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ABSTRACT 
 

Wind energy is at the forefront of renewable energy harvesting. Thus, the increasing interest in 
renewable energy in the European Union [1] leads to growing sizes of wind turbines (WTs) and erections 
in remote areas, such as offshore. The application of structural health monitoring in structural 
components of WTs offers an attractive opportunity to optimise operational costs and to increase safety 
and reliability. Different techniques have been developed for structural damage detection (SDD) in WTs. 
However, the majority are not suitable for in-service measurements or require very dense sensor arrays. 
This paper presents a vibration-based SDD method applied to a numerical WT blade (WTB) model with 
a shear-web disbonding damage scenario. The damage sensitive feature (DSF) is developed as the 
Mahalanobis distance between a baseline and a current vector of autoregressive coefficients (ARCs) 
estimated from acceleration response time series. The acceleration signals are obtained from transient 
dynamic simulations of numerical WTB models with a simplified aerodynamic loading approach. First, 
conventional time series modelling, i.e. model order selection and parameter validation, is presented. 
Second, sensitivities of ARCs for increasing damage extents and an ARC selection for damage detection 
are discussed. Third, the SDD results based on statistical hypothesis testing are assessed for different sets 
of ARCs with respect to the detectability of early damage. This enabled to demonstrate the challenges of 
ARC-based SDD with respect to the detection of early damages. The numerical simulations conducted 
demonstrate the sensitivity of the proposed ARC-based DSF, which is promising for future developments 
of SDD methods in WTs. 

 
 
 
 
 
 
 
 
 

NOMENCLATURE 
 
ACF Autocorrelation Function 
AIC Akaike Information Criterion 
AR Autoregressive 
ARC Autoregressive Coefficient 
ARMA Autoregressive Moving Average 
DOF Degree of Freedom 
DSF Damage Sensitive Feature 
FE Finite Element 
NREL National Renewable Energy Laboratory 
SDD Structural Damage Detection 
SNL Sandia National Laboratory 
WT Wind Turbine 
WTB Wind Turbine Blade 
 
1. INTRODUCTION 
 
Due to the promotion of renewable energy by the 
European Union’s energy policy [1], efficient 

wind energy harvesting becomes increasingly 
important. The consequences are growing sizes of 
WTs and erections in remote areas, such as 
offshore. This leads to increasing operation and 
maintenance costs, which can make up to 20% of 
the total energy production costs [2]. Efficient 
structural health monitoring systems can 
counteract the increase in operation and 
maintenance costs. Furthermore, the safety and 
reliability of WTs can be improved. 

SDD in WTBs deserves special attention 
because up to 19.4% of WT failure incidents were 
caused by blade damages [3]. However, currently 
available methods for continuous monitoring of 
the structural state of WTBs, such as acoustic 
emission and strain monitoring [4], are local 
methods. To monitor complex structures, very 
dense sensor arrays are required, thus 
instrumentation and data analysis are costly. 



Under the premise that damage leads to 
changes of stiffness, mass or energy dissipation 
mechanisms of a structure [5], vibration response 
signals can be used to define DSFs which describe 
the current, healthy or damaged, structural state. 
Modal parameters, such as natural frequencies, 
modal damping ratios or mode shapes, as well as 
non-parametric and parametric time series 
representations can be utilized for vibration-based 
SDD [6]. 

The method discussed in this paper is 
based on parametric time series models obtained 
from acceleration response signals. Autoregressive 
moving average (ARMA) models were utilized for 
SDD by Carden and Brownjohn [7]. They showed 
theoretical connections between parametric model 
orders and the number of observable modes of 
physical structures. However, due to the 
invertibility property of autoregressive (AR) and 
moving average processes [8], AR models can be 
used instead of ARMA models to describe the 
underlying process. Nair et al [9] demonstrated 
theoretically the relationship between structural 
stiffness and ARCs. 
 A unified statistical framework for time 
series-based structural health monitoring has been 
presented by Fassois and Sakellariou [10], where 
statistical hypothesis testing of ARC-based DSFs, 
as applied in the present paper, is one case. 
Choosing the appropriate AR model order is a 
crucial step of this method. The influence of 
autoregressive model orders on SDD results was 
discussed by Figueiredo et al. [11]. They found 
that AR models of conventionally estimated orders 
enable to detect damage. 
 This paper discusses the influence of ARC 
selection for SDD in a WTB with emphasis on 
early damage detection, where coefficients are 
selected from conventionally identified AR 
models. The following section gives a detailed 
description of the theory related to AR-based SDD. 
Then, numerical simulations of a single WTB are 
presented. This includes a simplified aerodynamic 
loading approach and a selected disbonding 
damage scenario. The parametric modelling and 
SDD results are shown in the following section. 
Finally, a discussion of the results and prospects 
for the future work are given in the final section 
before rounding up the paper with a set of 
conclusions. 
 

2. THEORY 
 
Time invariant AR models can only be used for 
stationary processes, thus it is assumed that the 
vibration response signals of the healthy and 
damaged structure are stationary. Performing a 
normalization of the initial signals enables to 
account for loading variability, e.g. due to varying 
wind speeds in the present case. This can be done 
for a time series by removing the estimated mean 
and dividing by the estimated standard deviation. 
 
2.1 TIME SERIES MODELLING 
 
For an AR( p ) process of order p , a current value 
of a time series [ ]z t  at time instant t  can be 
expressed as the weighted sum of p  previous 
values and a noise term [ ]e t : 
 1[ ] [ 1] [ ] [ ]      pz t a z t a z t p e t  (1) 

where the system unknowns are the ARCs, ia  

i=1,…p, and the variance 2
e  of the normally 

distributed, independent, random noise term. The 
Burg algorithm [12] is used in this study to 
estimate the unknowns. 
 However, prior to the estimation, the 
selection of an appropriate model order is required. 
The selected order should enable to capture the 
underlying system dynamics while being 
computationally efficient. The Akaike information 
criterion (AIC) is commonly used for the selection 
of AR orders, which evaluates the models based 
on the model likelihood. The sample number 
normalized AIC can be calculated with the 
estimated noise variances, 2ˆe , as [8]: 
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where n  is the number of samples, and the hat 
denotes estimated quantities. The first term refers 
to the model likelihood, while the second is a 
penalty for the model complexity. 
 Similar to the model order selection, the 
validation of estimated models is generally 
required to assure the model adequacy. This is 
usually done by examining the residuals, which 
can be obtained by modifying Eq. (1) as follows: 
 1ˆ ˆ ˆ[ ] [ ] [ 1] [ ]      pe t z t a z t a z t p  (3) 

To test the residuals as a whole, the residual 
autocorrelations, er , and a test statistic can be 
employed. The modified Ljung-Box-Pierce 



statistic, Q , [8] is used herein and can be defined 
as: 
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The unbiased k-th coefficient of the 
autocorrelation function (ACF) can be calculated 
with [13]: 
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For a valid model, the test statistic Q  follows a 
2  distribution with K p  degrees of freedom 

(DOFs). This can be utilized to define a statistical 
hypothesis test in order to validate an appropriate 
AR model. 
 
2.2 STATISTICAL HYPOTHESIS TESTING 
 
In the present paper, the SDD phase employs a 
statistical hypothesis testing approach. The 
estimated DSF vectors, ν̂ , are generally 
constructed for selected AR model orders p  as 

 1 2
ˆ ˆ ˆ ˆ   

T

pa a aν  (6) 

where superscript T denotes transpose. It is 
assumed that the single vector entries are 
independent of each other and Gaussian 
distributed. Thus, the difference ˆν  between the 
estimated DSF vectors of the healthy structure and 
the current structure, ˆ

hν  and ˆ
cν , follows a 

multivariate Gaussian distribution, ( , ) ν νμ Σ : 
 ˆ ˆ ˆ ( , )    c h ν νν ν ν μ Σ  (7) 
with the true mean, vμ , given as the difference 
between the true DSF vectors of the healthy and 
the current structure as 
   c hνμ ν ν  (8) 
and the true variance-covariance matrix, νΣ , as 
   h cνΣ Σ Σ  (9) 
where hΣ  and cΣ  are the true variance-covariance 
matrices of the healthy and current state, 
respectively. 
 However, if the structure is healthy then 
the difference follows a zero-mean multivariate 
Gaussian distribution with variance-covariance 

2  hνΣ Σ . In this case, the squared Mahalanobis 

distance, 2D , defined as  
 2 1 2ˆ ˆT

mD 
  νν Σ ν   (10) 

follows, as a squared sum of independent 
Gaussian variables, a central 2  distribution with 

m  DOFs, 2
m . The true variance-covariance 

matrix is generally unavailable, thus the estimated 
version ˆ

νΣ  is used instead. The DOFs correspond 
to the DSF vector dimensionality. 
 The hypothesis testing problem can be 
defined as 
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where the null hypothesis, 0H , describes the 
healthy state and the alternative hypothesis, 1H , 
the damaged state. This enables to define a 
statistical test of the squared Mahalanobis distance 
by means of the cumulative 2  distribution 
function, 2

m
F


, as 
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where   is the selected level of significance. 
 
2.3 AR COEFFICIENT SELECTION FOR 

DAMAGE SENSITIVE FEATURE 
 
The ARCs are generally differently affected by 
damage, or have different sensitivities to damage. 
It is important to select them for inclusions in the 
DSF in such a way that only these that help the 
most to detect damage in early stages are retained 
because the thresholds of multivariate statistics, 
used for damage hypothesis testing, such as 2

m
F


, 

will also increase with the number of statistical 
DOFs for a given significance level. Therefore, the 
aim is to identify the number of ARCs below 
which their contribution to the detectability of 
damage outpaces the growth of the statistical 
threshold, as this will give the most conclusive 
distinction between the healthy and the damage 
states. 

In the present paper, a two-step approach is 
proposed for the selection of ARCs. First, the 
coefficients are ranked with respect to their 
sensitivity to damage with the help of the 
Mahalanobis distance between coefficients from 
the healthy and one selected damage state. Second, 
the effect of the increasing number of ranked 
ARCs with respect to the corresponding threshold 

2 (1 )
m

F 


 at a selected level of significance is 

examined in order to identify the optimum number 
of the included coefficients. 



The first part of the procedure uses a step-
down algorithm to identify the coefficients that 
have the smallest contribution to the Mahalanobis 
distance for the selected damage. The algorithm is 
presented in Figure 1, where the subscript d refers 
to estimates from the damaged state. The sample 
mean of the ARCs is indicated by the bar. The 
initial, whole set of coefficients is incrementally 
reduced by the coefficient that gives the smallest 
contribution to the Mahalanobis distance until 
only one ARC is left. The ranking of ARCs is 
given by the inverse order in which they are 
removed. For example, the coefficient removed in 
the first iteration causes the smallest change of the 
Mahalanobis distance and has the lowest ranking. 

In the second step, Mahalanobis distances 
are calculated for increasing numbers of ARCs 
with highest rankings. The results are divided by 
the threshold value given by the cumulative 
distribution 2 (1 )

m
F 


 at a selected level of 

significance  . The number of DOFs, m , 
corresponds to the number of included ARCs 
retained. The maximum of that ratio the optimum 
number of coefficients. 

Even though this approach takes the 
multivariate statistics of coefficients into account, 
it eliminates the coefficients one by one. However, 
strictly speaking the true optimal selection can 
only be found by considering all possible 2 1p   
selections of ARCs, but that would be 
computationally prohibitive. 
 
 
 

3. SIMULATIONS 
 
The structure under study is a numerical model of 
a large WTB. An ANSYS Mechanical [14] finite 
element (FE) model of a single cantilevered blade 
was created with the help of the Sandia National 
Laboratory (SNL), USA, software package 
NuMAD [15] and the specifications of the SNL’s 
61.5 m reference WTB [16]. These specifications 
are based on the National Renewable Energy 
Laboratory (NREL), USA, 5 MW reference WT 
design [17]. A baseline FE model with 1,650 
SHELL281 elements was found adequate by 
element type and mesh size studies. 
 Transient dynamic simulations are 
performed to generate response acceleration time 
series. For the assessment of vibration-based SDD 
methods, the realistic simulation of excitations is 
important, thus a simplified aerodynamic loading 
approach is developed. The simulations are done 
for a single WTB, where a parked WT situation is 
assumed and tower motions are ignored. 

Aerodynamic loads are obtained in three 
steps. First, the NREL software TurbSim [18] is 
used to generate full-field wind data according to 
the international standard IEC 61400-1, 3rd Edition 
[19]. The mean wind speed at the hub height is 
selected to be 10 m/s, which is the average wind 
speed of an IEC Type I WT. The resulting 
turbulence intensity of the inflow wind component 
is 18.34% for the wind category B and the normal 
turbulence model. 

In the second step, aerodynamic loads are 
calculated with the NREL software packages 
AeroDyn [20] and FAST [21], where the wake 
effect is modelled by the blade element 
momentum theory. The WTB is therefore 
approximated by 17 strip elements, each of 
constant aerodynamic and structural properties. 
Time series of lift and drag forces, and pitching 
moments at the element centres are the result. 

The third step is a mapping of these 
element loads to nodal forces of the surface nodes 
in the FE model. This procedure is based on Berg 
et al. [22]. Equilibrium equations of forces and 
moments for each WTB element enable to 
establish a linear system of equations, which can 
be solved numerically. Since the mapping is 
generally not-unique, non-zero pitching moments 
in y-direction and linear spatial distributions are 
chosen. This procedure enables to calculate load 

 
Figure 1: Ranking procedure for ARCs 



coefficients for nodal forces of each surface node, 
thus during the transient dynamic simulations only 
simple evaluations are required for every load step. 
The simulations are performed with a constant 
time step of 0.005 s. 

Transient simulations are not only 
performed for the healthy baseline WTB model 
but also for FE models of damaged WTBs. 
Disbonding of one shear-web from the low 
pressure cap is selected as damage scenario, see 
Figure 2. Jensen et al. [23] performed a full scale 
structural test on a 34 m long WTB until failure 
for flap-wise bending. They observed a disbonding 
of the outer skin from the load-carrying box girder, 
which is herein simulated as shear-web disbonding. 
From real inspections [24], the maximum chord 
location is found to be damage prone, therefore it 
is chosen as initial damage location with extension 
towards the WTB’s tip. The disbonding is 
introduced in the FE model with a separation of 
nodes between elements at selected locations. The 
damage extent, and with it, the length of the 
disbonding correspond to the number of separated 
nodes. 
 
4. RESULTS 
 
The effect of shear-disbonding is assessed by 
means of numerical modal analysis for the healthy 
and the damaged WTB FE models. The maximum 
disbonding extent is chosen to be approx. 6.2 m or 
10.2% of the WTB length. The relative difference 
 if  between the natural frequencies of the healthy 

,h if  and the damaged model ,d if  gives the effect of 

damage on the i -th frequency as 
 , , ,( ) 100%   i h i d i h if f f f  (13) 

Figure 3a shows these effects for the first ten 
natural frequencies, where contributions of the 
first and second frequency are invisible due to 
their minor changes. Further, it can be seen that 
the cumulative sum of relative frequency 
differences and the disbond length have a 
nonlinear relationship. The highest contributions 
to the sum are from modes 5 and 10 with 
frequencies of the healthy WTB of 5.55 Hz and 
12.72 Hz, respectively. Furthermore, the wind 
speed amplitude spectrum of the inflow wind 

(a)

(b)
Figure 2: Damage and sensor location in WTB; (a) cross 

section, (b) top view 

(a)  

(b)  
Figure 3: (a) Cumulative relative differences of natural 

frequencies with increasing shear-web disbonding; (b) Wind 
speed amplitude spectrum for simulated inflow wind 

component 



component at the hub position is given as 
reference for the aerodynamic excitation in Figure 
3b. The realization of the inflow wind component 
is simulated with TurbSim for 630s based on the 
Kaimal spectrum and mean wind speed of 10 m/s. 
The Kaimal spectrum adopted has a low frequency 
excitation characteristic, which is important with 
respect to the changes in the natural frequencies 
due to damage. It can be noticed that the 
significant changes of mode 10 will have only a 
minor contribution to the damage detectability as 
this mode will be weakly excited. Only modes 
with frequencies less than 8 Hz can be assumed to 
be sufficiently excited to affect the damage 
detectability. This means for a disbond of 6.2% of 
the WTB length the cumulative relative frequency 
difference is only 2%, which illustrates the 
challenge of vibration-based SDD for this 
structure. 
 For the following discussion of AR 
modelling and SDD, transient dynamic 
simulations are performed for the healthy and 
damaged WTB FE models. Flap-wise and edge-
wise accelerations at selected nodes are obtained 
for a durations of 630 s. Only flap-wise signals for 
the node indicated as ‘Sensor’ in Figure 2 are used 
in the following. Each time series is divided into 
200 segments of 6,000 samples with a shift of 600 
samples. The time series segments are initially 
low-pass filtered with a Chebyshev Type I filter 
and then decimated from 200 Hz to 25 Hz. In 
order to account for variations of the aerodynamic 
excitation, each pre-processed segment is 
normalised by its estimated mean and standard 
deviation. 
 The baseline phase of AR-based SDD uses 
data from the healthy structure to estimate the 
model parameters and to develop a statistical 

model for them. This requires initially the 
selection of an appropriate model order. Given in 
Eq. (2), the AIC is widely used to indicate an 
appropriate order for parametric time series 
modelling. Therefore, the AIC is calculated for all 
AR orders from one to 50, and shown in Figure 4. 
The mean and standard deviations of AIC values 
are calculated from the set of time series segments. 
The AIC indicates an AR model order of 25 
because higher orders do not significantly improve 
the results. Therefore, the order of 25 is selected 
for the following investigations. 
 Complementary to the task of model order 
selection is model validation. This is shown here 
for one time series segment. The residuals, as 
given in Eq. (3), are tested for normal, 
independent and identical distribution. First, 
Figure 5a shows the residual’s cumulative 
probability plot, where a straight line indicates a 
normal distribution. It can be seen that this is only 
violated at the tails. Second, the ACF of the 
residuals is shown in Figure 5b. Only four 
coefficients, or 1.6%, are out of the 95% bounds 
of a white noise process. Third, the modified 
Ljung-Box-Pierce statistics, as given in Eq. (4), 
are calculated for a selected numbers of 

 
Figure 4: Mean and standard deviation of AICs for AR 

models of time series segments 

(a)  

(b) 
Figure 5: Validation of AR(25) model; (a) normality plot of 

residuals, (b) ACF of residuals 



autocorrelation coefficients. From this test and the 
previous investigations, it is concluded that the 
appropriateness of the selected AR model order is 
supported. 
 The effect of increasing damage extents on 
ARCs of the AR(25) model is shown in Figure 6. 
Mean and standard deviation of the coefficients 
are calculated from the estimates of the time series 
segments. Each subplot is scaled according to the 
individual ranges of the coefficients to the unit 
internal 0-1 in order to present comparable results. 
It can be seen that the mean of the majority of 
coefficients changes monotonically with 
increasing damage. Only coefficient 3a  is almost 
unaffected. The standard deviations do not show 
such a clear pattern. They increase, decrease or 
stay almost constant for different ARCs. 
 Nevertheless, for a reliable distinction 
between structural states, not only shifts in mean 
but also the corresponding variations are important. 
Therefore, a more detailed investigation is 
performed with the help of Fisher’s criterion, FC , 
as a measure of the ARCs’ damage sensitivities to 
damage. For a univariate two class problem, it can 
be defined as 
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  (14) 

where i  corresponds to the i -th ARC. It is 
assessed by its mean a  and variance 2  from the 
healthy and the damage state, superscript h  and d , 
respectively. The result is a dimensionless 
measure for the separability between structural 
states. It is calculated for all ARCs and damage 
extents. Figure 7 shows the results, where the 95% 
confidence bound of the  2

1
95%F


 distribution 

with one DOF is given as a reference. Values 
above this threshold indicate the detectability of 
damage by only using the corresponding single 
coefficient. This illustrates the sensitivity of the 
ARCs for the selected damage scenario. It can be 
seen that the ARCs 1a  to 5a  and 21a  to 25a  show 
only small changes with increasing damage. Most 
sensitive are the ARCs 6a  to 20a . This enables to 
perform a manual selection of coefficients 
according to these sensitivities, where the 
selection is indicated by stars in Figure 7. 

However, this measure is only univariate, 
thus no information about the inter-relationships 
between the coefficients is used. Therefore, the 
ranking procedure, as discussed in Section 2.3, is 

applied with coefficients obtained from the 
healthy state and with a disbond of 5.6% blade 
length. The ranking of each coefficient is 
additionally given in Figure 7, where one indicates 
the highest and 25 the lowest contribution to the 
Mahalanobis distance. In comparison to the 
univariate sensitivity, it can be seen that there is 
no clear relationship between the ranking and the 
FC  results. This behaviour can be explained by 
dependencies between coefficients, which are not 
considered in the univariate analysis. 

The second part of the proposed ARC 
selection procedure is illustrated in Figure 8. It 
shows the relative Mahalanobis distances for 
increasing numbers of ARCs according to their 
ranking. The relative Mahalanobis distance is 
defined as 
 2

2 2 (95%)
m

m mD D F


  (15) 

where the initial Mahalanobis distance 2
mD  for the 

m  dimensional DSF vector is divided by the 
threshold values of the corresponding cumulative 
distribution 2 (95%)

m
F


 with m  DOFs at the 

selected five percent level of significance. A value 
of one, which is indicated by the dashed line, 
corresponds to the relative distance equal to the 
threshold. Relative distances above indicate the 
detectability of the selected damage of 5.6% blade 
length. It can be seen that the damage is detectable 
by using more than 15 ARCs with the best ranking. 
However, 17 ARCs with the highest ranking are 
selected for the statistical hypothesis testing. 

Finally, SDD is performed with the help of 
statistical hypothesis testing for increasing damage 
extents. For comparison, this is done for the 
ranking-based and the manually selected sets of 17 
ARCs. The results are given in Table 1. The 
statistical threshold is defined by the value 

2
17

(95%)F


. It can be seen that the ranking-based 

selection outperforms the manual selection with 
respect to the detectability of early damages. The 
former enables to detect disbonds of 5.6% blade 
length with high confidence, because the non-
alarm rate is lower than the selected level of 
significance. The manually selected ARCs allow 
only detecting disbonds of 10.2% blade length. 
 
5. CONCLUSIONS 
 
The present paper showed the application of ARC- 
based DSFs and statistical hypothesis testing for 



 
Figure 6: Mean and standard deviation of ARCs with increasing damage extents 

(b)  
Figure 7: Fisher’s criterion of ARCs with increasing damage and ARC ranking numbers; asterisks indicate manually selected 

coefficients, bold numbers indicate relative Mahalanobis ranking-based selection 
 



SDD in a large WTB. Damage decisions were 
obtained by Mahalanobis distances between 
vectors of ARCs estimated from acceleration 
response signals. Therefore, transient dynamic 
simulations were performed with a healthy FE 
WTB model and models with a shear-web 
disbonding damage scenario of several extents. To 
apply a realistic excitation, a simplified 
aerodynamic loading approach was developed, 
where blade element loads are mapped to nodal 
forces. 
 The results of conventional time series 
modelling, i.e. model order selection and model 
validation, are shown. Furthermore, the 
sensitivities of single ARCs to increasing damage 
extents were presented. The key aspect of the 

present paper was the discussion of the efficient 
selections of ARCs for early detection of shear-
web disbonding in the numerical WTB model. 
Therefore, two different sets of ARCs were 
selected. One was manually selected with respect 
to the individual ARCs’ sensitivities to damage. 
The other selection was done with a two-step 
approach including ARC ranking based on 
Mahalanobis distances and maximization of the 
damage detectability with respect to a statistical 
threshold.  

Then, SDD was performed. In the baseline 
phase, ARCs were estimated to develop a 
statistical model for the DSF vectors of certain 
mean and variance-covariance according to the 
ARC selections. Statistical hypothesis testing by 
means of the Mahalanobis distances was 
employed in the detection phase to make decisions 
about the structural state of the current model. The 
relative rejection rates of the null hypothesis, 
which indicate the presence of damage, were used 
to illustrate the performance of the different ARC 
selection methods. The ranking-based ARC 
selection resulted in the smallest detectable 
disbonding of approx. 5.6% of the blade length 
outperforming the manual selection. 
 This study demonstrated the challenges of 
AR-based damage detection in a WTB with 
respect to the selection of coefficients. However, it 
was shown that ARCs as DSFs in a statistical 
hypothesis testing framework enable to detect 
shear-web disbonding of a moderate size. These 
findings are promising for future developments, 
although further research is required for the 
coefficient selection of parametric models in SDD 
using experimental studies. 
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