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ABSTRACT 

 A method for computing the dynamic responses due to the interaction of two non-self-

adjoint systems: a linear, one-dimensional (1D) continuum and a linear, multi-degree-of-

freedom (MDOF) oscillator travelling over the continuum, is presented. The solution method 

is applicable to a broad class of 1D continua, whose dynamics may be governed by various 

linear operators and subjected to different boundary conditions. The problem is reduced to the 

integration of a system of linear differential equations with time dependent coefficients. These 

coefficients are found to depend on eigenvalues as well as eigenfunctions and eigenvectors of 

the continuum and the oscillator. Two examples are included, representing bridge and railway 

track vibrations, to demonstrate the application of the method and discuss its convergence. 

 

Keywords: vehicle-bridge interaction, moving oscillator, non-self-adjoint operator, 

bridge vibrations, railway track vibrations
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1. INTRODUCTION 

 The dynamic response of flexible structures due to moving loads is an important issue 

in engineering. The problem is relevant in vehicle dynamics, studies of band and circular saw 

blades, machine chain and belt drives, computer hard drives and many other applications. 

Among civil engineering applications are analyses of dynamic response of railway, roadway 

and pedestrian bridges due to traffic loads, and studies of roadway pavements, railroad tracks, 

airport runways, cable railways, floors etc. A large amount of analytical research has been 

devoted to the topic, e.g., [1]-[9]. In early studies, vehicle loads were represented as moving 

constant or time-varying forces, a moving mass, or a moving sprung mass. Later, more 

sophisticated multi-degree-of-freedom (MDOF) models were proposed, and the various linear 

as well as non-linear stiffness and damping characteristics of vehicles were considered. The 

development of fast computers also facilitated a much more detailed modelling of bridges and 

other structures through the use of Finite Element Method (FEM). From the point of view of 

computational effort, the modal based techniques are especially attractive. In the modal 

analysis process, one can naturally truncate the number of modes and thus prevent excessive 

computational burden, whereas FEM based modelling may lead to a large computational load, 

especially when two or three-dimensional structural models need to be analyzed. Such 

methods are also useful as a tool for checking and evaluating FEM solutions. However, most 

of the studies using the modal approach have developed ad hoc solutions valid only for 

particular types of structural and vehicle models considered. Little analytical work is available 

on the development of a general modal expansion technique capable of resolving the 

interaction problem for a broader class of models. 

 Pesterev and Bergman [10] considered the problem of the vibrations of a general 

category of linear, conservative, one-dimensional (1D) continua carrying a moving, linear, 
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conservative, one-degree-of-freedom (1DOF) oscillator. They established the solution of the 

interaction problem in the form of a series in terms of the eigenfunctions of the isolated 

continuum. The time dependent factors of the expansion were demonstrated to obey a system 

of linear differential equations with time dependent coefficients. These coefficients turned out 

to depend on natural frequencies and eigenfunctions of the isolated continuum, mass of the 

oscillator, and stiffness of the interaction spring. This method can be used to examine any 1D 

linear conservative continuum, regardless of the governing equation of motion or boundary 

conditions. Later, the authors expanded their method ([11]), which enabled the investigation 

of the interaction problem for non-conservative, non-self-adjoint continua as well. However, 

these derivations were limited to the conservative vehicle-structure interaction forces and 

1DOF vehicle model, making the obtained method only of limited usefulness in practical 

application to design and analysis. Omenzetter and Fujino ([12]) extended the work of 

Pesterev and Bergman and obtained solutions for a moving MDOF oscillator, where both the 

continuum and the oscillator were assumed to be self-adjoint, classically damped systems. 

Their solution employed modal decomposition for both the continuum and the oscillator, 

which was a unique approach compared to the existing previous studies. 

The novel contribution of the present study is the consideration of a non-self-adjoint 

continuum and a non-self-adjoint MDOF vehicle model, interacting with the continuum at 

several contact points through linear elastic and viscous forces. The solution of the structure-

vehicle interaction problem is obtained in terms of a modal expansion using eigenfunctions 

and eigenvectors of the isolated continuum and oscillator, respectively. The primary challenge 

was that for non-self-adjoint operators the direct and adjoint eigenvalue problems yield 

different sets of eigenfunctions or eigenvectors and these are furthermore complex valued. 

The problem of computing the time dependent terms of the modal expansion is reduced to the 
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integration of a system of linear differential equations with time dependent real coefficients. 

The coefficients of these equations are derived in terms of the complex eigenvalues as well as 

eigenfunctions and eigenvectors of the isolated continuum and the MDOF oscillator, and 

stiffness and damping of the interaction elements. The obtained analytical method is applied 

to two numerical examples, i.e., bridge and railway track vibrations, which demonstrate its 

use and study convergence. 

 

2. THEORY 

2.1. Problem Formulation 

 In a study of the vehicle-structure interaction, two equations of motion can be written 

for the isolated continuum and the isolated moving oscillator, respectively. These equations 

are coupled due to the presence of interaction forces at the contact points. A 1D continuous 

system and a MDOF oscillator moving over it are shown Fig. 1. The part of the system that is, 

for illustrative purposes, confined within dashed boundaries and consists of those masses, 

springs and dashpots that are not in a direct contact with the continuum is referred to as the 

vehicle model or oscillator. Those springs and dashpots that are in a direct contact with the 

continuum are referred to as the interaction elements. The locations on the continuum are 

described by variable x , and the continuum occupies the interval Lx0 , where L  is the 

length of the continuum. The lateral deflections of the continuum at location x  and time t  are 

described by a function txuc , , while 0,xuc  and 0,xuc  are initial displacements and 

velocities, respectively. Distributed external forces acting on the continuum are denoted 

by txfc , . The displacements of the vehicle under the action of external forces, tfv , are 

denoted by a vector tuv , while 0vu  and 0vu  are initial conditions. (Note that the 
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mathematical formulations presented herein treat both differential operators/matrices and 

functions/vectors in the same way as operators and objects in their respective vector spaces. 

To emphasize this, the more traditional notational convention of using bold characters for 

matrices and vectors has been dispensed with.) The derivation of a continuum-vehicle 

interaction governing equation of motion was described in detail in [12]; in this paper, a 

shortened form of problem formulation is given. The equation of motion can be succinctly 

expressed in the following form ([12]): 

 *ˆ ˆ ˆ ˆA L u F P  (1) 

where the symbols introduced in Eq. (1) are as follows: 

 
v

c

A
AA ˆ0

0ˆˆ , Ttxcvx
ˆˆ , 

T
cvx

T
txˆˆ * , 

dt
dCKL cvcv

ˆ  (2a-d) 

 TT
vc tutxuu , , TT

vc tftxfF , , TT
vc tPtxPP ,  (2e-g) 

The asterisk denotes an adjoint operator, and superscript “T ” a transposition of a vector or 

matrix. Operators cÂ  and vÂ  govern the motion of the isolated continuum and oscillator, 

respectively, and can be written as follows: 

 txuK
t

txuC
t

txuMtxuA cc
c

c
c

ccc ,ˆ,ˆ,ˆ,ˆ
2

2

 (3a) 

 tuK
dt

tduC
dt

tudMtuA vv
v

v
v

vvv 2

2
ˆ  (3b) 

cM̂ , cĈ  and cK̂  are spatial linear differential operators, whereas vM , vC  and vK  are square 

matrices. Operators cM̂  and vM  are positive definite. Operators cĈ  and vC  describe the 

effects of damping and gyroscopic forces, while cK̂  and vK  these of stiffness and circulatory 
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forces. Operators ˆ , *ˆ  and L̂  describe the coupling between the continuum and oscillator. 

Operators ˆ  and its adjoint *ˆ  consist of the sensor operator, txcvx
ˆ , and the effector 

operator, txcvx
ˆ , as well as matrix T  that transforms the displacements of the oscillator 

into the displacements resulting in interaction forces. The sensor and effector operators form 

an adjoint operator pair and have the following forms ([13]): 

 T
Ncvxcvxcvx txtxtx

cv,1, ˆˆˆ  (4a) 

 txxtxxtxtx
cvNcvcvcvxcvx ,1,

*ˆˆ  (4b) 

where 0ˆ xx  is an assignment operator acting on a function xz  as follows: 

 00ˆ xzxzxx  (5) 

and  denotes the Dirac delta function. In Eq. (4), txcv  is the vector of contact point 

locations of size cvN . Operator L̂  defined in Eq. (2d) accounts for the stiffness and damping 

of the interaction elements, where cvK  and cvC  are their stiffness and damping matrices, 

respectively. 

Vector P  describes the inputs to the coupled system due to the initial conditions and 

can be found as 

 *ˆˆ ˆ,0 ,0 0 0 ,0cv cv cvP M t u x M t u x C x C x t u x,,0ˆ,u x,0  (6) 

where 

 
v

c

M
MM ˆ0

0ˆˆ , 
v

c

C
CC
0

0ˆˆ  (7a, b) 
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2.2. Eigenvalue Problems 

This study attempts to establish a solution for the interaction problem in the form of a 

modal expansion using eigenvalues as well as eigenfunctions of the continuum and 

eigenvectors of the oscillator. Therefore, to lay the ground for subsequent derivations in this 

section the eigenvalue problems are formulated and the properties of the eigenfunctions and 

eigenvectors important for this study are discussed. 

 The direct and adjoint eigenvalue problems associated with the equation of motion of 

the isolated continuum can be written as follows: 

 0ˆˆˆ
,,

2
, xKCM kccckcckc , ,2,1k  (8a) 

 0ˆˆˆ
,

**
,

2
, xKCM kccckcckc , ,2,1k  (8b) 

where the overbar denotes complex conjugation, kc,  is the k-th eigenvalue, and xkc,  and 

xkc,  are eigenfunctions of the direct and adjoint eigenvalue problem, respectively. It is 

useful to extend the domain over which the eigenfunctions are defined to all real numbers, 

x , by assigning to the eigenfunctions values of zero outside the interval 0 x L . 

Having done so, all the formulas are the same irrespective of the current location of the 

oscillator ([12]). The eigenvalues and eigenvectors possess the following properties: 

kckc ,, , xx kckc ,,  and xx kckc ,, . In general, the eigenvectors are 

complex and nonorthogonal, however, the following normalization condition ([14]) for 

xkc,  and xkc,  holds: 

 , , , ,2
0 0,

1ˆ ˆd d 2
L L

c k c c k c k c c k
c k

x M x x x K x x  (9) 
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Likewise, the direct and adjoint eigenvalue problems associated with the equation of 

motion of the isolated vehicle are: 

 0,,
2

, kvvvkvvkv KCM  (10a) 

 0,,
2
, kv

T
v

T
vkvvkv KCM  (10b) 

Among the eigenvalues which satisfy Eq. (10), there are non-zero-valued ones corresponding 

to vibratory modes and denoted by kvv,  ( vvNk ,,2,1 ), as well as zero-valued ones 

corresponding to rigid body modes and denoted by kvr ,  ( vrNk ,,2,1 ). The corresponding 

eigenvectors are kvv,  and kvv, , and kvr ,  and kvr , . The conjugate properties of the 

eigenvalues and eigenvectors of the generally complex vibratory modes are the same as those 

of the continuum modes, i.e., kvvkvv ,, , kvvkvv ,,  and kvvkvv ,, ; whereas the 

eigenvectors of the rigid body modes are all real. The eigenvector normalization condition 

takes the following forms: 

 21
,,2

,
,, kvvv

T
kvv

kvv
kvvv

T
kvv KM  (11a) 

for the vibratory modes, and 

 1,, kvrv
T

kvr M  (11b) 

for the rigid body modes, respectively. 

2.3. Solution by Reduction to Ordinary Differential Equations 

 The solution of the interaction problem [Eq. (1)] is given by the following formula: 

 PFLAu
1* ˆˆˆˆ  (12) 

The inverse operator appearing in Eq. (12) can be found as ([15]): 
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1

* 1 1 * 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆA L A A L A  (13) 

where the characteristic operator, ˆ , is given as 

 1 *ˆˆ ˆ ˆ ˆˆ I L A  (14) 

The inverse of operator Â  describing the vibrations of the isolated subsystems is: 

 
1

1
1

ˆ0
0ˆˆ
v

c

A
AA  (15) 

To evaluate the operators 1ˆ
cA  and 1ˆ

vA , a modal expansion of the Green function ([14]) can be 

used, leading to the following formulas: 

 ,1
, ,

1 ,0

1 1ˆ , d d
2

c k

t
t

c c k c k c
k c k

A e x f  (16a) 

 ,1
, , , ,

1 1,0 0

1 1ˆ d d
2

vv vr
vv k

t tN N
t T T

v vv k vv k v vr k vr k v
k kvv k

A e f t f  (16b) 

Introduce the notation for the following modal quantities: the modal external forces 

 , , , dc k c k cQ t x f x t x , ,2,1k  (17a) 

 tftQ v
T

kvvkvv ,, , vvNk ,,2,1  (17b) 

 tftQ v
T

kvrkvr ,, , vrNk ,,2,1  (17c) 

the modal initial displacements and velocities 

0, ,2
,

1 ˆ ,0 dc k c k c c
c k

q x K u x x , 0, ,
ˆ ,0 dc k c k c cq x M u x x0, ,
ˆ 0 dc k c k c c0, ,q x M u x x,0 ddc k c cc,c k0, , ,2,1k (18a, b) 

 01
,2

,
,0 vv

T
kvv

kvv
kvv uKq , 0,,0 cv

T
kvvkvv uMxq , vvNk ,,2,1  (18c, d) 
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 0,,0 vv
T

kvrkvr uMq , 0,,0 cv
T

kvrkvr uMxq , vrNk ,,2,1  (18e, f) 

and the modal inputs due to the initial conditions 

,
, , 0, 0, , 0, 0,

1, , ,

, 0, 0, , 0,
1 1,

01 1 10
2

1 1 , 1,
2

vv vr

T

x cv c k cv
c k c k c k c k x cv c j c j c j

jc k c k c j

N N

vv j vv j vv j vr j vr j
j jvv j

x x C
R t q q x x q q

T q q T q t k

1 100 1 q q1111, x q11q qq ,x cv c k cv,,cvcv xx 0xxx 0 j0, 0,0,0,0,,,,, j0q000x q 000, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0 00 000 00 00q qqk kk k0 000 0 xxx 00 c j c j0, 0,0,
12 j,,
12 j

0, 0,0, 0,

q q0, 00,0, 00,0, 00,0,0 0000 000q q0 000 000, 00,, 2,

  (19a) 

,
, , 0, 0, , 0, 0,

1, , ,

, 0, 0, , 0,
1 1,

1 1 10
2

1 1 , 1, 2
2

vv vr

T T
vv k cv

vv k vv k vv k vv k x cv c j c j c j
jvv k vv k c j

N N

vv j vv j vv j vr j vr j
j jvv j

T C
R t q q x x q q

T q q T q t k

1 11 q11 11 x q11q q ,vv k cv, 0x 0 j0, 0,0,0,0,0,,,,,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, c j0q0000 00 000 00 00 x q 00q qqk kk k0 000 0 xxx 00 c j c j0, 0,0,
12 j,,
12 j

0, 0,0, 0,

q q0, 00,0, 00,0, 00,0,0 0000 000q q0 000 000, 00,, , , vvN, vvNv

 

  (19b) 

 

, 0, 0, , , 0, 0,
1 ,

, 0, 0, , 0,
1 1,

1 10
2

1 1 , 1, 2, ,
2

vv vr

T T
vr k vr k vr k vr k cv x cv c j c j c j

j c j

N N

vv j vv j vv j vr j vr j vr
j jvv j

R t q t q T C x x q q

T q q T q t k N

qt
12 j,
12 j

,0, ,0, ,,0, ,,
111T TT TCT T 1x1T CT T

k k0 x 0 1 q11 q1x 00 j0, 0,0,0,0,0, c j0q000q 0c j c j0, 0,0,q

q q0, 00,0, 00,0, 00,0,0 0000 000q q0 000 000, 0, vrNv,

 

  (19c) 

Introduce the notation 

 tyPFAL 11 ˆˆˆˆ  (20) 

Function ty  can be recognized as the vector of interaction forces acting upon the 

continuum at the contact points with the oscillator ([12]). The modal interaction forces can 

now be defined as 

 , ,

T

c k x cv c kY t x t x y t , ,2,1k  (21a) 

 tyTtY TT
kvvkvv ,, , vvNk ,,2,1  (21b) 
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 tyTtY TT
kvrkvr ,, , vrNk ,,2,1  (21c) 

New variables, or modal coordinates, are defined as 

 ,
, , , ,

0 ,

1 dc k
t

t
c k c k c k c k

c k

q t e Q R Y , ,2,1k  (22a) 

 ,
, , , ,

0 ,

1 dvv k
t

t
vv k vv k vv k vv k

vv k

q t e Q R Y , vvNk ,,2,1  (22b) 

 , , , ,
0

d
t

vr k vr k vr k vr kq t t Q R Y , vrNk ,,2,1  (22c) 

Differentiating Eqs. (22a, b) with respect to t  once and Eq. (22c) twice, one obtains the 

following first or second order differential equations, respectively, satisfied by the modal 

coordinates: 

 
kc

kckckc
kckckc

tYtRtQ
tqtq

,

,,,
,,, , ,2,1k  (23a) 

 
kvv

kvvkvvkvv
kvvkvvkvv

tYtRtQ
tqtq

,

,,,
,,, , vvNk ,,2,1  (23b) 

 tYtRtQtq kvrkvrkvrkvr ,,,, , vrNk ,,2,1  (23c) 

Expanding Eq. (20) and using the modal coordinates yields the formula for the interaction 

forces: 

 

, , , , , ,
1 1 1

, , , , , ,
1 1 1

,
,

1 1
2 2

1 1
2 2

1
2

vv vr

vv vr

N N

cv x cv c k c k vv k vv k vr j vr k
k k k

N N

cv x cv c k c k vv k vv k vr j vr k
k k k

x cv c k
cv c k

y t K x t x q t T q t T q t

C x t x q t T q t T q t

d x t x
C q t

dt

1 vv vrN Nvv v

q tvr j vr kT vT
2 v j k, ,, k, ,,vr j vr k, ,,
1

c k vv k vv k
11 TT1q t T q tT q tc k vv k vv kc k vv k vv kT1
2 , ,, ,, ,2,, , ,, ,, ,,, , ,, ,, ,,,c k vv k vv k, ,, ,, ,2,,

1k

 (24) 
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Using Eq. (24), the modal interaction forces can be obtained [Eq. (21)] and substituted into 

Eq. (23) yielding a set of linear ordinary differential equations with time dependent 

coefficients for the modal coordinates. Additionally, the modal input terms due to initial 

conditions [Eq. (19)] can be recognized to be equivalent to the initial conditions for the 

unknown modal coordinates: 

 kckc
kc

kc qqq ,0,0
,

,
10 , ,2,1k  (25a) 

 kvvkvv
kvv

kvv qqq ,0,0
,

,
10 , vvNk ,,2,1  (25b) 

 kvrkvr qq ,0, 0 , kvrkvr qq ,0, 0 , vrNk ,,2,1  (25c, d) 

Thus, the final set of equations for the modal coordinates is as follows: 

 , ,
, , ,

, ,

T

x cv c k c k
c k c k c k

c k c k

x t x Q t
q t q t y t,c,q tc k c, ccc , ,2,1k  (26a) 

 , ,
, , ,

, ,

T T
vv k vv k

vv k vv k vv k
vv k vv k

T Q t
q t q t y t,vv,q tvv k, , vvNk ,,2,1  (26b) 

 , , ,
T T

vr k vr k vr kq t T y t Q t,vr ,q tvr k, , vrNk ,,2,1  (26c) 

and the initial conditions are given by Eq. (25).  

Expanding Eq. (12) and substituting into it Eq. (22), the solution for the interaction 

problem, i.e., the response of the continuum and vehicle, can be found as: 

 , ,
1

1,
2c c k c k

k
u x t x q t  (27a) 

 , , , ,
1 1

1
2

vv vrN N

v vv k vv k vr k vr k
k k

u t q t q t  (27b) 
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Equations (26) and (27) represent an exact solution of the problem of the interaction of a non-

self-adjoint, MDOF oscillator moving over a non-self-adjoint, 1D continuum, and interacting 

with it through linear elastic and viscous forces. For practical applications, the number of 

equations in Eq. (26a) must always be truncated, and the problem is reduced to solving a 

finite-dimensional set of differential equations. 

2.4. Real Form for the Solution 

 Equations (26) governing the modal coordinates have complex valued coefficients. In 

order to avoid complex arithmetic, a real form of the solution is desirable. The notation used 

in this section is such that superscripts “R” and “I” denote the real and imaginary part of the 

superscripted complex quantity, respectively. The real form of Eq. (26) is 

, , , ,
, , , , , 2

,

, , , ,
2

,

T TR R I I
c k x cv c k c k x cv c kR R R I I

c k c k c k c k c k

c k

R R I I
c k c k c k c k

c k

x t x x t x
q t q t q t y t

Q t Q t

,
R
c,q tR
c k c, ccc

 1, 2,k  (28a) 

, , , ,
, , , , , 2

,

, , , ,
2

,

T TI R R I
c k x cv c k c k x cv c kI I R R I

c k c k c k c k c k

c k

R I I R
c k c k c k c k

c k

x t x x t x
q t q t q t y t

Q t Q t

,
I
c,q tI
c k c, cc

 1, 2,k  (28b) 

, , , , , , , ,
, , , , , 2 2

, ,

T TR R T I I T R R I I
vv k vv k vv k vv k vv k vv k vv k vv kR R R I I

vv k vv k vv k vv k vv k

vv k vv k

T T Q t Q t
q t q t q t y t,

R
vv,q tR
vv k,

 1, 2, , vvk N, vvN, v  (28c) 
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, , , , , , , ,
, , , , , 2 2

, ,

T TI R T R I T R I I R
vv k vv k vv k vv k vv k vv k vv k vv kI I R R I

vv k vv k vv k vv k vv k

vv k vv k

T T Q t Q t
q t q t q t y t,

I
vv,q tI
vv k,

 1, 2, , vvk N, vvN, v  (28d) 

 , , ,
T T

vr k vr k vr kq t T y t Q t,vr ,q tvr k, , vrNk ,,2,1  (28e) 

The interaction forces y t  are given in terms of the real and imaginary parts of the modal 

coordinates as 

 

, , , ,
1

, , , , , ,
1 1

, , , ,
1

, , ,

vv vr

R R I I
cv x cv c k c k x cv c k c k

k

N N
R R I I
vv k vv k vv k vv k vr j vr k

k k

R R I I
cv x cv c k c k x cv c k c k

k

R R
vv k vv k vv

y t K x t x q t x t x q t

T q t T q t T q t

C x t x q t x t x q t

T q t T

, ,
I I

k, ,, x q tI I
c k c k, ,,
II
c

RRRR
,,,,,c k x cvcv,, x tx tx tx tc k x cvc k x cvcvcvcvq tR

c k

,
R

,,
R

,,q t TR
vv kvv k,,q t , , ,

1 1

, ,
, ,

1

vv vrN N
I I

k vv k vr j vr k
k k

R I
x cv c k x cv c kR I

cv c k c k
k

q t T q t

d x t x d x t x
C q t q t

dt dt

vrNv

vr j vr k, ,, q tvr j vr k, ,,TI
vv,q tI
vv kvv,

 (29) 

while the initial conditions are as follows: 

, 0, , 0,
, 0,2

,

0
R R I I
c k c k c k c kR R

c k c k

c k

q q
q q

R I I
k0 Rk0, , 0,0, qk0, ,0,0, q

R Iq k000, , ,0, , 0, k0, , 0,0,, , , , , 0, , 0,
, 0,2

,

0
I R R I
c k c k c k c kI I

c k c k

c k

q q
q q

R R I
k0 Ik0, , 0,0, , qk0, ,0, ,0, , q

R Rq k000, , ,0, , 0, k0, , 0,0, ,, , , , 1, 2,k (30a, b) 

 , 0, , 0,
, 0,2

,

0
R R I I
vv k vv k vv k vv kR R

vv k vv k

vv k

q q
q q

R I I
k0 Rk0, , 0,0, , qk0, ,0, ,0, , q

R Iq k000, , ,0, , 0, k0, , 0,0, ,, , , , , 0, , 0,
, 0,2

,

0
I R R I
vv k vv k vv k vv kI I

vv k vv k

vv k

q q
q q

R R I
k0 Ik0, , 0,0, , qk0, ,0, ,0, , q

R Rq k000, , ,0, , 0, k0, , 0,0, ,, , ,   

 1, 2, , vvk N, vvN, v  (30c, d) 

and external modal forces as follows: 

 , , , dR R
c k c k cQ t x f x t x , , , , dI I

c k c k cQ t x f x t x , 1, 2,k  (31a, b) 
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 , ,
TR R

vv k vv k vQ t f t , , ,
TI I

vv k vv k vQ t f t , 1, 2, , vvk N, vvN, v  (31c, d) 

The solution for the interaction problem can now be written as follows: 

 , , , ,
1

, R R I I
c c k c k c k c k

k
u x t x q t x q t  (32a) 

 , , , , , ,
1 1

vv vrN N
R R I I

v vv k vv k vv k vv k vr k vr k
k k

u t q t q t q t  (32b) 

2.5.  Special Case: Proportionally Damped Systems 

 A special case of the interaction problem is concerned with proportionally damped 

systems. For such systems, the following conditions hold ([14], [16]): i) *ˆ ˆ
c cC C  and 

*ˆ ˆ
c cK K , ii) 1 1ˆ ˆˆ ˆ ˆ ˆ

c c c c c cC M K z x K M C z x  for any sufficiently differentiable function xz , 

iii) the boundary conditions of the higher order operator of ˆ
cC  and ˆ

cK  are derivable from a 

compatible set of boundary conditions of the lower order operator, iv) T
v vC C  and T

v vK K , 

and v) 1 1
v v v v v vC M K K M C . As can easily be seen from Eqs. (8) and (10), the solutions for 

the direct and adjoint eigenvalue problems for proportionally damped systems coincide. The 

eigenfunctions of the continuum and eigenvectors of the oscillator are real and will be denoted 

by ,c k x  ( 1, 2,k ) and ,v k  ( 1, 2, , vk N, vN, v ), respectively. Note that differentiating 

the notation for the oscillator’s vibratory and rigid modes is now not necessary, and the total 

number of oscillator’s modes is v vv vrN N N . The eigenfunctions and eigenvectors of the 

proportionally damped systems are usually normalized as follows: 

 , ,
0

ˆ d 1
L

c k c c kx M x x , 1, 2,k  (33a) 

 , , 1T
v k v v kM , 1, 2, , vk N, vN, v  (33b) 
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To derive the equations for the modal coordinates one can substitute ,c k x  and ,v k  for 

,c k x , ,vv k  and ,vr k . However, as shown by Pesterev and Bergman ([11]), except for 

conservative systems, if the normalization conditions of Eqs. (9) and (11a) are to hold, 

xkc,  and ,vv k  must be substituted for by , ,c k c kc x  and , ,vv k vv kc , where complex 

constants ,c kc  and ,vv kc  are as follows: 

 ,
,

,

c k
c k I

c k

c i , 1, 2,k  (34a) 

 ,
,

,

vv k
vv k I

vv k

c i , 1, 2, , vvk N, vvN, v  (34b) 

where i denotes the imaginary unit. Differentiating Eq. (28a) and substituting into it Eq. (28b), 

and performing the same procedure for Eqs. (28c) and (28d) yields second order differential 

equations for the real parts of modal coordinates (note that superscript “R” was dropped for 

brevity): 

 2
, , 0 , , 0 , , , ,2

T

c k c k c k c k c k c k x cv c k c kq t q t q t x t x y t Q t, , 0 , , 0 ,
2

c, , 0 , , 0 ,, 0 , , 0q t 2c k, , 0 , , 0 ,, 0 , , 0, 0 , , 0 ,, 0 , , 0,, 0 , ,
2222 q t 2

k k k kkk k k0 00 00 , 1, 2,k (35a) 

 2
, , 0 , , 0 , , , ,2 T T

v k v k v k v k v k v k v k v kq t q t q t T y t Q t, , 0 , , 0 ,
2

v, , 0 , , 0 ,, 0 , , 0 ,q t 2v k, , 0 , , 0 ,, 0 , , 0 ,, 0 , , 0 ,, 0 , , 0 ,,, 0 , ,
2t 222 q t 2

k k k kkk k k0 0 , 1, 2, , vk N, vN, v  (35b) 

with interaction forces: 

 

, , , ,
1 1

, , , ,
1 1

,
,

1

v

v

N

cv x cv c k c k v k v k
k k

N

cv x cv c k c k v k v k
k k

x cv c k
cv c k

k

y t K x t x q t T q t

C x t x q t T q t

d x t x
C q t

dt

vNv

T q tv k v kTT , , k, ,, k, ,,v k v k, ,,c kc k tq tc kc k,,,,,,,c k,,  (36) 

external modal forces: 
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 , , , dc k c k cQ t x f x t x , 1, 2,k  (37a) 

 , ,
T

v k v k vQ t f t , 1, 2, , vk N, vN, v  (37b) 

and initial conditions: 

 , ,
ˆ0 ,0 dc k c k c cq x M u x x , , ,

ˆ0 ,0 dc i c k c cq x M u x x, ,
ˆ 0 d0 k c c,c, x xq ,0 d,0 d0 c k c c,c i, 0 , 1, 2,k (38a, b) 

 , ,0 0T
v k v k v cq x M u , , ,0 0T

v k v k v cq x M u, , 00 T
v k v c, ,q 0v k v k v, ,0 , 1, 2, , vk N, vN, v  (38c, d) 

Symbols 0, k  and k  represent undamped natural frequencies and damping ratios, 

respectively, and can be defined for the continuum and the vehicle as follows: 

 0 , ,c k c k , ,
,

,

R
c k

c k
c k

, 1, 2,k  (39a, b) 

 0 , ,v k v k , 
,

,
,,

,

0

0 0

R
v k

v k
v kv k

v k

for

for

, 1, 2, , vk N, vN, v  (39c, d) 

The solution for the interaction problem in the case of proportionally damped systems can be 

found as 

 , ,
1

,c c k c k
k

u x t x q t  (40a) 

 , ,
1

vN

v v k v k
i

u t q t  (40b) 

The results for the proportionally damped systems described in this section have been 

obtained previously by Omenzetter and Fujino ([12]) under more restricting assumptions. 

Here they are presented as a special case of the general interaction problem considered. 
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3. NUMERICAL EXAMPLES 

 In order to explain the application of the introduced mathematical concepts and study 

selected numerical aspects of the proposed method, such as convergence, two detailed 

numerical examples are provided.  

3.1. Example 1 

 The purpose of this example is twofold: i) to offer a “guided tour” explaining the 

application of the theory to a particular system with the various operators explicitly shown for 

the system at hand, and ii) to obtain insights about the rate of numerical convergence for 

simple systems such as Euler-Bernoulli beams with uniformly distributed parameters.  

The continuum is a proportionally damped, simply supported Euler-Bernoulli beam 

studied previously by Green and Cebon ([4]), with length 40 mL , constant bending 

stiffness 11 21.275 10 NmEI  and mass per unit length 41.2 10 kg mm . Models of this 

type are often use for analysis of vibrations in simple bridge structures. 

The operator governing the motion of the isolated beam is 

 4

4

4

4

212

2 ,,,,ˆ
x

txuEI
t

txu
x

EIm
t

txumtxuA ccc
cc  (41) 

where the damping operator, 4 4
1 2

ˆ
cC m EI x , was chosen to represent the Rayleigh 

proportional damping ([17]), and the numerical coefficients, 1
1 0.6434 s  and 

2 0.0004 s , were selected in agreement with the example of Green and Cebon ([4]). The 

eigenfunctions, undamped natural frequencies and damping ratios are as follows: 

,
2 sinc k

k xx
mL L

, 
2

0 ,c k
k EI
L m

, 2 0 ,1
,

0 ,

  
2 2

c k
c k

c k

, 1, 2,k (42a-c) 
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The external forces acting on the beam are ignored and the beam is assumed to be at rest 

before the oscillator arrival. 

The vehicle and interaction models are depicted in Fig. 2. The masses are 

4
1 3.6 10 kgm  and 3

2 3 2.0 10 kgm m , the second-order mass moment of inertia is 

5 2
1 1.44 10 kgmI , the spring stiffness values are 6

1 2 9.0 10 N mk k , and damping 

coefficients are 4
1 7.92 10 kg sc  and 4

2 7.2 10 kg sc . The values of interaction spring 

stiffness are 7
3 4 3.6 10 N mk k  and damping coefficients are 4

3 4 7.2 10 kg sc c . 

The distance between axles is 1.0 ml . The vector of displacements of this 4DOF vehicle 

model, 4,3,2,1, vvvv
T
v uuuutu , consist of sprung mass (vehicle body) displacement, 

sprung mass pitch rotation and two tire displacements. The zero displacement vector 

corresponds to the state when no forces exist in the vehicle and interaction model springs. The 

mass, damping and stiffness matrices appearing in operator vÂ  [Eq. (3b)] are as follows: 

 

1

1

2

3

0 0 0
0 0

0
.

v

m
I

M
m

sym m

, 

1 2 1 2 1 2
2

1 2 1 2

1

2

2
2 2 2

0
.

v

c c c c l c c
c c l c l c l

C
c

sym c

 (43a, b) 

 

1 2 1 2 1 2
2

1 2 1 2

1

2

2
4 2 2

0
.

v

k k k k l k k
k k l k l k l

K
k

sym k

 (43c) 

The above mass, damping and stiffness matrices describe, in a general case as well as for the 

particular selection of mechanical parameter values considered here, a non-proportionally 

damped system. The eigenvalues of the vehicle model are as follows: for the rigid body 

modes ,1 , 2 0 rad svr vr , and for the oscillatory modes ,1 19.02 64.86 rad svv i  and 
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, 2 21.02 67.21 rad svv i . The eigenvectors of the direct eigenvalue problem 

corresponding to the rigid body modes are ,1 0.500 1.000 1.000 0.000T
vr  and 

, 2 0.667 0.667 0.333 1.000T
vr . These are, however, not uniquely determined and any 

linear combination of ,1vr  and , 2vr  also represents a rigid body mode. The eigenvectors of 

the direct eigenvalue problem corresponding to the oscillatory modes are 

,1 0.093 0.025 0.002 0.003 1.000 0.674 0.456T
vv i i i  and 

, 2 0.015 0.023 0.012 0.003 0.730 0.416 1.000T
vv i i i . Since the vehicle model 

is non-gyroscopic and non-circulatory, i.e., T
v vC C  and T

v vK K , the eigenvectors of the 

adjoint eigenvalue problem can easily be found as ,1 ,1vr vr , , 2 , 2vr vr , ,1 ,1vv vv  and 

, 2 , 2vv vv , however they need to be later normalized so that the conditions of Eqs. (11a) and 

(11b) are satisfied. The external forces acting on the vehicle are the gravity forces, i.e., 

1 2 30T
vf m g m g m g , where g is the gravity acceleration. The initial displacements of 

the vehicle due to the presence of gravity forces can be computed as 

1
0 T

v v cv vu K T K T f , where matrices cvK  and T  are shown in the following paragraph; 

the initial velocities are assumed to be zero. 

The stiffness and damping matrices that describe the interaction forces are as follows: 

3 4diag ,cvK k k  and 3 4diag ,cvC c c , whereas matrix T  is as follows: 

 
1000
0100

T  (44) 

Assuming that the velocity of the vehicle, v , is constant and that the zero time corresponds to 

the instant when the front axle enters the beam, the vector of contact point location is given as 



22 
 

T
cvx t vt l vt , and the action of the sensor operator x cvx t  on an eigenfunction 

,c k x  when l v t L v  results in 

 ,
2 sin sin

T
T

x cv c k

k vt l k vtx t t
mL L L

, 1, 2,k  (45) 

The integration of equations of motion was carried out using a Runge-Kutta method ([18]). 

For practical applications, the number of modes of the continuum taken into account 

must be finite and will be denoted by cN . The numerical example examines the convergence 

of the solution with increasing cN . Figures 3 and 4 show the results of the simulations for an 

oscillator travelling with a constant speed of 25 m sv . In Fig. 3, mid-span deflections, 

tLuc ,5.0 , obtained with one, two or three beam modes considered are shown, whereas Fig. 

4 shows the vehicle body displacements, , 1vu t . It can be seen that a very good 

approximation is obtained for a small number of beam modes taken into account – the 

addition of the third mode changes the maximum mid-span beam deflection by only 1.3% 

compared to the approximation using two modes, and all maximum vehicle displacements by 

less than 1.0%. 

3.2. Example 2 

 The second example is concerned with a more complex continuum and a situation 

where both the oscillator and the continuum are non-proportionally damped systems with 

complex modes. The discussion focuses on the estimation of continuum complex 

eigenfunctions and the rate of convergence of the solution to the dynamic interaction problem. 

The vehicle model is the same as considered in Example 1 and all other parameters and 

approaches are to be assumed unaltered unless indicated otherwise. 
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The continuum is an Euler-Bernoulli beam on a Winkler-type viscoelastic foundation 

shown in Fig. 5. Similar models are often employed to study response of railway tracks to 

moving trains ([19, 20]). Numerical values were adopted from their respective typical ranges 

discussed in [20]. The beam is assumed to be simply supported, its length is 20 mL , 

bending stiffness is 7 21.22 10 NmEI  and mass per unit length is 120.7 kg mm . The 

beam is assumed undamped, as for the typical values of rail and foundation damping the latter 

is dominant. The foundation stiffness, k x , varies along the beam length as follows: 

 
7 2

1
7 2

2

0.5 10 2
0.7 10 2

k N m for x L a
k x

k N m for x L a
 (46) 

i.e., the segment of length 2a  located centrally in the middle of the beam has a larger stiffness 

compared to the end segments, each 2L a  long. Foundation damping is assumed 

proportional to its stiffness c x k x , where 1 10.001m s . In the numerical analyses, 

three cases of the stiffer middle segment length were considered, namely Case 1: 12a L , 

Case 2: 6a L , and Case 3: 4a L . 

The operator governing the motion of the beam on viscoelastic foundation is ([20]): 

 
2 4

2 4

, ,ˆ , ,c c
c c c

u x t u x t
A u x t m c x EI k x u x t

t t x
 (47) 

It can easily be verified that the proportional damping conditions of [14], also quoted in 

Section 2.5 of this paper, do not hold, and consequently the continuum mode shapes are 

complex. The Galerkin method was employed to approximate the complex modes of the 

continuum. The theory and procedural steps of the method are presented in, e.g., [17] and 

herein only a brief explanation and relevant details are included. The continuum 
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eigenfunctions were resolved using the eigenfunctions of an undamped, uniform, simply 

supported Euler-Bernoulli beam as comparison functions: 

 , ,
1

sin
G

G G

N
N N

c k k s
s

s xx p
L

, 1, 2, , Gk N, GN, G  (48) 

where GN  is the number of comparison functions used in the Galerkin approximation, and 

,
GN

k sp  are approximation coefficients. GN  used as a superscript in parentheses emphasizes that 

approximations themselves and coefficients involved in the related formulas depend on the 

number of terms used in Eq. (48). Substituting Eq. (48) into Eq. (8a) and minimizing the 

residual error of the approximate eigenvalue problem solution discretises the eigenvalue 

problem as follows: 

 
2

, , , 0G G G G G GN N N N N N
c k c c k c c k sM C K p ,  , 1, 2, , Gk s N, GN, G  (49) 

The entries of matrices GN
cM , GN

cC  and GN
cK  are as follows: 

 , 2
GN

c ks ks
mLM ,  , 1, 2, , Gk s N, GN, G  (50a) 

 ,
0

sin sinG

L
N

c ks
k x s xC c x dx

L L
,  , 1, 2, , Gk s N, GN, G  (50b) 

 
4

, 4
0

sin sinG

L
N

c ks
k x s xK EI k x dx

L x L
,  , 1, 2, , Gk s N, GN, G  (50c) 

where the Kronecker delta ks  equals 1 only when k s , and 0 otherwise. 

 Table 1 lists the undamped natural frequencies (in unit of Hz) and damping ratios for 

the first 10 modes for foundation stiffness Case 1, 2 and 3, approximated by the Galerkin 

method with 12GN . (It will be demonstrated later that these choices of the number of modes 
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and Galerkin terms, respectively, assured satisfactory accuracy for all considered numerical 

cases.) It can be seen that those frequencies are closely spaced, e.g., there are as many as 10 

modes between 30 Hz and 130 Hz. The large number of closely spaced frequencies can be 

explained as follows: Assuming for convenience no damping and uniform foundation stiffness 

k x k , the natural frequencies are, after [20], given by 4 4 4
0 ,c n n EI L k m , 

1, 2,n . For the chosen order of stiffness values, the contribution of foundation, which 

does not depend on mode number, dominates over that of the beam for lower modes.
 
Also, it 

can be seen from Table 1 that damping ratios are of the order of 8-12% for the lowest five 

modes, and for higher modes gradually decrease to about 3% for the tenth mode. Figures 6 

and 7 show, respectively, the real and imaginary parts of the first three right mode shapes. 

Note that for easier comparison the modes have been scaled such that the largest value of real 

part is one. It is interesting to notice that increasing the length of the stiffer foundation part 

between Case 1 and 2 leads to a switch of mode order and the lowest antisymmetric mode 

becomes the lowest mode overall. The first symmetric mode shape appears to be particularly 

strongly affected by the non-uniform stiffness distribution. For a uniform foundation stiffness 

distribution, this mode would have a half-sine shape but for all considered cases it is now M-

shaped. Comparing the magnitudes of the real and imaginary parts it can be seen that the latter 

never exceed 10% of the former. A general trend of some small increase in the magnitudes of 

the imaginary parts can also be observed as one moves from Case 1 through to Case 3.  

Tables 2 and 3 demonstrate the rate of convergence of eigenvalues and eigenvectors, 

respectively, with increasing number of terms, GN , in the Galerkin solution for Case 1 of 

foundation stiffness. The reported errors were calculated as relative percentage differences 

between approximations using 2GN  and GN  terms. (The comparison between the 1GN  
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and GN  term approximations would not be meaningful as the addition of another symmetric 

comparison function does not affect antisymmetric modes and vice versa.) The formulas for 

eigenvalue and eigenfunction errors are respectively as follows: 

 
2

2 , ,
, 2

,

100%
G G

G

G

N N
N c k c k
k N

c k

e  (51) 

 

2 2
, , , ,

2 0
,

2 2
, ,

0

100%

G G G G

G

G G

L
N N N N

c k c k c k c k
N
k L

N N
c k c k

x x x x dx
e

x x dx
 (52) 

It can be seen that with 12GN   the errors are small, not exceeding 0.005% and 0.56% for 

the lowest 10 eigenvalues and eigenvectors, respectively. Similar conclusions were drawn for 

the two remaining foundation stiffness cases and also for the adjoint eigenvalue problem. This 

confirms that the choice of 12GN  provides satisfactory accuracy for the first 10 modes. 

 Table 4 illustrates the convergence of time history numerical integration with 

increasing numbers of modes, CN , retained in the system of equations of motion [Eq.(28)] for 

Case 1 of foundation stiffness. The maximum mid-span beam deflections are listed in the 

second row, and the third row shows relative percentage differences, or errors, between 

approximations using 1CN  and CN  modes. This point-wise convergence is non-monotonic 

and relatively slow as compared to Example 1 – 10 modes are required to reduce the error 

between subsequent approximations to below 1% (where it later stays, although this is omitted 

from the table). Figure 8 shows the full time histories of mid-span deflection, 0.5 ,cu L t , for 

1, 3, 5, 7, 9 and10CN  modes taken into account for Case 1 of foundation stiffness. It can be 

seen that, unless at least five modes are used, the shape of time history plot in the middle 
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portion of the figure (approximately from 0.27s  to 0.57s ) cannot even be qualitatively 

captured, as solutions with less modes indicate two peaks. With five or more mode shapes, the 

correct, single peak shape is obtained, and convergence to the maximum value becomes 

clearly visible. It is also noted that the parts of the time histories just after the vehicle enters 

the beam, before approximately 0.27s , and just before it leaves it, after approximately 0.57s , 

show large variations with the number of modes. Using five modes, predicts that those 

displacements will be both negative and positive, whereas using more modes show them to be 

only negative. However, those displacements are not the extreme values and so this slower 

convergence is more tolerable from the point of view of practical applications. 

 Figures 9 and 10 examine the contribution of real, ,
R
c kq t , and imaginary part, ,

I
c kq t , 

respectively, of modal coordinates (see Eq.(32a)) of the first three modes to the response in 

the middle of the beam, 0.5 ,cu L t , for the three cases of stiffer foundation length. It can be 

seen that the maximum magnitudes of the imaginary parts are about 10% of the maximum 

magnitudes of the real parts, a proportion that is similar to that of the real and imaginary parts 

of mode shapes themselves, shown in Fig. 6 and 7. Some small decrease in the magnitudes of 

the real parts and increase in the magnitudes of the imaginary parts can also be observed as 

one moves from Case 1 through to Case 3. 

 

4. CONCLUSIONS 

 A method for computing the response of a 1D elastic continuum induced by a MDOF 

oscillator travelling over it has been proposed. The continuum and the oscillator are both non-

self-adjoint systems and the interaction between them is through linear elastic and viscous 

forces. An exact solution has been obtained in the form of a series using eigenfunctions and 
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eigenvectors of the isolated continuum and oscillator, respectively. It is noted that when exact 

eigenvalues and eigenfunctions of the continuum are not available their approximations can 

be used. The time dependent terms of the series are solutions of a system of linear differential 

equations with time dependent coefficients. The coefficients of these equations depend on 

eigenvalues as well as eigenfunctions and eigenvectors of the isolated continuum and the 

oscillator, and stiffness and damping of the interaction elements. The method has been applied 

to two numerical examples which demonstrate its use and study convergence. 
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Table 1. Lowest 10 undamped natural frequencies (f) and damping ratios ( ) for Euler-

Bernoulli beam on viscoelastic foundation in Example 2. 

Mode No. 
Case 1 (a=L/12) Case 2 (a=L/6) Case 3 (a=L/4) 

f (Hz)  (%) f (Hz)  (%) f (Hz)  (%) 

1 33.1 10.0 33.5 10.1 33.9 10.0 

2 33.3 10.2 34.0 10.1 35.5 10.5 

3 36.5 10.5 38.6 11.4 39.2 11.7 

4 38.7 8.9 39.7 9.3 41.0 10.1 

5 46.1 8.0 46.9 8.3 47. 7 8.6 

6 55.9 6.2 56.6 6.6 57.1 6.8 

7 69.8 5.1 70.4 5.4 70.9 5.7 

8 86.6 4.0 87.0 4.3 87. 4 4.5 

9 106.6 3.3 107.0 3.5 107.2 3.7 

10 129.2 2.7 129.5 2.7 129.7 3.0 
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Table 2. Convergence of lowest 10 eigenvalues for Galerkin method in Example 2, Case 1 

(a=L/12). 

NG 

Error (%) 

Mode No. 

1 2 3 4 5 6 7 8 9 10 

3 4.12 - - - - - - - - - 

4 - 0.06 - - - - - - - - 

5 0.03 - 0.92 - - - - - - - 

6 - 0.02 - 0.06 - - - - - - 

7 0.00 - 0.08 - 0.06 - - - - - 

8 - 0.01 - 0.02 - 0.02 - - - - 

9 0.00 - 0.01 - 0.01 - 0.01 - - - 

10 - 0.00 - 0.01 - 0.01 - 0.01 - - 

11 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 

12 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 
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Table 3. Convergence of lowest 10 eigenvectors for Galerkin method in Example 2, Case 1 

(a=L/12). 

NG 

Error (%) 

Mode No. 

1 2 3 4 5 6 7 8 9 10 

3 62.37 - - - - - - - - - 

4 - 5.68 - - - - - - - - 

5 3.21 - 17.65 - - - - - - - 

6 - 1.30 - 3.41 - - - - - - 

7 0.50 - 2.51 - 3.10 - - - - - 

8 - 0.43 - 0.96 - 1.87 - - - - 

9 0.077 - 0.51 - 0.62 - 0.91 - - - 

10 - 0.16 - 0.35 - 0.56 - 1.02 - - 

11 0.01 - 0.08 - 0.15 - 0.25 - 0.53 - 

12 - 0.06 - 0.13 - 0.20 - 0.30 - 0.56 
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Table 4. Convergence of maximum mid-span beam deflection with increasing number of 

modes Nc  in Example 2, Case 1 (a=L/12). 

Nc 1 2 3 4 5 6 7 8 9 10 

Max. 
uc(0.5L,t) 

(m) 

0.0018 0.0022 0.0099 0.0093 0.0121 0.0121 0.0128 0.0128 0.0130 0.0131 

Error 
(%) 

- 20.88   77.44   -5.73   22.74   -0.30    5.90    0.17    1.52    0.15 
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Figure captions 

Fig. 1. Interaction of 1D continuum and moving MDOF oscillator. 

Fig. 2. Four-degree-of-freedom vehicle model in Examples 1 and 2. 

Fig. 3. Mid-span deflection of the beam in Example 1. 

Fig. 4. Vehicle body displacement in Example 1. 

Fig. 5. Euler-Bernoulli beam on viscoelastic foundation in Example 2. 

Fig. 6. Real part of the first three continuum right mode shapes in Example 2. 

Fig. 7. Imaginary part of the first three continuum right mode shapes in Example 2. 

Fig. 8. Time histories of mid-span deflection for different number of modes in Example 2, 

Case 1 (a=L/12). 

Fig. 9. Time history of real part of modal coordinates for the first three modes in Example 2. 

Fig. 10. Time history of imaginary part of modal coordinates for the first three modes in 

Example 2. 
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Figures 5-10



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Real part of the first three continuum right mode shapes in Example 2. 
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Fig. 7. Imaginary part of the first three continuum right mode shapes in Example 2. 
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Fig. 8. Time histories of mid-span deflection for different number of modes in Example 2, 
Case 1 (a=L/12). 
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Fig. 9. Time history of real part of modal coordinates for the first three modes in Example 2. 
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Fig. 10. Time history of imaginary part of modal coordinates for the first three modes in 
Example 2. 
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