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FIXED POINTS FOR CONSEQUENCE RELATIONS

TOBY MEADOWS*

ABSTRACT

This paper provides a way of dealing with paradoxes associated with consequence 
relations via a generalisation of Kripke’s fixed point technique. In particular, we 
focus on Beall and Murzi’s paradox, although the framework outlined should 
have more general application. We first attempt to locate this problem among the 
existing corpus of semantic paradoxes. We then examine two canonical approaches 
to the issue and conclude with an inductive construction which, in some fashion, 
goes beyond those approaches.

1. Introduction

In [forthcoming], Beall and Murzi offer up a fresh semantic paradox. Rather 
than focusing on truth or necessity, Beall and Murzi investigate what would 
happen if we attempted to introduce a validity predicate, Val, into a language 
with sufficient expressive resources to talk about its own syntax. The validity 
predicate, Val, is intended to represent a primitive conception of validity. 
We thus write Val (⌜f⌝,� ⌜ψ⌝) to mean that ψ, the sentence coded by the 
object ⌜ψ⌝, is�a�consequence�of�f, the sentence coded by ⌜f⌝. Since we are 
taking the notion as primitive, we have no need to define it, although we 
may nonetheless constrain it. Beall and Murzi propose two constraints, 
which together have disastrous consequences. The first

(VP) If f�=�ψ, then =�Val (⌜f⌝,�⌜ψ⌝)

is intended to capture the idea that if we may prove ψ�from the assumption 
f, the we should also be able to prove that f�is a valid consequence of ψ. 
This seems very reasonable. The second principle

(VD) f, Val (⌜f⌝,�⌜ψ⌝) =�ψ

is a natural generalisation of modus� ponens: if we assume f� and we 
assume that ψ�is a valid consequence of f, then surely we should be able 

* I would like to thank Dave Ripley for his invaluable assistance in improving this paper.
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334 TOBY MEADOWS

to conclude that ψ. However we see that these seemingly innocent assump-
tions render any system with such a validity predicate inconsistent as follows. 
We shall assume that we have sufficient power to prove something like the 
diagonal lemma, and as such that there is a sentence π�where:

=�π�)�Val (⌜π⌝,�⌜9⌝).

We then demonstrate that =�Val (⌜π⌝,�⌜9⌝).

              π(1)      π   "   Val (⌜π⌝,�⌜9⌝)  Thm

π(1)                  Val (⌜π⌝,�⌜9⌝)  VD
          9          (1)  –  VP�������������Val (⌜π⌝,�⌜9⌝)

And from here inconsistency follows easily.

Val (⌜π⌝,�⌜9⌝) Thm����Val (⌜π⌝,�⌜9⌝)   "   π  Thm

                         π                                    ���Val (⌜π⌝,�⌜9⌝)  Thm

                           9                              VD

This paradox is the focus of this paper. Our goal is to use a generalisation 
of Kripke’s fixed point technique for truth to provide a consequence relation 
capable of supporting both VD�and VP. However, we shall first concentrate 
our attention on the following two tasks:

(1)  isolating the Beall-Murzi paradox within the contemporary land-
scape of semantic paradoxes; and

(2)  investigating two different approaches that have been taken to this 
or similar paradoxes and which are already present in the literature.

We shall begin by looking at the prototypical semantic predicate, truth, and 
two of the simplest paradoxical sentences that can be formed from it. We 
then move to the more restrictive case of necessity. This will help us to see 
how the Beall-Murzi paradox works in more well-worn contexts. Moreover, 
we shall see that, as opposed to truth-based paradoxes, there is less room 
to move with validity: the Beall-Murzi paradox is a special case. We shall 
use classical logic unless stated otherwise, and we shall assume the full 
complement of connectives.1

1.1. Two liar sentences and four ways of proving each of them. Let us 
expand our background language with a truth predicate, T, and let us 

1 It is worth noting that Beall and Murzi elegantly avoid the need for negation in their 
framing of the paradox; however, we incorporate it here for the purposes of comparison.
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assume, naturally enough, that the following schema holds for all sentences 
f�in our language.
(Ax) =�f�)�T�⌜f⌝.

We look at how we may demonstrate inconsistency using either an untruth-
teller or a truly-not-teller.

1.1.1. The�untruth-teller.�Using some version of the diagonal lemma, we 
assume that λ�is such that

=�λ�)�¬ T�⌜λ⌝.

We shall call λ�an untruth-teller. For our first proof we start by assuming 
that T�⌜λ⌝.

Example 1.

T ⌜λ⌝(1)    T ⌜λ⌝ "�λ��Ax    T ⌜λ⌝(1)    T ⌜λ⌝ "�¬λ  Thm
        λ                       ¬ λ
                    9����(1)                     ¬ T ⌜λ⌝

Thus we see that =�¬ T ⌜λ⌝; and so

 ¬T ⌜λ⌝��Thm    ¬T ⌜λ⌝ "�¬λ��Ax    ¬T ⌜λ⌝��Thm    ¬T ⌜λ⌝ "�λ��Thm
           ¬λ                              λ
                            9

And so the system is is inconsistent.
But we can just as easily show the inconsistency by assuming ¬T ⌜λ⌝.

Example 2.

¬T ⌜λ⌝(1)   ¬T ⌜λ⌝ "�λ��Thm    ¬T ⌜λ⌝(1)    ¬T ⌜λ⌝ "�¬λ  Ax
        λ                            ¬ λ

                    9����(1)                         T ⌜λ⌝

Thus =�¬ T ⌜λ⌝.

 T ⌜λ⌝��Thm  ��    T ⌜λ⌝ "�¬λ��Thm     T ⌜λ⌝��Thm     T ⌜λ⌝ "�λ��Ax
          ¬λ                                  λ
                             9
Or we can assume λ.
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Example 3.

       λ(1)     λ�"�¬ T ⌜λ⌝��Thm

             ¬ T ⌜λ⌝             ¬ T ⌜λ⌝ "�¬ λ��Ax
λ(1)                        ¬ λ
              9
                ¬ λ  (1)

Thus =�¬λ.

          ¬ λ��Thm    ¬λ�"�T ⌜λ⌝��Thm

                   T ⌜λ⌝               T ⌜λ⌝�"�λ  Ax

¬ λ��Thm                        λ
               9

And finally, we can also prove it by assuming ¬λ.

Example 4.

         ¬ λ(1)    ¬λ�"�T ⌜λ⌝  Thm

               T�⌜λ⌝                 T ⌜λ⌝ "�λ��Ax
¬ λ(1)                        λ
               9
              λ   (1)

Thus = λ.

          λ��Thm    λ�"�¬T ⌜λ⌝  Ax

                 ¬T ⌜λ⌝             ¬T ⌜λ⌝ "�¬λ��Thm
λ��Thm                        ¬λ
               9

So there are at least four different ways of getting to inconsistency using 
the untruth-teller λ. We may show much the same thing for the truly-not-
teller.

1.1.2. The�truly-not-teller. Now let ν�be such that = ν�)�T�⌜¬ ν⌝. We shall 
call this sentence the truly-not-teller. We may show that the system with 
Ax�is inconsistent by assuming ν�as follows:
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Example 5.

       ν (1)    ν�"�T ⌜¬ν⌝��Thm

            T ⌜¬ν⌝              T ⌜¬ν⌝ "�¬ν ��Ax
ν (1)                       ¬ν
             9 
             ¬ν ��(1)

Thus = ¬ν.

          ¬ν� Thm     ¬ν�"�¬T ⌜¬ν⌝� Thm

                  ¬T ⌜¬ν⌝                 ¬T ⌜¬ν⌝ "�¬¬ν��Ax
¬ν��Thm                            ¬¬ν
                   9

Similarly, it is easy to see that the inconsistency can be also proven by 
assuming either ¬ν,�T ⌜¬ν⌝ or ¬T ⌜¬ν⌝. It is almost difficult to not prove the 
inconsistency using a truth predicate satisfying Ax.

We now provide a definition which will allow us to broadly characterise 
these different proofs according to the form of the diagonal sentence and 
the initial assumption made in the proof.

Definition 6. Suppose we have a sentence f�given by the diagonal such 
that:

= f�)�ψ ⌜f⌝

for some formula ψ(x). We shall call f�the LHS�and ψ ⌜f⌝ the RHS�of the 
diagonal. Let us say that a sentence f� for a semantic predicate P� is in 
forward-negation�form�if we may establish that:

= f�)�¬P ⌜f⌝.

Let us say that a diagonal sentence f�for a predicate P�is in reverse�nega-
tion�form�if it is the case that:

= f�)�P ⌜¬f⌝.

We may then summarise the examples above by saying that for a truth 
predicate satisfying Ax, we may demonstrate inconsistency using a diago-
nal sentence in either forward negation or reverse negation form; and in
either form we may complete the proof from an opening assumption of 
either LHS�or RHS.
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1.2. Two forms of Montague’s paradox each with two forms of proof. 

However, when we come to consider necessity, matters become more 
restrictive. We consider here Montague’s not-necessary teller and a variation 
of it: the necessarily-not-teller [Montague, 1963]. We now remove the truth 
predicate from the language and replace it with a necessity predicate ¡.
Ax� is too strong to be taken seriously with respect to necessity. The fact 
that f�is true does not mean that f�is necessary; i.e., ¡ ⌜f⌝. However, if we 
could prove that f, then we might think that ¡ ⌜f⌝ was true. We thus 
weaken Ax�accordingly into the following two principles.

(Nec) If = f, then = ¡ ⌜f⌝.
(T) = ¡ ⌜f⌝ "�f.

1.2.1. The�not-necessarily-teller.�We first consider the forward negation 
form. Using our diagonal lemma, let μ�be such that =�μ�)�¬ ¡ ⌜μ⌝. We call 
this the not-necessarily-teller.

Example 7.

¡ ⌜μ⌝ (1)    ¡ ⌜μ⌝ "�μ��T    ¡ ⌜μ⌝ (1)    ¡ ⌜μ⌝ "�¬μ��Thm

        μ                        ¬μ            (1)

                       9
                   ¬¡ ⌜μ⌝

Hence = ¬ ¡ ⌜μ⌝; and thus,

¬ ¡ ⌜μ⌝��Thm    ¬ ¡ ⌜μ⌝ "�μ��Thm

              μ
            ¡ ⌜μ⌝��Nec             ¬ ¡ ⌜μ⌝��Thm

                           9��

And we may also assume that ¬μ�at the beginning of the proof.

Example 8.

       ¬μ(1)    ¬μ�"�¡ ⌜μ⌝��Thm

              ¡ ⌜μ⌝                ¡ ⌜μ⌝�"�μ��T

¬μ(1)                       μ
             9
               μ��(1)
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Thus = μ.

             μ��Thm

          ¡ ⌜μ⌝��Nec    ¡ ⌜μ⌝ "�¬μ� Thm
μ��Thm             ¬μ
           9

However there is no way of establishing the inconsistency via a proof 
assuming either μ�or ¬μ.

1.2.2. The�necessarily-not-teller.�Finally, let ρ�be such that = ρ�)�¡ ⌜¬ρ⌝. 
We shall call this the necessarily-not�teller.

Example 9.

       ρ(1)    ρ�"�¡ ⌜¬ρ⌝��Thm

            ¡ ⌜¬ρ⌝              ¡ ⌜¬ρ⌝�"�¬ρ��T
ρ(1)                      ¬ρ
              9
            ¬ρ��(1)

Thus = ¬ρ.

            ¬ρ��Thm
           ¡ ⌜¬ρ⌝� Nec     ¡ ⌜¬ρ⌝�"�ρ� Thm
¬ρ� Thm                ρ
           9

We may also demonstrate the inconsistency by starting with the assumption 
¡ ⌜¬ρ⌝ in much the same way as Example 7. The critical restriction is, of course, 
that necessitation can only be deployed in the second phase of the proof.

1.3. Discussion. The Val� predicate used in the sentence π� for the Beall 
Murzi paradox takes two arguments as opposed to one. However, it is not 
difficult to see that π�bears a close relationship with ρ, the necessarily-not-
teller. The Beall-Murzi sentence does not make use of negation; however, 
the use of 9�clearly plays a similar role in the usual interpretation of validity 
which is played out here. Moreover, we see that both sentences rely on 
embedding the effect of negation within the scope of the semantic predicate.

We may summarise the discussion above in the following table. A “✓” 
indicates that we can demonstrate inconsistency in the indicated form from 
the indicated opening assumption. A “×” indicates that we cannot. We let ζ�
where ζ�)�¬Val (⌜<⌝,�⌜ζ⌝) be the forward negation form of the validity paradox.
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Form Opening Assumption Truth Necessity Validity

FN

LHS ✓ × ×

RHS ✓ × ×

¬ LHS ✓ ✓ ×B

¬ RHS ✓  ✓ ×B

RN

LHS ✓  ✓ ✓
RHS ✓  ✓ ×A

¬ LHS ✓ × ×

¬ RHS ✓ × ×

A. This may be simply recovered if we add the following natural principle for nega-
tion: (¬ I ) = Val (f, 9) " ¬f.

B. These may be recovered by adding the following principle to constrain validity: 
(Taut) = Val (<,�f) " f.

2. Addressing the problem

This seems like a sad state of affairs, although perhaps not altogether unex-
pected. In this section, we look at a couple of ways of responding to it as 
a prelude to our fixed point construction. The natural thing to think is that 
one of (VP) or (VD) must go. Toward making such a decision, we might 
first try to make things more specific. Underlying each of the paradoxical 
arguments above is the ability to talk about expressions as objects, so some 
kind of syntax theory is in order. Let us assume, for now and for conveni-
ence, that that this theory is PA. The arithmetic vocabulary is {0,�1,�+,�×}; 
we assume that = is part of the logical vocabulary. An arithmetic sentence 
is one that involves only arithmetic (and of course, logical) vocabulary. We 
shall not, however, assume that our proof theory is restricted to arithmetic 
expressions: we shall admit expressions from any language that our coding 
system can accommodate.

Let us write f�=PA�ψ�to mean that ψ�is derivable from f�from the axioms 
of PA�and classical logic. Thus, we shall have:

Proposition 10. (i)�If�f�is�arithmetic,�then�=PA�f�iff�f�is�a�theorem�of�PA.
(ii) If�f�and�ψ�make�no�use�of�arithmetic�vocabulary,�then�if�f�=�ψ,�then�

f�=PA�ψ�(where�=�is�the�ordinary�derivability�relation�of�first�order�logic).2

2 Given f�and ψ�do not involve arithmetic vocabulary, it is not the case, however, that: if 
f�=PA�ψ, then f�= ψ. For a counterexample, we have =PA 7x7y (x ! y) while, E7x7y(x ! y) 
— we assume identity is a logical relation. This is arguably undesirable. We shall address 
this issue in the final system (see Section 3.1.1) by adding a relation symbol N�whose 
intended interpretation is just the natural numbers. A similar fix could be applied here, but 
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This should give us sufficient power to say the things we need to say about 
our syntax. Matters will, of course, become more subtle for sentences which 
are in the overlapping area involving both arithmetic and non-arithmetic 
vocabulary.

We may then consider a language L�expanded with a validity predicate 
Val. In this (quite natural) context, (VP) and (VD) could be formulated as 
follows:

(VPPA) If f�=PA�ψ, then =PA�Val (⌜f⌝,�⌜ψ⌝).
(VDPA)  f,�Val (⌜f⌝,�⌜ψ⌝) =PA�ψ.

The argument of the previous section then shows that, assuming we retain 
classical logic, one of these two must be sacrificed. However, at this point, 
we do not actually know that much about the property the Val�predicate is 
representing. Informally, we know it is intended to represent validity or 
consequence, but what does that come to here? We look at two possible 
options: one proposed by Ketland; and another which generalises McGee’s 
approach to necessity [Ketland, 2012, McGee, 1991].

2.1. Ketland’s Approach. So the first and arguably most natural thing to 
try is taking Val�at face value. We are considering the language of first order 
logic. We know what a consequence is in that language. Moreover, we have 
a completeness theorem which tells us that if f�is a consequence�of ψ, then 
f�is derivable�from�ψ�in any one of the myriad of proof systems for first 
order logic on the market. So let us define Val�as follows:

Definition 11. We write ValK�(⌜f⌝,�⌜ψ⌝) if ψ�is derivable from the assump-
tion of f�using some sound and complete proof procedure for first order 
logic (i.e., f�=�ψ).

So this seems like a promising precisification: we are just lifting our 
definition of Val�from the derivability relation of first order logic.

Proposition 12. (i) If�f�and�ψ�do�not�involve�not�arithmetic�vocabulary�or�
the�= symbol,�then�f�=PA�ψ�iff�=PA�ValK(⌜f⌝,�⌜ψ⌝).3

the problem is not pressing for the current discussion and its application will only make the 
presentation much more complicated.

It may also be worth remarking on the distinction between a sentence that is not arithmetic 
and a sentence which does not involve arithmetic vocabulary. A sentence is not�arithmetic�if 
it makes use of non-logical vocabulary outside {0,�1,�+,�×}. On the other hand, a sentence 
does�not� involve�arithmetic�vocabulary� if it makes no use of {0,�1,�+,�×}. Thus, sentences 
which only use the identity predicate are arithmetic, but do not involve arithmetic vocabulary.

3 By also excluding =, we avoid the problem noted in Proposition 10, but this also causes 
a significant restriction on VPPA. This can be tidied up, but it is messy and we shall see a 
way of doing it in Section 3.1.1.
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So there is a tight relationship between provability in the system PA�and 
ValK. Moreover, we may also show that:

Proposition 13. For�all�sentences�f,�ψ,�it�is�the�case�that�f,�ValK(⌜f⌝,�⌜ψ⌝) 
=PA�ψ.

Proof.�By a simple generalisation of the argument in [Hájek and Pudlák, 
1998], we see that =PA�ValK (⌜f⌝,�⌜ψ⌝) "�(f "�ψ) for all f,�ψ. The pro-
position then follows from some propositional logic and the deduction 
theorem.

Remark.�We observe that different choices in background syntax theory may 
affect this result.

Now Proposition 13 tells us VDPA�is satisfied under this precisification 
of validity. We also observe that, as construed, the ValK�predicate is defin-
able in the language of PA�and thus, since we are using classical logic, we 
must (assuming the consistency of PA) have sacrificed VPPA. In fact, it is 
easy to give a counterexample as in Fact 15. Moreover, we see that ValK�
has some counter-intuitive features.

Proposition 14. (i) =PA�ValK�(⌜0 = 0⌝,�⌜0 = 0⌝);
(ii)�EPA�ValK�(⌜0 = 0⌝,�⌜1 + 1 = 2⌝).

Since ValK�does not privilege arithmetic vocabulary, there is nothing stop-
ping there being a model in which the arithmetic vocabulary is interpreted 
in such a way that 1 + 1 ! 2. Thus, the VPPA�will fail in such a situation. 
From this, a counter-example to VP�is easy to construct.

Fact 15. 0 = 0 =PA�1 + 1 = 2 but�EPA�ValK(⌜0 = 0⌝,�⌜1 + 1 = 2⌝).

2.1.1. Rationale�behind�sacrificing�VPPA.�So now we can see where things 
stand on this proposal, can we provide also a satisfying philosophical expla-
nation of why this should be the case? We discuss a way of doing this and 
then suggest a way in which this is not the end of the story. One of first 
things we might note about the presentation of our proof system above is 
that we have, so to speak, smuggled PA�in as a subscript, when really�we 
ought to think of its use as further assumptions upon which the derivation 
depends. So we should be writing

PA,�f�=�ψ
rather than

f�=PA�ψ.

We should not be thinking of ourselves as using a special proof theory 
which has PA�as axioms; rather, we are just using first order logic with 
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some extra assumptions. This then puts Val�perfectly in accord with our 
proof system =, which seems like a good thing.

Now let us consider VPPA�in this context. It now looks like this:

(VP†
PA) If PA,�f�=�ψ, then PA�=�Val (⌜f⌝,�⌜ψ⌝).

But this does not look so much like the sort of principle we ought to counte-
nance. In fact it could seem wrong, as the following more general principle 
illustrates.

(GP) If χ,�f�=�ψ, then χ�=�Val (⌜f⌝,�⌜ψ⌝).

This does not fit our intuitive gloss for Val�at all. Suppose I had derived ψ�
from both χ�and f�as assumptions. Then just because I am assuming χ, 
there is no reason to think, because of this, that I could derive ψ�from f.

Now we see that VP†
PA is essentially an instance of GP, so perhaps there 

is something fishy about it. I do not want to suggest that this is a proof of 
any kind — we already have one of those — but what we might have here 
is a philosophical motivation to see why our temptation to accept VP†

PA�was 
misguided in the first place.

As I understand it, this is the motivation behind Ketland’s response [Ket-
land, 2012].4 However, I think there is perhaps more to say. While VP†

PA is a 
set of instances of the problematic GP, it may be that each of these instances 
is actually okay — or at least in accord with our guiding moti vations for the 
validity predicate. Perhaps we should not be treating PA�as a set of assumptions 
like any other. Rather, since we require our syntax theory in order to even 
formulate these problems, perhaps we should take it that these axioms are not 
mere assumptions, but are essential: true even. Thus, we should not then con-
sider cases where the axioms of the syntax theory are invalid. It is this kind of 
idea that may motivate us, so to speak, to bury PA�as a subscript once more.

But there is a problem with this: if we make this move, then our proof 
system =PA�is no longer in accord with our validity predicate Val. Val�is just 
intended to give us the valid consequences of first order logic, but =PA�also 
gives us the theorems of PA. This point motivates our next approach to 
precisifying validity.

2.2. Something like McGee. Rather than interpreting Val� to mean first 
order derivability, we now interpret it to mean derivability in the system =PA. 
So we shall say:

4 We note that in [2012], Ketland uses a one-place predicate Val�instead of the two place 
one used here and in [Beall and Murzi, forthcoming]. For his purposes, the difference is 
largely cosmetic. However, as we shall see in Section 3, it makes a significant and interesting 
difference to the resultant consequence relation in the fixed point construction. Thus we retain 
the two place version in this discussion.
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Definition 16. ValPA(⌜f⌝,�⌜ψ⌝) if ψ�is derivable in first order logic with PA�
as axioms (i.e., f�=PA�ψ).

Intuitively speaking, the idea is to admit the axioms of PA�as primitive, 
since we are only interested in those cases where our syntax theory does 
what it is supposed to. Moreover, it is easy to see that the ValPA� is just a 
simple generalisation of Gödel’s provability predicate for PA, BPA(x), and 
is thus representable by a Σ0

1 formula of arithmetic. We then see that the 
following version of VP�is obtained.

Proposition 17. If�f�=PA�ψ,�then�=PA�ValPA(⌜f⌝,�⌜ψ⌝).

Proof. This is a simple generalisation of the proof that if =PA�f� then
=PA BPA⌜f⌝ (see e.g., Boolos [1979]). ¡

Now the Beall-Murzi paradox then tells us, since we are using classical logic, 
that we must abandon VDPA; i.e.,

Proposition 18. There�exists�f,�ψ�such�that�f,�ValPA(⌜f⌝,�⌜ψ⌝) EPA�ψ.

Proof. We assume that PA�is consistent. Using the diagonal lemma, let γ�be 
such that

(2.1) =PA�γ�)�¬ValPA(⌜0 = 0⌝,�⌜γ⌝).

We then assume that 0 = 0,�ValPA(⌜0 = 0⌝,�⌜γ⌝) =PA�γ; thus

(2.2) =PA�ValPA(⌜0 = 0⌝,�⌜γ⌝) "�γ.

Under this assumption, we work within PA� and suppose that ¬ γ. Then 
ValPA(⌜0 = 0⌝,�⌜γ⌝) by (2.1); and so γ�by (2.2), which is a contradiction, so γ. 
But then by Proposition 17, we get ValPA (⌜0 = 0⌝,�⌜γ⌝); and by (2.1) ¬ γ
and by (2.2) γ: contradiction. Thus our assumption is incorrect: 0 = 0,�
ValPA (⌜0 = 0⌝,�⌜γ⌝) EPA�γ. ¡

Remark�19. This is obviously just a version of Example 7 where we use 
Val�instead of ¡ and we assume consistency rather than attempt to refute it.

2.2.1. Why�abandon�VDPA?�Perhaps there is less of a philosophically satis-
fying answer to why we should reject VDPA. However, it is such an obvious 
and simple generalisation of Gödelian reasoning that perhaps we should 
be inured to such results. In [1991], McGee takes up much the same 
approach to the addition of a necessity predicate. He opts for the simplicity 
of a provability BPA(x) predicate for PA�to represent necessity and thus ends 
up sacrificing the principle T�while retaining Nec. This is analogous to a 
rejection of VDPA�while retaining VPPA.
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In contrast, Skyrms and Leitgeb have adopted approaches which retain 
principle T�while sacrificing Nec� [Skyrms, 1978, Leitgeb, 2008]. These 
approaches rely on fixed point construction which are similar to those of 
Kripke [1975]. They provide the inspiration for the construction in the fol-
lowing section.

2.3. Analysis. The basic lesson from all this is that we seem to have a 
forced choice between VDPA�and VPPA.

(1) If we use first order derivability (=), we get VDPA�but sacrifice VPPA. 
(2) If we use derivability over PA�(=PA) we get VPPA�but lost VDPA.

Our goal in this next section is to show how one might attempt to retain 
both V�and VP.

3. Building the fixed point

Our goal is to construct a model in which we may support both principles:

(VP) If f�=�ψ, then =�Val (⌜f⌝,�⌜ψ⌝).
(VD) f,�Val (⌜f⌝,�⌜ψ⌝) =�ψ.

We shall attempt to do this in as simple a fashion as possible. The solution 
provided is thus more of a prototype than a finished product — it could 
be improved upon, as we shall remark in the next section. However, the 
construction presented tackles the fundamental problem and a number of 
hurdles that any similar construction would need to address. The basic idea 
is to generalise Kripke’s fixed point construction for a truth predicate to the 
current problem of validity [Kripke, 1975]. The result is less aesthetically 
pleasing, but nonetheless promising. In contrast to the previous section, we 
shall characterise validity semantically or model theoretically. The essential 
idea of the construction may be sketched as follows.

We start with an ordinary language L�to which we want to add the validity 
predicate, Val. We then consider the set of all countable models M�of L: 
a canonical representative of each isomorphism-type would suffice.5 These 
models form the basis of the construction. At this stage, we have not spec-
ified anything about the content of the validity predicate.

The main difference from Kripke’s truth construction is that rather than 
building a fixed point over a particular model of L, we are building the 
fixed point over (practically) all of them. In order to talk about the syntax 

5 The downward Löwenheim-Skolem theorem tells us that we only require countable 
models.
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of the model, we expand our language L�with the language of arithmetic 
LAr�= {0,�1,�+,�×}. We then expand and (possibly) extend each of the mod-
els to accommodate the standard interpretation of the arithmetic vocabulary. 
We want this vocabulary’s interpretation to remain fixed across all of the 
models, while the rest of the vocabulary is re-interpreted. We denoted the 
set of these models by Mod. Finally, we expand the language with the two-
place relation symbol Val. Call the resultant language LV. We form the 
sentences of LV, abbreviated SentLV, in the usual way. We shall assume that 
we have a simple arithmetic coding system ⌜·⌝: SentLV " ω.

We then commence the inductive construction that will provide an 
extension for the validity predicate. We ground the construction by putting 
every instance of VD� into the interpretation of the validity predicate. At 
the first level we then add to the extension of the Val�predicate all those 
pairs of codes 〈f,�ψ〉�such that every model says that either f� is false or
ψ�is true. For example, 〈f / ¬ f,�f〉�will get into Γ+

1 (provided f�does not 
use the Val�predicate). Moreover, we take all of the pairs from Γ+

0 (i.e., VD�
instances) into Γ+

1 as we have already accepted them. We also form an anti-
extension for Val�in an analogous way. We write Γ1 = (Γ+

1,�Γ–
1 )�to indicate 

this. At the next level we use Γ1 as a parameter to figure out which sen-
tences ψ�follow from f�given that we already know that all the pairs in Γ+

1 
are valid and those in Γ–

1 are not. By adding these pairs to Γ+
1 and Γ+

2, this 
allows us to calculate Γ2 = (Γ+

2,�Γ–
2 ). Essentially, this next step allows us to 

grab the sentences which have two iterations of the Val� predicate. For 
example, 〈f,�Val (⌜f / ¬ f⌝,�⌜f⌝)〉�would get into Γ+

2 since 〈f / ¬ f,�f〉�
was in Γ+

1. We then continue on in this fashion. We shall demonstrate that 
the construction is non-decreasing and well-defined. Then by a standard 
cardinality argument, we claim that the construction reaches a fixed point. 
This will be the intended extension of the validity predicate. Finally, we 
show that our principles are satisfied in the model.

3.1. The construction

3.1.1. The�basis�of�models. As noted in Section 2, the relation =PA�demands 
that there is more than one object. This is not the sort of thing we would 
ordinarily think of as a logical truth. However, since this framework 
requires us to take our syntax theory with us in all models, we might think 
this is a necessary cost. Nonetheless, it would be nice if we could speak about 
the things that were not numbers and make no such demands with regard 
to them. Thus, while we are clearly going to have more than one natural 
number, there might not be more than one object that is not a natural 
number. We shall define our basis of models, Mod, to accommodation this 
intuition.
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Our basic idea is to separate the domain |M|�of a model M� into two 
parts: the natural number part and the rest of the objects. Let us call them 
the number�domain�and the concrete�domain; and call their union the total�
domain.�We want the consequence relation over the concrete domain to 
operate in the same manner as ordinary first order logic, so we shall demand 
that it contain at least one object. Moreover, we shall satisfy ourselves with 
merely countable concrete domains, since the downward Löwenheim-Skolem 
theorem tells us that we will not get anything new by considering larger 
domains.

Now if we make this move, there is a slight technical niggle. The arith-
metic functions over the number domain will no longer take arbitrary 
objects from the total domain as arguments and thus fail to be properly 
defined. There are a couple of options: we could adapt our model theory 
to deal with partial functions; or we could use a relational signature for the 
arithmetic vocabulary. The former adds unnecessary complexity to the pres-
entation, so we take up the latter. So assuming our arithmetic vocabulary was 
{0,�1,�+,�×}, we replace the functions + and ×�by three-place relation sym-
bols, P�and M�where

m�+ n�= k� iff  P(m,�n,�k)

and
m�×�n�= k� iff  M(m,�n,�k).

So from now on, let LAr�= {0,�1,�P,�M}. Moreover, we shall also restrict 
our non-arithmetic vocabulary to relational signatures. We may then define 
formulae, using the arithmetic vocabulary, which allows us to determine if 
an object is in the number domain or the concrete domain. We might say that

N(x)  )Def �P(0,�x,�x)

and
C(x)  )Def �¬N(x).

By restricting quantification to N�and only using arithmetic vocabulary we 
may define purely�arithmetic�sentences; and purely�concrete�sentences�in a 
similar fashion. We may now define our basis of models, Mod, as follows:

Definition 20. Take an arbitrary language L. Let Moda�be the set of all 
models M�of L  j  LAr�where: the domain of M�is ω�+ a; and LAr�is inter-
preted over ω�in the standard way. Let

 a .Mod Mod
a1 1

=
1# w+

'
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This gives us every way of interpreting the vocabulary of L�over every 
concrete domain of some countable cardinality ≥�1.6

3.1.2. A�strong�Kleene�valuation�function. We now define a semantic eval-
uation function which takes an extension/anti-extension pair F = 〈F+,�F−〉, 
a model M! Mod�and a sentence f�from LV�and returns a value in {0,�1}�
if we have sufficient information to do so. We use a strong Kleene scheme 
to determine sufficiency. To save some space, we avoid satisfaction 
sequences and gear our valuation to a language which expands LV�by a set 
of constant symbols for every element of the domain [Smullyan, 1968, 
Hodges, 1997, Priest, 2008]. Thus for a set of constant symbols C, we write 
LV (C) for that expansion. We shall content ourselves to using the objects 
from the domain themselves as these constant symbols. We let m stand for 
a tuple of elements from M’s domain |M |.

Definition 21. Given F = 〈F+,�F−〉�and M ! Mod�we let v·,·(·) : P(SentLV)2

×  Mod × SentLV > 2 be a partial function which evaluates sentences
f ! SentLV (|M |) using a an extension/anti-extension pair and a model as 
parameters.

vF, M (f) = 1 iff

•� f�:= Rm and m ! RM where R ! L;
•� f�:= Rm and m ! RN where R ! LAr;7

•� f�:= Val (m1,�m2) and m1 = ⌜ψ⌝ and m2 = ⌜χ⌝ and 〈ψ,�χ〉 ! F+ ;
•� f�:= ¬ψ�and vF, M (f) = 0;
•� f�:= ψ/ χ�and vF, M (ψ) = 1 and vF, M (ψ) = 1; or
•� f�:= 6xψ(x) and 6m ! |M |, vF, M (ψ(m/x)) = 1

and vF, M (f) = 0 iff

•� f�:= Rm and m "�RM where R ! L;
•� f�:= Rm and m "�RN where R ! LAr;
•� f�:= Val (m1,�m2) and m1 = ⌜ψ⌝ and m2 = ⌜χ⌝ and 〈ψ,�χ〉 ! F–;
•� f�:= ¬ψ�and vF, M (ψ) = 1;
•� f�:= ψ/ χ�and vF, M (ψ) = 0 or vF, M (χ) = 0; or
•� f�:= 6xψ(x) and 7m ! |M |�such that vF, M (ψ(m/x)) = 0.

6 We could consider further restricting Mod�such that the number domain is not permit-
ted to be in the interpretation of relation symbols in L: perhaps this would constitute some 
kind of category error.

7 RN is the standard interpretation of R�over ω.
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Observe that if F = 〈4, 4〉, vF, M (Val (⌜f⌝,�⌜ψ⌝)) is not defined. We shall then 
write vF, M (Val (⌜f⌝,�⌜ψ⌝))  =  ∞.

3.1.3. A�jump�function�that�will�not�fly. Our next task is to define the jump 
function, which will be the engine of our inductive construction. However, 
we first observe that the obvious generalisation of Kripke’s approach will 
not work. This gives some insight as to why a two-place Val�predicate is 
more challenging to accommodate than its one-place cousin. Suppose we 
defined the jump as follows:

Definition 22. We let j�: P(SentLV)2  "�P(SentLV)2 be such that for F = 
〈F+,�F−〉

j(F) =  〈{〈f, ψ〉�!�SentLV ×�SentLV�|�6M�! Mod (vF, M (f)
= 1 " vF, M (ψ) = 1)},
{〈f,�ψ〉�!�SentLV ×�SentLV�|�7M�! Mod (vF, M (f)
= 1 / vF, M (ψ) !�{0,�∞})}〉

Suppose we start with the empty guess, 〈4, 4〉�and then repeatedly apply the 
jump function j. If we want our construction to be non-decreasing, so that 
we can find a fixed point, then we want j (〈4, 4〉)+ 3�j % j(〈4, 4〉)+. Unfortu-
nately, this does not occur. Consider the pair of sentences: 〈Val (⌜f⌝,�⌜f⌝),�
⌜f / ¬ f⌝〉. We see that 〈f,� f〉 !� j(〈4, 4〉)+, since f�t f. Moreover
since no model M� is such that v〈4, 4〉, M (Val (⌜f⌝,�⌜f⌝)) = 1, we also have 
〈Val (⌜f⌝,�⌜f⌝),�⌜f / ¬f⌝〉 ! j(〈4, 4〉)+ (for trivial reasons).

But we can see when we consider the next iteration j % j(〈4, 4〉)+, every 
model M�is such that

vΓ1, M (Val (⌜f⌝, ⌜f⌝)) = 1

and
vΓ1, M (Val (⌜f / ¬f⌝)) = 0.

Thus 〈Val (⌜f⌝, ⌜f⌝),� ⌜f / ¬f⌝〉�"� j % j(〈4, 4〉)+. In fact, 〈Val (⌜f⌝,� ⌜f⌝),
⌜f / ¬f⌝〉�!�j % j(〈4, 4〉)–.

This means that we won’t be able to get a fixed point with this jump function: 
its failure will be particularly apparent at limit levels of the construction. 
Moreover, it can be shown that the obvious generalisations of other tradi-
tional jump operations — like those of Kremer, Halbach and Horsten and 
Priest — will also suffer similar problems [Kremer, 1988, Halbach and 
Horsten, 2006, Priest, 1979]. At this point, we might think to adopt a revi-
sion theoretic strategy as in [Gupta and Belnap, 1993]. However, there is a 
way of revising the jump function definition which does work and is related 
to contemporary work in logics of truth [Ripley, Forthcoming].

97548.indb   34997548.indb   349 18/12/14   09:5018/12/14   09:50



350 TOBY MEADOWS

3.1.4. A� jump� function� that� does� work.�Let’s define the jump function 
somewhat differently.

Definition 22. We let jV�: P(SentLV)2  "�P(SentLV)2 be such that for F = 
〈F+,�F−〉

jV(F) =  〈{〈f, ψ〉�!�(SentLV)2�| 6M�! Mod (vF, M (f) 
! {∞, 1} " vF, M (ψ) = 1)},
{〈f,�ψ〉�!�(SentLV)2�| 7M�! Mod (vF, M (f)
= 1 / vF, M (ψ)  =  0)}〉

This jump function gets around the problem above, because v4, M (Val (⌜f⌝,�
⌜f⌝)) = ∞�and thus the fact that v4, M (f / ¬f) = 0 means that

〈Val (⌜f⌝,�⌜f⌝),�⌜f / ¬f⌝〉�"�Γ+
1.

Remark�24. The idea for this is drawn from Ripley’s notion of a tolerant-
strict consequence [Ripley, Forthcoming]. However, as is often the case 
with these matters, there is a sense in which this consequence relation is 
particularly strict. We are only admitting those consequences where we are, 
so to speak, sure about the antecedent and consequent. The cost of this is 
reflexivity.

3.1.5. The�hierarchy. We are now ready to provide our inductive definition. 
Recalling our goal to ensure that principles VP�and VD�are upheld, we set 
up the induction so that VD�will be satisfied. We do this by simply putting 
it in at the beginning.

Definition 25. Let (i) aa <
F =b

&  〈 +
a a,a a< <b b

–F F' '  〉;
(ii)   Ψ . F = 〈Ψ+ , F+,�Ψ− , F−〉;
(iii) Ψ 5 F iff Ψ+ 3 F+ and Ψ− 3 F−; and
(iv) Ψ be called consistent�if Ψ+ + Ψ− = 4.

Definition 26. Let Γ· : On�" P (SentLV)2 be defined by transfinite recur-
sion as follows:

Γ0 = 〈{〈f / Val (⌜f⌝,�⌜ψ⌝),�ψ〉�|�f,�ψ ! SentLV},�4〉

Γa = Vj
a a< <

GGb b
bb

.b l& &

It is trivial to show that this construction is non-decreasing: it is built into 
the definition. However, it is possible that the jump may become undefined 
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if we ever get to a position where for some f,�ψ ! SentLV�and ordinal a, 
〈f,�ψ〉 ! Γa

+� and 〈f,�ψ〉 ! Γa
–. If this occurred, we could not use the 

 valuation function, v, described above.

Proposition 27. Suppose�F 5 Ψ where�F and�Ψ are�consistent.�Then

(1) if�vF, M (f) = 1,�vC, M (f) = 1;�and
(2) if�vF, M (f) = 0,�vC, M (f) = 0;

Proof.�By induction on the complexity of formulae. ¡

The following claim is required for the main lemma which follows.

Claim�28. Let L�be an arbitrary countable language and let ⌜·⌝ : SentLV" ω�
be an arbitrary coding system for LV. Then there is no sequence (χn)n ! ω�
of sentences of LV�such that for all n ! ω:

χn�is χn + 1 / Val (⌜χn + 1⌝,�⌜ψ⌝).

Proof. Suppose not and let (χ)n ! ω�witness this. Then we have

χ0 = χ1 /�Val (⌜χ1⌝,�⌜ψ⌝)
 = χ2 /�Val (⌜χ2⌝,�⌜ψ⌝) /�Val (⌜χ1⌝,�⌜ψ⌝)
 h
 = χn�/�Val (⌜χn⌝,�⌜ψ⌝) /�Val (⌜χn − 1⌝,�⌜ψ⌝) /, … /�Val (⌜χ1⌝,�⌜ψ⌝)
 h

We then observe that any sentence of LV�must contain a fixed and finite 
number of conjunctions. Suppose that χ0 contains m�many conjunctions. 
Then we see that

χ0 = χm + 1 /�Val (⌜χm + 1⌝,�⌜ψ⌝) / … /�Val (⌜χ0⌝,�⌜ψ⌝)

and thus χ0 contains at least m�+ 1 conjunctions: contradiction. ¡

 
Lemma 29. For�all�a�and�f, ψ ! SentLV�it�is�not�the�case�that�〈f, ψ〉 ! Γa

+�
and�〈f, ψ〉 ! Γa

–.

Proof. Suppose not and let a� be the least ordinal such that for some 
f, ψ ! SentLV�we have 〈f, ψ〉 ! Γa

+ and 〈f, ψ〉 ! Γa
–.

Case 1: Suppose 0 <�ζ�<�a� is the least ordinal such that 〈f, ψ〉 ! Γζ
+,

and a�is the least ordinal such that 〈f, ψ〉 ! Γa
–. Then 〈f,�ψ〉 ",β  < a Γβ

–, 
so the construction is well-defined below a� and thus, for some M�we
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have v.β < a Γβ, M(f) = 1 while v.β < a Γβ, M(ψ) = 0. We also see by assumption 
that either v.ξ < ζ Γξ, M(f) = 0 or v.ξ < ζ Γξ, M(ψ) = 1. Suppose v.ξ < ζ Γξ, M(f) = 0.
Then since .ξ < ζ Γξ�5.β < a Γβ, v.β < a Γβ, M(f) = 0: contradiction. Suppose 
v.ξ < ζ Γξ, M(ψ) = 1. Then since .ξ < ζ Γξ�5.β < a Γβ, v.β < a Γβ, M(ψ) = 1: contra-
diction.

Case 2: Suppose ζ�<�a�is the least ordinal such that 〈f, ψ〉 ! Γζ
–, and a�is 

the least ordinal such that 〈f, ψ〉 ! Γa
+. Then by assumption 〈f,�ψ〉 "

,β  < a Γβ
+ so the construction is well-defined below a. Thus we can see

that v.ξ < ζ Γξ, M(f) = 1 and v.ξ < ζ Γξ, M(ψ) = 0 for some M. Fix such an M. 
Moreover, we also have v.β < a Γβ, M(f) = 0 or v.β < a Γβ, M(f)ψ) = 1. Suppose 
v.β < a Γβ , M(f) = 0. Then since .ξ < ζ Γξ�5.β < a Γβ, v.β < a Γβ, M(f) = 1: con-
tradiction. Suppose v.ξ < ζ Γξ, M(ψ) = 1. Then since .ξ < ζ Γξ�5.β < a Γβ, 
v.β < a Γβ, M(ψ) = 0: contradiction.

Case 3: Suppose 〈f, ψ〉 ! Γ0
+ and a� is the least ordinal such that 

〈f, ψ〉 ! Γa
–. We see that f�must be of the form χ0 / Val (⌜χ0⌝, ⌜ψ⌝). 

Moreover, for some M�we have v.β < a Γβ , M( χ0 / Val (⌜χ0⌝, ⌜ψ⌝)) = 1 while 
v.β < a Γβ , M(ψ) = 0. Fix such an M. But then

v.β < a Γβ , M(χ0) = v.β < a Γβ , M(Val (⌜χ0⌝, ⌜ψ⌝)) = 1

and so 〈χ0, ψ〉 !,β  < a Γβ
+. Now either: there is some least ξ > 0 such that 

〈χ0, ψ〉 ! Γζ
+ or 〈χ0, ψ〉 ! Γ0

+. In former situation, the argument from Case 1 
or Case 2 may be applied, since it is clear that 〈χ0, ψ〉 ! Γa

–. In the latter 
situation, χ0 must be a sentence of the form χ1 / Val (⌜χ1⌝, ⌜ψ⌝); and thus,

v.β < a Γβ, M(χ1) = v.β < a , M(Val (⌜χ1⌝,�⌜ψ⌝)) = 1

and so 〈χ1,�ψ〉 !,β  < a Γβ
+. Clearly the argument for χ0 may be applied to 

χ1 and we may end up with a sequence χ0, …, χn. However by Claim 28, 
we see that this sequence must terminate after a finite number of steps. Thus, 
we shall eventually end up being able to apply the argument from Case 1 
or Case 2. ¡

Corollary 30. The�sequence�(Γa)a!On�is�well-defined.

From here cardinality considerations imply the existence of a fixed point and 
we may define our intended extension for the validity predicate as follows:

Definition 31. Let ΓVal�be Γa�for the least a�such that Γa�= Γa + 1.

3.1.6. Establishing�the�principles.�Let <�be an arbitrary sentence such that 
v4, M  (<) = 1 for all M ! Mod; and let =�be an arbitrary sentence such that 
v4, M  (9) = 0 for all M ! Mod.
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Proposition 32. (i) 〈f, ψ〉 ! Γ+
Val�iff�〈⌜<⌝,�Val (⌜f⌝, ⌜ψ⌝)〉 ! Γ+

Val;
(ii) For�purely�concrete�f, ψ, 〈f, ψ〉 ! Γ+

Val iff�f�= ψ�iff�〈f, ψ〉 " Γ–
Val .

(iii) For�f�is�purely�arithmetic,�Val (⌜<⌝,�⌜f⌝) = 1 iff �N t f.

Proof. (i) (") Suppose 〈f, ψ〉 ! Γβ
+ 3 Γ+

Val�for some β. Then every model 
M ! Mod�is such that vΓβ , M (Val (⌜f⌝, ⌜ψ⌝)) = 1, thus 〈<,�Val (⌜f⌝, ⌜ψ⌝)〉 !�
Γ+

β + 1 3 Γ+
Val. (!) Suppose β�is the least ordinal such that 〈<,�Val (⌜f⌝,�⌜ψ⌝)〉�!

Γβ
+. Then β�>�0 and for all M ! Mod, we have v.γ < β Γγ , M (Val (⌜f⌝,�⌜ψ⌝) = 1. 

But then 〈f, ψ〉 !,γ < β�Γγ
+ 3 Γ+

Val .
(ii) Any putative consequence 〈f, ψ〉�where f,�ψ�are purely concrete is in 
Γ+

1  3 Γ+
Val �iff it is valid; and in Γ–

1  3 Γ–
Val �iff it is not valid.

(iii) If f� is arithmetic, then its interpretation is fixed across all models 
M ! Mod. ¡

We may also establish weak versions of monotonicity, reflexivity and tran-
sitivity within ΓVal.

Proposition 33. (i) If� f, ψ ! Sent (L,LAr) \ LV� and� 〈f, ψ〉 ! Γ+
Val ,� then

〈 δ / f, ψ〉 ! Γ+
Val;

(ii) 〈f,�f〉 ! Γ+
Val �if�f�! Sent (L,LAr) \ LV;�and

(iii) If� f, ψ, χ ! Sent (L,LAr) \ LV, 〈f, ψ〉 !� Γ+
Val � and� 〈ψ, χ〉 ! Γ+

Val ,� then
〈f, χ〉�! Γ+

Val .

We are almost ready to define our target consequence relation, but there is 
a slight hitch that we need to address first. We would like our consequence 
relation to enjoy permutation of premises. Then we can write Δ F f�where 
Δ is a finite set of sentences from LV. Given that our Γ+

Val  only takes pairs, 
it seems natural to use conjunction to weld together proxies for these finite 
sets. So given Δ = {γ1,�…,� γn}, we shall use γ1 / … / γn� in its place.
But it is critical that we could permute the order of these conjunction. 
So given σ�: n " n, a permutation, we should also be able to use γσ(1) / …�
/ γσ(n) to represent Δ and get the same result.

But our definition fails this at the first level, Γ+
0 . Let f, ψ ! SentLV. Then 

〈f/Val (⌜f⌝, ⌜ψ⌝), ψ〉 ! Γ+
0 , but 〈Val (⌜f⌝, ⌜ψ⌝) / f, ψ〉 " Γ+

0 . We added 
the first of these pairs to ensure that (VD) was satisfied, but given the syn-
tactic nature of their addition, we do not get the second pair. This is easily 
remedied: we simply add them at the beginning too. Thus we amend the 
construction such that

Γ+
0 =  {〈f / Val (⌜f⌝, ⌜ψ⌝), ψ〉�|�f, ψ ! SentLV} ,

{〈Val (⌜f⌝, ⌜ψ⌝) / f, ψ〉�|�f, ψ ! SentLV}.
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From now on, we shall take it that ΓVal�has been defined accordingly. It is 
easy to see that the proofs above go through after this change with at most 
minor revisions.

Definition 34. Let Δ = {γ1,�…,� γn}�be finite, then we let Δ FVal�f� iff
〈γ1 / … / γn,�f〉 ! Γ+

Val . We also write FVal�f�iff 〈<,  f〉 ! Γ+
Val .

Theorem 35. (i) If�f FVal ψ,�then FVal�Val (⌜f⌝, ⌜ψ⌝);
(ii) f,�Val (⌜f⌝, ⌜ψ⌝) FVal�ψ.

Proof. (i) This follows from Proposition 32 (i).
(ii) By construction, 〈f / Val (⌜f⌝, ⌜ψ⌝),�ψ〉 ! Γ+

0  3 Γ+
Val . Thus f,�Val (⌜f⌝,�

⌜ψ⌝) FVal�ψ.

3.1.7. What� happens� to� the�Beall-Murzi� sentence?�To give a better idea 
what is going on in this construction, we illustrate what happens to the 
Beall-Murzi sentence. Recall that it is a sentence π�such that we have estab-
lished using the diagonal lemma that:

=�π�)�Val (⌜π⌝,�⌜9⌝).

Given given the way we have set things up, we might be tempted to think 
that 〈π, 9〉�actually gets into the extension of the validity predicate. This 
would be problematic since it would soon force 〈π, 9〉�into the anti-exten-
sion causing the construction to jam and fail. This is not the case, but let 
us see how we might informally (and incorrectly) reason to this conclusion.

(1) We observe that, by definition:

(3.1) 〈π / Val (⌜π⌝,�⌜9⌝),9〉 ! Γ+
0

since it is an instance of VD.

(2) We then observe that π�is equivalent to Val (⌜π⌝,�⌜9⌝). There is no dif-
ference between saying π�or π / Val (⌜π⌝, ⌜9⌝): they mean� the� same�
thing.

(3) Thus, (3.1) is actually telling us that 〈π, 9〉 ! Γ+
0 3 Γ+

Val .

However, our construction is more restrictive than the reasoning used to
get from step (2.) to step (3.). The fact that π�and Val (⌜π⌝,�⌜9⌝) mean the 
same thing is not sufficient. We are actually trying to make two moves here: 
first, on the basis of equivalence, we move to saying that 〈π / π, 9〉 !�
Γ+

0; second, we argue that π / π�means the same thing as π, we also have 
〈π, 9〉 ! Γ+

0 . With regard to the first of these moves, we require syntactic 
equivalence between π� and Val (⌜π⌝,� ⌜9⌝). However, our language has a 
paucity of terms and so this cannot occur [Richard G. Heck, 2007]. None-
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theless, we may wish to move into richer languages, like PRA, where such 
terms are available. But even then, with regard to the second move, we are 
employing a form of contraction. While this may seem intuitively correct, 
the construction does not admit this rule and the argument is blocked at this 
point. The initial stage of the construction only contains consequences 
whose antecedents are conjunctions.

3.2. Remarks. We close with some remarks about the shortcomings of 
this definition and some suggestions for future investigation.

3.2.1. The�weakness�of�strong�Kleene�systems. We should first note that in 
the broader church of the semantic paradox literature, our solution is essen-
tially strong Kleene and as such has all the well known weaknesses of that 
approach. Most obviously, the conditional is so weak that we cannot always 
guarantee that it is reflexive. For example, we shall not get FVal�β " β. 
Such problems are well known. We have two choices here: accept the 
weakness; or strengthen our conditional. Personally, I find the former 
option more palatable; however, there is good reason to think that the tech-
niques developed by Field [2008] or Beall [2009] could be useful. In the 
former case, we might adopt a revision theoretic construction to strengthen 
the conditional. The cost of this is computational complexity and a less 
well-motivated story about how we have constructed our definition. In the 
latter case, we might take up a paraconsistent logic, which rejects and con-
trols explosion. The cost here is heuristic complexity and a deep revision of 
our background logic. Both approaches are worth investigating. Moreover, 
the framework above could be a useful basis for such an investigation.

3.2.2. Not�a�genuine�consequence�relation.�We also observe that FVal�is not 
a genuine consequence relation in the sense that we do not have unrestricted 
reflexivity, monotonicity or transitivity. Monotonicity is lost at the first level 
when we let Γ+

0 be all the instances of VD�without the possibility of extra 
premises. This is not, however, difficult to recover. We simply add all extra 
cases to Γ+

0 and keep the rest of the definition. The proof of Lemma 29 
becomes slightly longer, but the adaptations are the obvious ones. Incorpo-
rating this change would have just made the exposition more difficult.

Reflexivity and transitivity, on the other hand, fail for deeper reasons. 
We lost reflexivity when we revised our jump function definition. We sacri-
ficed it in order to get a simple non-decreasing sequence. We lost transitivity 
by forcing VD�into the opening of the inductive construction.8 There are a 
couple of things to say here. First, we observe that the failure of reflexivity 
in the consequence relation is an exact parallel of the problems we had with 

8 We have π / Val (⌜π⌝,� ⌜9⌝) FVal�9�and 9FVal�f, but we do not have π / Val (⌜π⌝,�
⌜9⌝) FVal�f.
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the conditional. Thus we may accept it or try to strengthen the system. If 
we take the latter course, then revision theory or paraconsistency could be 
fertile options. On the other hand, we observe that generalised consequence 
relations that sacrifice reflexivity or transitivity have recently received 
greater attention in relation to semantic paradoxes [Ripley, Forthcoming]. 
We may be seeing further evidence for why such approaches are natural in 
the context of semantic paradox.

3.2.3. The�opening� of� the� construction� is� very� artificial. The manner in 
which ρ�is treated and the failure of monotonicity are evidence of a certain 
artificiality at the basis of the construction. It is extremely syntactic and as 
such, it ignores a lot of intuitive features that we may have expected the 
construction to pick up. The reason for this is that we essentially forced VD�
into the construction from the beginning and demanded it stay there. We did 
not consider how to make it fit naturally, we just made sure that we satis-
fied the goals for the construction set out at the beginning of Section 3. 
However, this seems seems like a natural place for more sophisticated 
 constructions to start tinkering. There is a lot more that can be done here. 
Of course, there is a strict upper bound in the sense that if we closed Γ+

0 
under logical equivalence, then the argument in Section 3.1.7 would go 
through and the construction would fail.

On the other hand, we could consider jettisoning VD�and just starting 
with Γ+

0 = 4. I think this is probably the most natural construction that
can be formed in this way, in the sense that this is what you might build 
without the initial desiderata. However, VD� is a plausible principle and 
without it, it might seem that we have just collapsed back into the McGee 
style option proposed in Section 2.2. This is, however, a little misleading: 
there is some gain. With the McGee style system we get Proposition 17, 
while with the fixed point we also get a converse as shown in 32(i).

3.3. Conclusion. In this paper, we have isolated the Beall-Murzi paradox 
among other semantic paradoxes, discussed canonical approaches to its 
solution; and provided a fixed point definition which satisfies both VP
and VD.
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