNs were shown to be able to detect and classify or quantify the damage 
with good accuracy. 

    
      (a)                (b)            (c) 

Fig. 1. Test structure: (a) general view, (b) detail of column-plate joint, and (c) dimensions and accelerometer 
locations. 
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2. THEORY 
Autoregressive models 

In this research, AR time series models are used to describe the acceleration time histories. AR models are a staple of 
time series analysis14 and are often used for modelling of stationary time series processes. A stationary process is a 
stochastic process, one that obeys probabilistic laws, in which the mean, variance and higher order moments are time 
invariant. AR models considered in this research are either output-only, i.e. pure AR formulations, or ARX models. AR 
models attempt to account for the correlations of the current observation in time series with its predecessors and also, in 
the case of ARX formulations, with known inputs. A univariate ARX model of order (p,q), or ARX(p,q), can be written 
as: 

 1 1 2 2 0 1 1... ...t t t p t p t k t k q t k q tx a x a x a x b u b u b u e− − − − − − − −= + + + + + + + +  (1) 

where xt,…xt-p are the current and previous values of the output series {xt} (t = 1,2,…n), ut-k,…ut-k-q are the values of the 
input series {ut} each shifted by a delay of k time periods, and {at} is a Gaussian white noise error time series with a zero 
mean. The ARX coefficients are denoted by a1,…ap, b1,…bp. Note that by assuming that all input coefficients in Eq. (1) 
are zero one obtains a pure AR(p) model. The ARX coefficients for time-invariant models can be evaluated using a 
variety of methods14. In this study, the coefficients were calculated using a least-squares solution. Given a series of n 
observations, Eq. (1) can be rewritten into matrix form: 

 = −e y Xφ  (2) 

where 
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 1 0

T

p qa a b b⎡ ⎤= ⎣ ⎦K Kφ  (6) 

In Eq. (2)-(6), e is an error vector, y is a vector containing the current outputs, X is a matrix of the previous outputs and 
inputs, and φ is a vector containing the p+q ARX coefficients. Superscript T denotes transpose. A least-squares solution 
seeks to minimize the sum of squared errors: 

 ( ) ( )TT = − −e e y X y Xφ φ  (7) 

Hence by differentiation of Eq. (7) with respect to vector φ  the ARX coefficients can be calculated from: 

 ( ) 1T T−
= X X X yφ  (8) 

Recursive identification using Kalman filter 

While the above least-squares scheme enables offline identification of time invariant AR models it does not explicitly 
address the problem of identification of systems that vary with time, e.g. as a result of gradually developing damage. 
Various recursive identification algorithm exist15, such as the forgetting factor or Prediction Error Method (PEM); in this 
study the popular Kalman filter is used16. 

Consider the following state space model: 

 t t t t= +y Z α ε  (9) 
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 1t t t t−= +α Tα η  (10) 

Equation (9) is referred to as the measurement equation, and Eq. (10) as the transition equation, respectively, where yt is 
the vector of outputs and αt is the vector of states. Matrices Zt and Tt are measurement and transition matrices, 
respectively. Vectors εt and ηt represent multivariate zero mean Gaussian disturbances with covariance matrices Ht and 
Qt, respectively. These disturbances can also be contemporaneously correlated, such that 

 ( ) ,
,
tT

t s

t s
E

t s
=⎧

= ⎨ ≠⎩

G
η ε

0
 (11) 

where E denotes the expected value operator. 

The optimal estimation at of the state vector αt conditional on the information available at time t can be obtained through 
recursive application of the following prediction equations: 

 | 1 1t t t t− −=a Ta  (12) 

 | 1 1
T

t t t t t t− −= +P T P T Q  (13) 

and updating equations: 

 ( ) ( )1
| 1 | 1 | 1

T
t t t t t t t t t t t t

−
− − −

⎡ ⎤= + + −⎣ ⎦a a P Z G F y z a  (14) 
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with 

 | 1
T T T

t t t t t t t t t t−= + + +F Z P Z Z G G Z H  (16) 

Matrix Pt is the covariance matrix of the estimation error: 

 ( )( )1 | 1 1 | 1

T

t t t t t t tE − − − −
⎡ ⎤= − −⎢ ⎥⎣ ⎦

P α a α a  (17) 

Taken together, Equations (12)-(16) form the Kalman filter. 

For the purpose of identification of coefficients of the ARX model of Eq. (1), the output and state vectors were 
respectively defined as follows: 

 t tx=y  (18) 

 t t=α φ  (19) 

where xt and φt are defined in Eq. (1) and Eq., (6) respectively. In Eq. (19), superscript t emphasizes that ARX 
coefficients can vary with time. The transition equation (Eq. (10)) was assumed in the following, so-called random walk 
form14: 

 1t t t−= +α α η  (20) 

The rationale behind this choice was that under the null hypothesis the parameters of the system are assumed not to 
change with time, except for some stochastic uncertainty in their identification. 

Artificial Neural Networks 

To classify damage sensitive features of the signals, in this case AR coefficients, coming from the undamaged and 
damaged structure ANNs are used. ANNs are structures deliberately designed to utilize the organizational principles 
found in the brain. ANNs are capable of pattern recognition, classification and function approximation tasks and have 
been used extensively in civil engineering field17. ANNs utilizing the supervised error Back-Propagation (BP) training 
algorithm18 are commonly referred to as BP neural networks. BP networks are the most popular ANN and have been 
used in this study. The structure of a single hidden layer BP network is shown in Fig. 2, where x and o are the input and 
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output vectors respectively. The so-called bias inputs into the hidden and output layers have been represented by solid 
squares and both have the value of +1. The weights for the whole network, denoted by vector w, store information as in 
the brain and are learnt during the training process. 

The basic function of a single neuron in either the hidden or output layers is to calculate the weighted sum of all inputs u: 

 Tu = v x  (21) 

and compute the neuron output y: 

 ( )y f u=  (22) 

where the weights vector for the single neuron has been denoted by v to avoid confusion with w that contains the weights 
for all neurons, and f is the neuron’s activation function. The total error E in the network is a function of the weights and 
can be written as: 

 ( ) ( ) ( )1
2

TE =w e w e w  (23) 

where e(w) is an error vector defined by: 

 ( ) ( )= −e w d o w  (24) 

and d is the vector of target values or desired network outputs. In the training phase, the network calculates the output for 
a given input and the error is propagated backwards from the output layer to the preceding layers according to the BP 
algorithm. In the original algorithm a gradient descent methods was used to alter the weights so that the error was 
minimized. In this study a modified algorithm was used in which the weights were changed according to the Levenberg-
Marquardt algorithm19, a quasi-Newton method developed specifically for the sum of errors squared error function. The 
algorithm’s application to the original BP algorithm is described in20. Introducing the Jacobian matrix J defined as: 

 ( ) ∂
=
∂

eJ w
w

 (25) 

The new weights can be found through the application of the following iterative process: 

 
1

1
T T

k k k k k k kλ
−

+ ⎡ ⎤= − +⎣ ⎦w w J J I J e  (26) 

where subscript k denotes the iteration step. The parameter λk is a scalar that controls convergence properties. If λk is 
equal to zero, the Levenberg-Marquardt algorithm becomes the Gauss-Newton method. 

 
Fig. 2. A single hidden layer ANN. 
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Modal identification 

Although the proposed damage identification method does not use modal parameters as damage sensitive features, 
experimental modal analysis was conducted in order to obtain an insight into the system dynamics and to estimate modal 
parameters for updating of the computer models of the experimental structure in various damage states. The natural 
frequencies, viscous damping ratios and mode shapes of the test structure were determined from system identification of 
a discrete state-space model. A discrete state space model at time step k can be written as follows: 

 1k k k

k k k

+ = +
= +

x Ax Bu
y Cx Du

 (27) 

where xk, uk and yk are respectively the state, input and output vectors at time k, and A, B, C and D are system matrices 
to be determined in the identification process. In this case, the output vector was the three storey accelerations and the 
input vector was the table acceleration. The PEM identification algorithm implemented in the system identification 
toolbox in MATLAB21 was used to estimate the system matrices A, B, C and D. 

Model updating 

In order to match experimental results, analytical modals can be updated on a range of experimental data including 
natural frequencies, mode shapes and frequency domain data22. Natural frequencies are often the most certain modal 
parameters obtained from modal analysis and are often used in the model updating process, as in this study. The error ei 
between the analytical and experimental frequencies, ωa,i and ωe,i, can be expressed as an error vector: 

 
2 2
, ,

2
,

a i e i
i

e i

ω ω
ω
−

=e  (28) 

where subscript i refers to i-th mode. The analytical frequencies depend on a set of parameters, such as masses and 
member stiffnesses, denoted by vector θ, that define the model. In the updating process, the vector of errors for all 
considered modes e is minimized by an iterative procedure where the updating parameters θk at iteration step k are 
adjusted using: 

 1k k kk+

+= −S eθ θ  (29) 

where S+ is the pseudoinverse of the sensitivity matrix whose entries can be evaluated as: 

 2
, , ,2

,

1 T
ij a i a i a i

j ja i

ω
ω

⎡ ⎤∂ ∂
= −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

K MS φ φ
θ θ

 (30) 

where K and M are the stiffness and mass matrices and φa,i are the analytical mode shape vectors. 

 

3. TEST STRUCTURE AND DATA ACQUISITION 
The test structure used in this study was approximately 2.1m high and constructed from equal angle aluminium column 
sections and stainless steel floor plates bolted together with aluminium brackets as shown in Fig. 1. The stainless steel 
plates were 4mm thick and 650mm × 650mm square. The column sections were 30mm × 30mm equal angles. Two 
section thicknesses were used for the columns, either 3mm or 4.5mm for the damaged and undamaged states 
respectively. Each column was made of 3 × 0.7m high segments, rather than one long angle, in order to make them easily 
replaceable for simulation of localized damage at different stories. The column sections were fastened at each end with 
two M6 bolts to aluminium brackets. (Fig. 1b). Additional brackets were installed at the base of the structure to minimize 
torsional motion. The whole structure was mounted on a 20mm plywood sheet bolted with M10 bolts to the shake table. 

The structure was instrumented with four 2.5Vg-1 uniaxial accelerometers, one for measuring the table acceleration and 
one for each storey. Accelerations were measured in the direction of ground motion at 400Hz using a computer fitted 
with a data-logging card. All data was filtered with a zero phase shift 50Hz low pass filter. Afterwards the data was 
decimated by a factor of four for modal analysis and eight for time series modelling. This reduced the original 400Hz 
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signal down to 100Hz and 50Hz respectively. The decimate procedure implemented in MATLAB23 uses an eight order 
Chebyshev Type I lowpass filter with cutoff frequency (0.8/R)×(Fs/2), where Fs is the initial sampling frequency and R is 
the decimate factor, before resampling the data. The decimate process improved the quality of the data by further 
removing high frequency noise. 

 

4. OFFLINE DAMAGE DETECTION ON THE TEST STRUCTURE 
Preliminary tasks: modal identification, model updating and time series analysis of accelerations 

The proposed offline method was applied to damage detection in the 3-storey test structure. Firstly, the modal parameters 
for the undamaged structure were estimated from five response records, containing four 10s and one 20s record. In all 
cases, the excitation or input was Gaussian white noise. Table 1 shows the estimated experimental natural frequencies fe 
and damping ratios ξ obtained from the five intervals. The lower and upper bounds correspond to two standard 
deviations or 95% confidence levels. It can be seen that while natural frequencies show little error, the damping ratios 
were much more uncertain. The modes shapes were estimated from the 20s record only. Table 2 gives the normalized 
mode shapes for a maximum value of 1.00. 

Damage was introduced into the structure by replacing all four columns at a particular storey (or stories) with thinner 
ones. Four damage states were considered; these were labelled D0, D1, D2 and D3 corresponded to no damage (i.e. 
healthy structure), 1st storey damage, 2nd storey damage, and simultaneous 1st and 2nd storey damage, respectively. Modal 
experiments and analyses, similar as for the healthy structure (damage state D0) were conduced and Table 3 lists the 
experimental frequencies fe in all four damage states. Table 3 also gives percentage changes of the frequencies ∆fe in 
states D1, D2, and D3 in relation to D0. 

In this study, the lateral stiffness of the structure in both the damaged and undamaged states could not be accurately 
determined from analytical investigations and accurate computer models set up. Initial experiments showed that the 
stiffness was much smaller than it would appear taken into account sectional properties of the columns and Young’s 
modulus of aluminium. It was, however, observed that the structure lost it stiffness because of the way the column-floor 
joints were constructed (Fig. 1b). The use of relatively flexible mounting brackets combined with the lack of continuity 
of the column over the joint led to a considerable lateral stiffness loss. Precise analytical calculation of the stiffness of 
the joint was difficult. However, the knowledge of stiffness values is very useful when one wants to quantify 
experimental damage more accurately as a reduction in stiffness. 

Table 1. Identified frequencies and damping ratios for healthy structure. 

Mode fe (Hz) ξ (%) 
1st 1.928±0.006 0.6±0.2 
2nd 5.52±0.02 0.6±0.2 
3rd 8.55±0.04 0.8±0.4 

 
Table 2. Normalized mode shapes for healthy structure. 

Storey Mode 1 Mode 2 Mode 3 
1st 0.18 0.64 1.00 
2nd 0.69 1.00 -0.48 
3rd 1.00 -0.88 0.16 

 
Table 3. Natural frequencies and percentage changes at different damage states. 

 fe (Hz) ∆fe (%)a 

Mode D0 D1 D2 D3 D1 D2 D3 
1st 1.928 1.879 1.837 1.840 -2.5% -4.7% -4.6% 
2nd 5.52 5.43 5.46 5.42 -1.6% -1.0% -1.8% 
3rd 8.55 8.30 8.09 8.15 -2.9% -5.3% -4.6% 

aBased on D0. 
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For the purpose of experimental stiffness estimation, simple 3-storey lumped mass-spring analytical models were 
updated on the experimental natural frequencies obtained from the experimental modal analysis. The updating 
parameters were chosen to be the lateral stiffness of each storey k1, k2, and k3. The initial stiffnesses were estimated by 
rough hand calculations giving 9300N/m for k2 and k3. Because of the additional brackets placed at the base of the 
structure, k1 was expected be significantly greater than k2 or k3, and a value for k1 of 40000N/m was used. Additionally, 
after the updating process was complete, the analytical mode shapes were checked against the experimental mode shapes 
using the popular Modal Assurance Criterion (MAC)22. Table 4 lists the results from the updated analytical models. The 
analytical frequencies fa are very close to their experimental counterparts reported previously in Table 3. The MAC 
values show excellent correlation for the 1st mode and the 2nd and 3rd modes show good correlation. The obtained storey 
stiffnesses are given in Table 5. Finally, Table 6 quantifies damage at each storey for all damage stases D0-D4 as the 
percentage of remaining stiffness. 

For the purpose of simulating structural response, eight scaled earthquake records were used to excite the test structure 
on the shake table in the four damage states. Table 7 lists the earthquakes used, the peak ground acceleration (PGA) of 
the original and scaled records, the duration of the record and the frequency at which the earthquake was sampled. The 
earthquakes were scaled so that a range of response amplitudes was obtained, while ensuring no yielding of the structure 
occurred. 

Table 4. Analytical frequencies and MAC values after updating. 

 D0 D1 D2 D3 
Mode fa (Hz) MAC fa (Hz) MAC fa (Hz) MAC fa (Hz) MAC 

1st 1.917 1.00 1.908 0.99 1.846 1.00 1.838 0.99 
2nd 5.49 0.93 5.47 0.93 5.46 0.91 5.45 0.96 
3rd 8.54 0.93 8.28 0.93 8.46 0.90 8.20 0.91 

 
Table 5. Updated stiffnesses from analytical models. 

Stiffness Initial estimate D0 D1 D2 D3 
k1 (N/m) 4.00×104 3.77×104 3.49×104 3.77×104 3.49×104 
k2 (N/m) 0.93×104 0.60×104 0.60×104 0.54×104 0.54×104 
k3 (N/m) 0.93×104 0.77×104 0.77×104 0.77×104 0.77×104 

 
Table 6. Damage at each storey as the percentage of remaining stiffness. 

 Percentage of remaining stiffness (%) 
 D0 D1 D2 D3 

1st storey 1.00 0.93 1.00 0.93 
2nd storey 1.00 1.00 0.90 0.90 
3rd storey 1.00 1.00 1.00 1.00 

 
Table 7. Earthquake records used in the experiment. 

Earthquake PGA (g) Scaled PGA (g) Duration (sec) Sampling frequency (Hz) 
Duzce 12/11/1999 0.535 0.027 25.885 200 

Erzincan 13/3/1992 0.496 0.033 20.780 200 
Gazli 17/5/1976 0.718 0.048 16.265 200 

Helena 31/10/1935 0.173 0.035 40.000 100 
Imperial Valley 19/5/1940 0.313 0.031 40.000 100 

Kobe 16/1/1995 0.345 0.035 40.960 100 
Loma Prieta 18/10/1989 0.472 0.047 39.945 200 

Northridge 1/17/1994 0.568 0.038 40.000 50 
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The acceleration time history of each storey was modelled using a univariate AR model. A univariate AR(12) model was 
determined to give both a sufficient fit to the acceleration data and no significant correlation in the residual errors. The 
AR coefficients were estimated from a 500-point window advancing 100 points until the end of the record was reached. 
The least-squares approach described before was used to calculate the AR coefficients. A data set of 388 points 
containing 97 points for each damage state was obtained and randomly divided into 300 points for training and 88 points 
for testing the ANNs. As an example, Fig. 3 shows the statistical distribution (histogram) of the 1st AR coefficient from 
the 1st storey in the D0 and D1 damage states. To the naked eye, both distributions appear to be bi-modal with noticeable 
changes between them. However, precise detection of damage as well as extraction of further information e.g. the 
location or extent of damage, will require more robust and reliable tools such as an ANN. 

Simple damage classification 

Initially, an ANN was trained to distinguish between the four damage states only. The damage states D0, D1, D2 and D3 
were assigned the vector outputs [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T and [0 0 0 1]T respectively. A single hidden layer ANN 
with 5 hidden layer neurons was found to give excellent results with 100% correct classification. 

Damage quantification and localization 

In this section, the ANNs were trained to relate the AR coefficients to the remaining stiffness at each storey, providing 
more useful information about the extent and location of damage. The damage at each storey, listed in Table 6, was 
defined as the current stiffness divided by the undamaged stiffness. 

A single hidden layer ANN with 5 hidden layer neurons was found to give good predictions. The results have been 
shown graphically in Fig. 4, where the detected damage has been plotted against the actual damage for all three stories. 
For perfect predictions, the data points should lie on (0.93,0.93) and (1.00,1.00) for the 1st storey, (0.90,0.90) and 
(1.00,1.00) for the 2nd storey and (1.00,1.00) for the 3rd storey. The figure shows that the ANN has correctly detected the 
damage at each story with a small amount of scatter about the actual damage. 

 

 
Figure 3. Histograms of the 1st AR coefficient from the 1st storey: (a) damage state D0, and (b) damage state D1. 
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5. NUMERICAL SIMULATIONS OF ONLINE DAMAGE DETECTION METHOD 
This section presents preliminary numerical results of the online damage detection method. The approach proposed is as 
follows. The training of an ANN to recognize changes in stiffness is performed offline where the input comprises ARX 
coefficients of the acceleration time series also identified online. However, once the ANN has been trained the system is 
subjected to a ground motion and unknown gradual stiffness degradation, the ARX coefficients are identified recursively 
using a Kalman filter, and the ANN is expected to trace stiffness loss as it progresses with time. The use of ARX models 
rather than previously employed pure AR models was motivated by the results of preliminary simulations which showed 
a rather poor performance of the AR models for the online method. 

The proposed online scheme was applied to a single degree of freedom (SDOF) system. The system had a mass of 
m=1×104 kg, a lateral stiffness of k = 1×106 N/m and a viscous damping ratio of ξ = 0.05. This gave a natural period of 
0.63s. For the purpose of ANN training, four levels of damage were investigated; 1 (no damage), 0.8, 0.6 and 0.4 times 
the original stiffness. The SDOF system was subjected to excitation by white noise and 1000-point response time 
histories were fitted using an ARX(2,4) model with a time delay k of 1. 5% Gaussian noise was added to the time 
histories. 200 samples of ARX coefficients were calculated for each damage state using the offline least-squares method. 
The 800-point data set was randomly divided into 600 points for ANN training and the remaining 200 points were used 
to test the ANN. The ANN was trained to relate the ARX coefficients to the reduction in stiffness. 

To test the ANN and detect damage on online data, the SDOF system was simulated with a linear reduction in stiffness 
over a 200-point interval in the middle of a 6000-point response. Again, 5% Gaussian noise was added to the time 
history. The ARX coefficients were calculated using the Kalman filter and fed into the ANN, trained previously, to give 
an online estimate of damage. In the example, a 0.8 reduction in stiffness was simulated. Figure 1 shows the detected 
damage closely tracks the simulated value after some initial lag at the onset of damage. 

The results showed that ARX models and the Kalman filter were excellent tools for tracking changes in a SDOF system 
over time. Incorporated with an ANN, this information was able to be successfully interpreted as damage. 

 
Figure 4. Detected vs. actual damage (a) 1st storey, (b) 2nd storey, and (c) 3rd storey. 
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6. CONCLUSIONS 
In this study, a damage detection and localization method using AR models and ANNs has been developed. The method 
firstly identifies AR or ARX models for acceleration time histories, uses the coefficients of these models as damage 
sensitive features, and feeds them into an ANN to build a relationship between them and the remaining stiffness of the 
damaged structure. An offline variant of the method has been applied to a 3-storey laboratory structure with various 
damage scenarios simulated by stiffness reduction. Acceleration time histories of the structure under earthquake motion 
were recorded on a shake table. An online version where time series coefficients and damage are identified recursively 
has been preliminarily investigated through numerical simulations. The proposed method has been demonstrated to be 
able to classify and detect and track damage with very good accuracy. 
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