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A B S T R A C T

Many trials of drugs aimed at preventing or clearing b-amyloid pathology have failed to demonstrate

efficacy in recent years and further trials continue with drugs aimed at the same targets and

mechanisms.

The Alzheimer neurofibrillary tangle is composed of tau and the core of its constituent filaments are

made of a truncated fragment from the repeat domain of tau. This truncated tau can catalyse the

conversion of normal soluble tau into aggregated oligomeric and fibrillar tau which, in turn, can spread to

neighbouring neurons. Tau aggregation is not a late-life process and onset of Braak stage 1 peaks in

people in their late 40s or early 50s. Tau aggregation pathology at Braak stage 1 or beyond affects 50% of

the population over the age of 45.

The initiation of tau aggregation requires its binding to a non-specific substrate to expose a high

affinity tau–tau binding domain and it is self-propagating thereafter. The initiating substrate complex is

most likely formed as a consequence of a progressive loss of endosomal–lysosomal processing of

neuronal proteins, particularly of membrane proteins from mitochondria. Mutations in the APP/

presenilin membrane complex may simply add to the age-related endosomal–lysosomal processing

failure, bringing forward, but not directly causing, the tau aggregation cascade in carriers.

Methylthioninium chloride (MTC), the first identified tau aggregation inhibitor (TAI), offers an

alternative to the amyloid approach. Phase 3 trials are underway with a novel stabilized reduced form of

methylthioninium (LMTX) that has improved tolerability and absorption.

� 2013 The Authors. Published by Elsevier Inc. 
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1. The b-amyloid consensus in Alzheimer’s disease

Variations of the b-amyloid theory of Alzheimer’s disease (AD)
have commanded a remarkable degree of academic consensus in
the field for the last 20 years. This consensus has directed an
estimated spend of $15 billion in the search for a disease-
modifying treatment for a disease of vast societal cost. However,
some 19 drugs have failed to demonstrate efficacy in randomised
clinical trials or their development has been halted [1,2]. These
drugs have different mechanisms of action, but share a proposed
effect in reducing amyloid pathology (Table 1). These drugs have
been sub-classified into those that (a) modulate processing of b-
amyloid protein precursor (APP), e.g. via a-, b- and g-secretases;
(b) are small molecule inhibitors of amyloid aggregation or
accumulation; or (c) enhance clearance of amyloid via active or
passive immunotherapeutic approaches. In all cases, the failure of
the drugs is not dependent on the mechanism of action.
Furthermore, ongoing trials have similar targets to those that
have already proved unsuccessful on several occasions. The results
of a human post-mortem study demonstrated clearance of b-
amyloid deposits in the brains of subjects actively immunised with
Ab42 peptide (AN-1792), but strikingly showed that this
treatment had no impact on either clinical disease progression
or progression of tau aggregation pathology [3]. Failures of
solanezumab and bapineuzumab alone mark 5 large phase 3 trial
failures for drugs that had suggested efficacy in phase 2 based on
technical (i.e. reduction in CSF b-amyloid), but not clinical
readouts. Without considering phase 1 studies, a total of nearly
15,000 subjects have been involved in these failed trials to date.

It is surprising that this record of failure has not really led to a
reconsideration of the fundamental assumptions of the theory.
Whereas it used to be held that b-amyloid deposition was central
to the pathophysiology and pathogenesis of AD at any stage, the
record of failure in disease of mild or moderate severity has led
only to a repositioning of the same claims to earlier preclinical
stages of the disease. Mild and moderate disease is now assumed to
be too late for therapeutic intervention. The prevailing conjecture
now is that treatment has to be initiated in the decades before
disease appears, e.g. the Dominantly Inherited Alzheimer Network
(DIAN) trial and the Anti-Amyloid in Asymptomatic Alzheimer’s
disease (A4) trial [4], where investigators will test b-amyloid-
clearing drugs in older people considered to be in the pre-
symptomatic stage of Alzheimer’s. In the AD field, it appears that
theory has the ability to triumph over clinical trial data.

And yet pharmaceutical development cannot survive indefi-
nitely this prevailing dissociation between theoretical consensus
and failure of clinical efficacy. The two must come into alignment
eventually, because the direction of pharmaceutical research must
align ultimately with the profit vector. Profitability requires
clinical efficacy and competitiveness. A drug has to work better
at a lower cost in the clinic relative to its competitors in order to
survive. Clinical drug development is at least 2 orders of magnitude
more expensive than academic research and cannot afford to be
lead only by conjecture. In AD, a single clinical development
programme will cost on the order of $500 million. While opinion
leaders may hold sway over the grant funding agencies for a time,
no company can withstand losses on this scale for long. Investors
have lost so much money backing the b-amyloid consensus that a
new investor consensus has emerged – AD is too hard. Some
companies, such as Sanofi-Aventis [17], badly burned by their b-
amyloid losses, have chosen to walk away from AD and even the
entire neuroscience space altogether.

The only hope on the horizon for the amyloid-based approach
for treating AD is solanezumab. Although this failed in two large
phase 3 trials reported in 2012, some efficacy was seen from the
combined data [4,18]. The planned size of the repeat study
required by the FDA is 2100 subjects. The study therefore has the
power to detect an effect size of �1.25 ADAS-cog units at 18
months, which is merely half the effect size over six months for the
cholinesterase inhibitors currently available in the market (�2.7
ADAS-cog units) [19]. The aim of this commentary is to argue an
alternative to the b-amyloid consensus. For the whole period of the
b-amyloid hegemony there has been an entirely plausible
alternative, namely the Tau-theory of AD. It now appears
extraordinary in hindsight that so little research and clinical
development money has been spent on this alternative.

2. The tau aggregation pathology of AD

2.1. ‘‘Alzheimer’s disease’’

What Alzheimer discovered, and why the disease has his name,
was the neurofibrillary tangle [20]. One would be forgiven, given
the pre-eminence assigned to b-amyloid, for thinking that the
disease should have been called ‘‘Blocq and Marinesco’s disease’’,
given their discovery of plaques [21]. Alzheimer dismissed plaques
as having no explanatory significance in accounting for the early
onset dementia case he reported. The key point was that large
numbers of plaques (i.e. b-amyloid plaques) can occur in the
course of normal ageing without any evidence of clinical dementia.
The field seems to have remembered only the name, but forgot
Alzheimer’s discovery.

We confirmed this at the biochemical level, showing that there
was a 76% overlap in levels of b-amyloid, between AD cases at the
most advanced stages and normal elderly controls [22]. The same
result is now available using PET imaging markers which also
detect deposits of insoluble b-amyloid. The levels of b-amyloid do
not appear to discriminate between normal ageing and AD. The
only emerging use of b-amyloid imaging appears to be prediction
of susceptibility to progression in individuals with mild cognitive
impairment (MCI) [23–25]. Whether this is primary, or whether
this depends on the concomitant tau aggregation pathology also
present in the neocortex, remains to be determined when data for
tau-based PET imaging ligands become available.

Whereas it was the insoluble species of b-amyloid that were
thought to be toxic earlier, exactly the same claims are now made
for their more soluble oligomeric precursors. It is unlikely that this
would change the fundamentals, since the insoluble aggregates
and the soluble oligomers must be in equilibrium, such that high
levels of insoluble aggregates could only occur in the presence of
high concentrations of their precursors. Otherwise, on-off kinetics
would favour spontaneous disaggregation in the absence of
covalent stabilisation. If b-amyloid load were to be the main
driver of cognitive impairment then, even if the toxic agent were an
oligomer, it remains difficult to understand how normal cognitive
function could be sustained in normal individuals with levels of b-
amyloid comparable to those seen in advanced stages of AD.

2.2. The composition of Alzheimer’s neurofibrillary tangles

The neurofibrillary tangle comprises a dense whorl of fibres
occupying the entire perinuclear cytoplasm of cortical pyramidal
cells and other large neurons in the brainstem (nucleus basalis of
Meynert and locus coeruleus). These fibres were termed Paired
Helical Filaments (PHFs) by Kidd [26]. Structurally, the PHF is a de-
novo polymer of C-shaped subunits forming a left-handed helical
ribbon with a periodicity of �70 nm [27]. Neurofibrillary tangles
can be labelled in situ with antibodies against a variety of neuronal
proteins, including vimentin, actin, ubiquitin, MAP2 and b-
amyloid. In crude preparations, PHFs can be labelled with
antibodies against MAP2, neurofilament, ubiquitin and tau [28–
38]. It was only when we succeeded in isolating a short 12-kD



Table 1
Randomised clinical trials for AD for interventions targeted to different aspects of b-amyloid.a

Drug Company, sponsor Trial

phase

Trial outcome (duration;

number of AD subjects)

Mechanism Clinical trial/

reference

1. Modulation of APP processing
Tarenflurbil/R-Flurbiprofen/

FlurizanTM

Myriad

Pharmaceuticals Inc.

3 Failed (18mo; 1649)/halted Amyloid-lowering agent

(g-secretase modulator)

[5]

Avagacestat/BMS-708163 Bristol Myers Squibb 2 Failed (6mo; 209)/halted Ab clearance (GSI) NCT00810147,

NCT00890890 [6]

Semagacestat/LY-450139 Eli Lilly 3 Failed (18mo; �2600)/halted Ab clearance (BSI) NCT00594568,

NCT00762411

(IDENTITY,

IDENTITY2) [7]

Lipitor/atorvastatin Pfizer 3 Failed (16mo; 640) Cholesterol-lowering;

amyloid-lowering; HMG-CoA

reductase inhibitor

LEADe,

NCT00024531 [8]

Avandia/rosiglitazone Glaxo Smith Kline 3 Failed (6mo; 553) BSI; PPARg activator NCT00428090

Actos/pioglitazone/AD-4833 Takeda/Zinfandel 2/3 P2 failed; P3 in MCI

(410 [5800 enrolment])

BSI; PPARg activator NCT01931566

MK-8931 Merck 3 18 mo, 1900 AD

18 mo 1500 prodromal AD

BSI NCT01739348

(EPOCH)

NCT01953601

Huperzine A Neuro-Hitech/Shandong

Luye Pharmaceutical

2 12mo, 150/6mo/390; halted APP processing NCT00083590/

NCT01282169 [9]

Posiphen1 QR Pharma Inc. 1 1mo, 120; halted Inhibitor of Ab toxicity/AChEI NCT01072812 [10]

Begacestat/GSI-953 Pfizer 2 Halted GSI NCT00959881 [11]

PF-3084014 Pfizer 2 Halted GSI

NIC5-15/D-pinitol Humanetics Corp 2 7wk; 15 GSI NCT00470418

Bryostatin-1 Blanchette (BNRI) 2 4wk, 9 Increased a-secretase activity NTC00606164

Etazolate/ETH-0202 ExonHit Therapeutics 2 3mo, 159 Increased a-secretase activity;

GABAA receptor

NTC00880412

EVP-6124 EnVivo Pharmaceuticals 2 6mo, 409 Nicotine a7-receptor agonist

in Ab toxicity

NTC01073228

Dimebon1/latrepirdine Medivation/Pfizer 3 Failed (6mo, 598; 12mo,

1003), halted

Several, with possible action

on amyloid

NCT00675623

(CONNECTION),

NCT00829374

(CONCERT); [12]

2. Small molecule amyloid aggregation/deposition inhibition
AlzhemedTM/tramiprosate/

homotaurine

Bellus Health Inc./

Neurochem Inc.

2/3 Failed (18mo; 950 US,

930 EU), halted

Ab antagonist;

glycosaminoglycan mimetic

NTC00088673

(US/Can),

NTC00217763

(EU) [13]

ELND005/scyllo-inositol Elan/Transition

Therapeutics

2 Failed (18mo, 353) Amyloid-lowering agent NCT00568776 [14]

Clioquinol Prana Biotechnology 2 Halted Chelator; metal-dependent

Ab aggregation inhibitor

PBT-2 Prana Biotechnology 2 3mo, 80 Chelator; metal-dependent

Ab aggregation inhibitor

NCT00471211

3. Immunotherapeutic clearance of amyloid from brain by active or passive immunisations
Gammagard/IVIg Baxter 2/3 P2 Failed (6mo, 58); P3 Failed

(18mo; 390)/halted

Non-specific, passive

(natural antibodies)

NCT00818662

Bapineuzumab/AAB-001 J&J/Elan/Pfizer 3 Failed (18mo, 1121 [ApoE4+],

1331 [ApoE4�]), halted

Passive (N-terminal

Ab epitope)

NCT00575055,

NTC00574132

ACC-001 J&J/Elan/Pfizer 2 24mo; 86; halted Active (N-terminal Ab) NCT00479557

AN-1792 (with QS-21 adjuvant) Janssen/Pfizer 2 Failed (300, early termination)/

halted

Active (Ab42) NCT00021723 [15]

Solanezumab/LY-2062430 Eli Lilly 3 Failed (18mo; 1332); ongoing

(18mo; 2100);

A4 (1000) and DIAN trial

(24mo; �100)

Passive (central domain

epitope; binds soluble Ab)

NCT00905372,

NCT00904683,

NCT01900665

(EXPEDITION 1, 2

and 3); NCT01760005

Crenezumab/MABT5102A Genentech 2 18mo, 450 (with OLE for

400 to 24mo)

Passive IgG4 (oligomeric,

fibrillar and soluble Ab)

NCT01343966,

NCT01723826

Gantenerumab/RO-4909832 Hoffmann-LaRoche 3 Prodromal (770) and DIAN trials

(24mo; �100)

Passive (N-terminal plus

central domain epitope

of Ab and oligomers

and fibrils)

NCT01224106,

NCT01760005 [16]

a The results for randomised clinical trials (RCTs) for drugs that have reached phase 2 or 3 and where the proposed mechanism of action includes an effect on Ab. Trial

outcome is indicated by failure to demonstrate efficacy and instances where the drug development programme has been halted. Trials for 19 drugs have either failed or been

halted. Some phase 2 trials are included where only safety and tolerability outcomes have been addressed, rather than efficacy. Such studies are of short duration and with

limited enrolment. ClinicalTrials.gov identifiers are given for trials. Numbers of subjects for ongoing studies indicates prospective enrolment. References include both

mechanism of action studies or results of randomised RCTs. Results of most recent trials are often only available as company press releases and these have been used to update

the data in the review by Mangialasche et al. [1] GSI, g-secretase inhibitor; BSI, b-secretase inhibitor; OLE, open-label extension.
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protein fragment from highly enriched preparations of proteolyti-
cally stable core PHFs that it was possible to establish unequivo-
cally that a short segment of tau protein from the repeat region of
the molecule is an integral structural constituent of the PHF.

A common misconception, which has entered the literature
since the papers by Lee et al. and Goedert et al., is that PHFs are
composed ‘‘almost entirely of hyperphosphorylated tau protein’’
[39,40]. The further finding that hyperphosphorylation of tau
protein leads to a 20-fold inhibition of tau–tubulin binding affinity
has led to a widely held view that abnormal phosphorylation of tau
protein plays a critical role in the pathogenesis of neurofibrillary
degeneration. The idea is that the balance between kinases and
phosphatases is disturbed in AD, leading tau protein to become
detached from microtubules, and secondarily to aggregate. In this
scenario, a tau-based therapeutic approach would target a kinase
particularly responsible for a pattern of phosphorylation causing
reduced microtubule stability.

2.3. Failure of phase 2 trials in progressive supranuclear palsy (PSP)

and likely non-role for abnormal tau phosphorylation

Two phase 2 trials of adequate size have been conducted
targeting kinase GSK 3b or interfering with tau phosphorylation.
However both failed to demonstrate any effect on cognitive decline
in Progressive Supranuclear Palsy (PSP), a disease associated with
prominent tau aggregation pathology (so-called ‘‘tauopathy’’).
Noscira tested the GSK 3b inhibitor tideglusib, but found no
efficacy in PSP (NCT01049399; 12mo 146 subjects) [41]. Allon
Therapeutics Inc. announced in December 2012 that davunetide
(AL-108) failed to show efficacy for PSP in a phase 2 trial
(NCT01110720; 18mo; 313 subjects). Participants showed no
benefit on either of the primary outcome measures or exploratory
endpoints and further development in the drug was halted.
Davunetide is a neuroprotective octapeptide that was claimed to
target tau pathology. It blocks tau hyperphosphorylation in mice
and may stabilise microtubules [42].

There are sound theoretical reasons to have predicted these
failures. Although PHFs isolated without protease digestion can be
immunolabelled by tau antibodies directed against phosphoryla-
tion-dependent epitopes located in the N-terminal half of the
molecule, this immunoreactivity is lost after proteolytic removal of
the fuzzy coat [43,44]. The fuzzy coat consists of the lengthy N-
terminal portions of tau molecules that cover the surface of the
filaments and are readily sensitive to proteolytic digestion. Such
digestion leaves intact the proteolytically stable core structure
comprising the left-handed helical ribbon of repeated C-shaped
subunits. In other words, the fuzzy coat comprising phosphorylat-
ed tau does not contribute to the structural core of the PHF. It is
possible to deduce the relative contributions of tau protein to the
structural core and the fuzzy coat. Since the mean molecular mass
of the protease-resistant core of the PHF is �65 kDa/nm [44], and
since the only tau fragments isolated from the core of the PHF are
restricted to the repeat domain with a predicted mass of �10 kD,
there must be 6 or 7 tandem-repeat fragments per nm to account
for the observed mass of �65 kD/nm (if tau is the only constituent).
If these tau molecules were N-terminally intact in fuzzy PHFs, the
predicted mass of the PHF would be �210 kD/nm, since the
additional N-terminal mass is �23 kD per tau molecule
[6.5 � (10 + 23) = 210]. This would add an additional 145 kD/nm
to the fuzzy coat. However, the majority of PHFs isolated from the
brain without proteases have a mass of only 80–95 kD/nm and the
maximum measured mass is 110 kD/nm. This implies that only 1 in
7 of the tau molecules making up the PHF is N-terminally intact,
the remainder being truncated and restricted to the repeat domain
of the molecule. The alternative is that there is another non-tau
molecule which contributes to the core of the PHF. We have shown
that the latter is not the case, and that tau protein indeed accounts
for at least 93% of the protein content of the PHF [45]. Indeed
biochemical studies which set out to quantify the amount of PHF-
tau which is phosphorylated showed the figure to be less than 5%
[46,47], in line with the structural mass data. This is not to say that
full-length tau cannot aggregate in vitro [100], simply that this
aggregation is not relevant to the formation of PHFs in AD.

Furthermore, it is extremely unlikely that hyperphosphoryla-
tion of tau plays a critical role in aggregation of tau protein through
the repeat domain. A detailed analysis of the properties of this
binding interaction showed that hyperphosphorylation of tau is
uniformly inhibitory to tau–tau binding both in the solid and
aqueous phases, by a factor of 10–50-fold [45]. Indeed, the degree
of inhibition is comparable for the tau–tau and tau–tubulin
binding interactions. The inhibitory effect appears to be largely
conformational, in that it is entirely reversed when tau is bound to
a solid-phase substrate. In this configuration, a binding site is made
available in the repeat domain which is at least 20-fold (unpho-
sphorylated tau) and as much as 40-fold (hyperphosphorylated
tau) more favourable than the tau–tubulin binding interaction.
There is therefore no need to invoke phosphorylation as a
mechanism to explain the redistribution of the tau protein pool
from microtubule-bound to PHF-bound that is a characteristic
feature of AD [48]. Rather, the inherent binding affinity at the tau–
tau site in the repeat domain is sufficient of itself to explain the
extensive transfer of tau protein into the aggregated phase and
corresponding loss of microtubule function. In terms of pharma-
ceutical development, it is difficult to see how a kinase-inhibitor
would be expected to have any efficacy in AD, since the net effect of
such a drug would be to enhance rather than inhibit tau
aggregation. It has also been shown by other groups that
phosphorylation of tau is itself inhibitory to its aggregation [49]
and not required for the propagation of the tau fibrils [50]. The
small quantity of phosphorylated tau found as a surface coating on
the structural core of the PHF may simply represent a secondary
stage of tau sequestration that is non-critical to either the
oligomerisation or polymersation of tau.

2.4. Truncated tau and its propagation

Of much greater interest was the discovery that the repeat
domain tau fragment originally isolated from the core of the PHF
has prion-like properties in vitro [51]. Using a relatively simple
assay in which the core tau fragment of the PHF was adsorbed to a
solid phase, we found that binding of full-length tau locked the
repeat domain of the bound molecule into a proteolytically stable
configuration which reproduced a characteristic C-terminal
truncation at position Glu-391 seen both in early pathological
oligomers in the brain and within the core of the native PHF [51].
Surprisingly, when the bound complex was taken through
repeated cycles of digestion with proteases and re-incubation of
full-length tau, there was elimination of N-terminal tau immuno-
reactivity, and a progressive build-up of immunoreactivity
associated with the truncated repeat-domain fragment of the
PHF core. Thus, the repeat domain of tau is able to catalyse and
propagate the conversion of normal soluble tau into accumulations
of the aggregated and truncated oligomeric form (Fig. 1).

If this process were restricted only to affected neurons, tau
protein aggregation would be damaging but self-limiting. Howev-
er, it has recently emerged that proteolytically stable tau oligomers
are able to propagate between neurons and initiate the cascade in
previously healthy neighbouring neurons [52–54]. Transneuronal
movement of proteins and aggregates has been documented in
vivo for several neurodegenerative disorders in which the
aggregating pathological proteins are tau, amyloid, synuclein,
prion protein and polyglutamine proteins. Further elucidation of
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Fig. 1. Tau propagation in vitro. The core-PHF is composed of a tau protein fragment of nearly 100 amino acids in length. The tau is C-terminally truncated at Glu-391,

revealing an epitope recognised by the monoclonal antibody, mAb 423. An in vitro assay was developed using tau truncated at Ala-390 bound to solid phase and allowing full-

length tau to bind. Cycles of proteolytic removal of N- and C-termini of tau followed by binding of further tau showed that the stepwise of capture of tau is an autocatalytic

process in which there is progressive accumulation of tau de novo truncated at Glu-391. The conformation of protein in tau oligomers provides a high affinity substrate for

further tau capture [51].
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the mechanism by which the specific proteins or their aggregates
bind to and enter cells may explain the differential selectivity of
neurons affected in the different clinical diseases [55]. Whatever
the mechanism of spread, the tau pathology of AD can be
understood as a self-propagating ‘‘prionosis’’. Once the cascade
has been initiated in any given neuron, it cannot be arrested by
cytosolic proteases, because the resulting oligomers are inherently
stable to such proteases. However, the process does not stay
circumscribed. Oligomers are transported by cytoplasmic flow to
nerve terminals, where they damage synapses, are released, and
proceed to initiate the same cascade in neighbouring neurons. This
also provides a basis for the spread of pathology along neural
networks that could account for the spread of tau aggregation
pathology documented in the Braak staging system [56].

3. The epidemiology of tau aggregation pathology

The pattern of spread of the tau aggregation pathology in the
human brain is highly characteristic and stereotyped. In the cortex,
it begins in layer II of entorhinal cortex. From here, the pathology
spreads via the perforant pathway to hippocampus. Projections
from the hippocampus return to layer IV of the entorhinal cortex
and also to other limbic structures. From here, the pathology
spreads into isocortex, initially into temporal and parietal lobes,
and eventually into frontal and occipital neocortex. This pattern of
progression and spread forms the basis of the 6-stage Braak staging
system for neurofibrillary degeneration in AD [56]. Braak has also
provided a corresponding staging for b-amyloid deposition, with
three levels of amyloid deposits: no deposits and three levels with
increasing amyloid (stages A–C). This has been compared with tau
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[48,66].
staging for 2661 consecutive autopsy cases of subjects between the
ages of 25 and 95 years [57], and it is clear from this that tau
aggregation precedes b-amyloid deposits by about 30 years,
confirming earlier reports showing the same thing [48,58].

Several studies have confirmed the correlation between Braak
stage and cognitive decline measured by a number of cognitive
scales, the most commonly used in clinical practice being the Mini
Mental State Examination, MMSE [59–62]. The MMSE takes about
15 minutes to administer and measures cognitive decline on a 30-
point scale. MMSE scores for minimal cognitive impairment are in
the in the range 30–25. Mild/moderate/severe grades of dementia
correspond approximately to the ranges 25–20, 20–10, and <10,
respectively. In our epidemiological study based on repeated
sampling of an original population in primary care, where MMSE
scores were measured 12–18 months prior to death, we were able
to define the clinical versus Braak stage trajectory (Fig. 2). It is
surprising that for the earliest detected stages of minimal cognitive
decline typically detected in clinical practice, tau aggregation
pathology has already advanced to stages 2–3. Braak stage has also
been shown to correlate with progression of functional scan
defects measured by PET and SPECT [63–65].

The time-course of disease progression can be calculated from a
seminal paper from the Braak group which provides data from 847
post mortems with 17 cases per year of life from ages 45–95 [67]. The
data set comes from routine autopsies, and has not been selected for
presence of cognitive impairment. From this data set, we have used a
Kaplan–Meier survival analysis to calculate the survival probabili-
ties for transitions from Braak stage 0 ! 1 or beyond, Braak stage
1 ! 2 or beyond, Braak stage 2 ! 3 or beyond and Braak stage 3 ! 4
or beyond. These probabilities are shown in Fig. 3A.

As can be seen, there is no sense in which the tau aggregation
pathology can be considered a late phenomenon, as is often
assumed by supporters of the b-amyloid theory. Indeed, Duyck-
aerts compared the age for appearance of tau pathology at stage 1
and the age for appearance of b-amyloid pathology at stage A, and
found that in general b-amyloid pathology appears some 30 years
after the onset of tau aggregation pathology [58]. We found the
same thing in the epidemiological population we studied, with b-
amyloid plaques only increasing over the normal ageing back-
ground at Braak stage 4 or beyond. By contrast, aggregation of tau
protein could be measured biochemically in the neocortex from
Braak stage 2 onwards. As can be seen from Fig. 3, the time
between Braak stages is roughly 10 years.

We have applied the Braak transition probabilities by age
(shown in Fig. 3A) to estimate the number of affected persons in
the US by age (Fig. 3B), using WHO data for the US 2010 population.
We calculate that for the population over the age of 45, there is a
50% probability of having some degree of tau pathology in the
brain. This can be divided as follows: 25% at Braak stage 1, 10% at
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Braak stage 2, 10% at Braak stage 3, and 5% at Braak stage 4 or
beyond. The age profile of the affected population in the US is
shown in Fig. 3B. We estimate that there are approximately 64
million people in the US affected with some degree of tau
aggregation pathology in their brains: 31 million at Braak stage 1,
13 million at Braak stage 2, 12 million at Braak stage 3, and 7
million at Braak stage 4 or beyond. It is only the latter figure which
is typically captured by prevalence estimates of AD in the US (e.g.,
[68]). The projected figures for all affected persons in the US are 88
million in 2030 and 105 million in 2050.

Applying the same methodology to European data, the affected
population is currently estimated to be 170 million, increasing to
208 million in 2030 and 223 million in 2050. The figures for Asia
are truly staggering. We estimate that across all of Asia (including
China, India, Indonesia and Japan), there are at present 520 million
persons affected, with 227 million at Braak stages 2 or beyond. By
2030, the total figure is expected to increase to 889 million by
2030, with 428 million at Braak stages 2 or beyond. By 2050, the
total figure is expected to increase to 1.2 billion, with 665 million at
Braak stages 2 or beyond.

The tauopathy of AD does not wait till late life to make its
appearance. The peak age for Braak stage 1 is 55, but it can appear as
early as 38 years. Braak has suggested that the process may well begin
in the 20s [69]. For those who convert to Braak stage 2, the transition
can occur as early as 48, but the peak age for Braak stage 2 is the mid-
60s. Based on the cross-sectional estimates of the population data, it
appears that only half of those at Braak stage 1 progress to Braak stage
2. However, the estimated population at Braak stage 2 is equivalent to
that at Braak stage 3, but shifted in age by about 10 years. This suggests
that Braak stage 1 is a state of risk, from which it is possible not to
progress, with about a 50% probability. However, once Braak stage 2
has been reached, there is very little chance of escape from further
progression. The worrying feature of this stage is that it precedes the
appearance of deficits which are typically picked up in clinical
practice. It should be recalled that these figures reflect degrees of
spread of an endogenously generated infectious process throughout
the brain. Viewed in these terms, any degree of tau aggregation
pathology is dangerous, but particularly so for Braak stage 2, which is
entirely preclinical in the absence of concomitant vascular or other
pathology.

4. Inhibition of tau aggregation for treatment and prevention
of AD

A critical feature that distinguishes the repeat domain fragment
isolated from the core of the PHF from the normal repeat domain of
tau is that it is phase shifted with respect to the normal repeats.
The overall length of the repeat domain is exactly 3 repeats in
length, but the positioning of the alternating tubulin-binding
segments and the intervening linker segments is reversed [45]. The
repeat domain in the PHF core is therefore subject to quite precise
structural constraints that distinguish the tau–tau binding
interaction from the tau–tubulin binding interaction. This has
important pharmaceutical implications, in that it suggests that it
should be possible to distinguish between the two binding
interactions with potential aggregation inhibitors. This is obvious-
ly critical, since an inhibitor of tau aggregation would be of little
therapeutic use if it also impaired the normal tau–tubulin binding
interaction. We showed that this pharmacological discrimination
is indeed feasible for compounds based on the diaminophenothia-
zine scaffold that we first identified as tau-aggregation inhibitors
[51]. With thionine (thioninium chloride), for example, the Ki of
inhibition of tau–tau binding based on a solid-phase tau–tau
binding interaction was found to be 98 nM. In a similar solid-phase
assay measure tau–tubulin binding, the calculated Ki was 7.9 mM,
an 8000-fold difference. In a cell-based model of inducible tau
aggregation through the repeat domain, the Ki was nearly identical
(100 nM) and, for a closely related compound (methylthioninium
chloride, MTC), the Ki was 123 nM [70]. An even more potent
variant has been identified (dimethyl-methylthioninium chloride)
with a cell-based Ki of 4 nM. Therefore, compounds of this class
serve as exemplars of highly potent and selective inhibitors of
pathological binding through the repeat domain.

In the case of MTC, it has been argued by Crowe and colleagues
[71] that it has a potentially broad pharmacology, including
inhibition of microtubule assembly. It is possible to calculate from
their data that the concentration required for �50% diminution of
microtubule assembly is 50 mM MTC. By contrast, we have
determined the IC50 for dissolution of PHFs isolated from AD
brain to be 0.15 mM, a 280-fold difference. We estimate the brain
levels of the active methylthioninium (MT) moiety in brain after
oral dosing of MTC 60 mg three times per day is in the range 0.2–
0.4 mM. This concentration would therefore be about the mini-
mum required to achieve clinical inhibition of tau aggregation in
the human brain. Assuming linear scaling, the dose required to
achieve inhibition of microtubule assembly with MTC, would be
about 50 g MTC per day. This dose exceeds the LD50 for MTC in a
range of species. Similar considerations apply to other proposed
effects of MTC. For example, it has been claimed that MTC could
potentially reduce endogenous production of tau protein [72].
However, the EC50 for this effect is 10 mM, which would require a
human clinical dose of 9 g of MTC per day, a dose that could not
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safely be administered even as a single dose in humans, let alone
chronically. Another claim has been that MTC might potentially
exert a therapeutic effect via Hsp70 ATP-ase inhibition [73],
thereby affecting tau phosphorylation. However, the EC50 for this
effect is 83 mM, which would require a theoretical dose in humans
of 75 g MTC per day to achieve relevant concentration in the brain.
Congdon et al. and O’Leary et al. have reported that MTC increases
proteasomal and autophagic degradation of tau in vitro [74,75].
However, the claimed brain concentration of MT (�250 mM)
achieved by dosing 20 mg/kg/day [74] suggests problems with
assay methodology for measuring MT in brain tissues. There are
similar concerns over O’Leary et al. who quote brain concentrations
on the order of 470 mM after oral dosing [75]. From the radioactive
MTC studies that we have conducted, we are able to conclude
categorically that such concentrations are entirely implausible.

Other effects reported in vitro which are also clinically
irrelevant are: acetylcholinesterase inhibition (1 mM [76]), nitric
oxide synthase inhibition (5 mM [77]), oxidation of cysteine
residues in the tau repeat domain preventing formation of
disulphide bridges (2–30 mM [101], inhibition of b-amyloid
aggregation (2.3–12.4 mM [78,79]), monoamine oxidase B inhibi-
tion (5.5 mM [80]), glutamatergic inhibition (5–50 mM [81]),
noradrenaline uptake inhibition (50 mM [82]), guanylate cyclase
inhibition (60 mM [77]). The only non-tau activities of MTC which
are of potential clinical relevance considering realistic clinical
doses and corresponding brain levels are: enhancement of
mitochondrial b-oxidation (0.3 mM [83]) and inhibition of
monoamine oxidase A (0.16 mM [80]). A further activity, which
has potential relevance for the treatment of frontotemporal
dementia (FTD), is inhibition of aggregation of TDP-43 (0.05 mM
[84]). The latter is of interest, since the pathology of FTD typically
involves aggregation of either tau protein or TDP-43 in roughly
equal proportions of cases (i.e. approximately 45% each) [85].

5. Implications of potential efficacy of TAI therapy in AD

The feasibility of using a tau aggregation inhibitor (TAI) for AD is
now being confirmed in a global phase 3 programme. Previously, in
a large phase 2 study in 321 subjects, MTC was found to stabilise
the progression of AD over 50 weeks in both mild and moderate
AD; the overall effect size for the dose of 138 mg/MT per day
delivered as MTC dose was �6.8 ADAS-cog units versus a decline of
7.8 units in the placebo/comparator arm, using a mixed effects
analysis with slope-wise imputation for missing data [86]. MTC
was chosen for this study because of if its long history of prior
clinical use, and evidence of efficacy in a psychiatric context [87–
89]. A stable, reduced version of methylthioninium (leuco-
methylthioninium with a suitable counter-ion, LMTX) has been
developed which has better tolerability and absorption than MTC
and can be administered orally twice daily. LMTX is the active
agent in three parallel phase 3 studies in AD and frontotemporal
dementia now ongoing in 250 centres in 22 countries world-wide,
including 140 centres in the US. At the time of writing, the AD trials
have already recruited just under half their target numbers, and
first readout should be available in early 2016.

Should the efficacy of TAI therapy in mild/moderate AD seen
clinically in the Phase 2 study be confirmed in these phase 3
studies, one could ask what implications this would have for the b-
amyloid theory, and the potential future for b-amyloid therapy.
There are two fundamental pillars of the prevailing b-amyloid
consensus: (1) that in a small number of cases, genetic mutations
in the amyloid precursor protein lead to early onset AD; (2) that all
cases of AD have evidence of b-amyloid deposition. As discussed
earlier, this consensus has withstood the numerous failures of the
theory’s predictions at many different levels, from transgenic
animal models, clinico-pathological correlation, and ultimately in
clinical trial failures. It may be possible, however, to envisage a
different role for abnormal processing of APP which is contributo-
ry, but not fundamentally causative or rate-limiting.

5.1. Initiators of tau aggregation

As discussed above, the epidemiology of tau aggregation
pathology indicates a process which becomes extraordinarily
widespread as human populations age. It is extremely unlikely that
such a widespread phenomenon could be explained by any pattern
of APP or related genetic mutations. It is more likely that biological
concomitants of ageing per se are critical determining factors. In
our studies that first led to isolation of a tau protein fragment from
highly enriched preparations of proteolytically stable PHFs, we
were surprised to find a small family of other proteins which
copurified in detergent-resistant tau-bound complexes. All of
these derive from mitochondria (porin, core protein 2 of complex
III and ATP-synthase subunit 9 [45]), and have been found to
accumulate in the cytosol in the course of normal ageing as the
lipofuscin deposits found in long-lived, non-dividing, high-activity
cells such as neurons and myocardial cells.

A key factor triggering tau aggregation is binding to a non-
specific substrate which exposes a high affinity tau–tau binding
domain in the repeat region which then has the ability to
propagate itself once it has been initiated. For example, the
inhibitory (i.e. protective) effects of phosphorylation on the tau–
tau binding interaction can be abrogated by its prior adsorption to
a non-specific substrate, e.g. polyanionic substrates, such as
heparin or RNA have been shown to promote tau aggregation in
vitro [90–92], and by products of mitochondrial clearance [93].
Lipofuscin deposits, comprised of undigested products of mito-
chondrial turnover, could provide the primary substrate needed to
initiate the tau aggregation cascade. Such a scenario would then
locate the initiation of tau aggregation within a very widespread
framework of age-related dysfunction. A commonly held under-
standing of this dysfunction is a progressive age-related loss of
efficiency of the endosomal–lysosomal pathway which is needed
to process a range of proteins, including membrane-bound
proteins and mitochondria [94,95].

In this theoretical framework, the primary driver for the initiation
of the tau aggregation cascade would be progressive failure of
endosomal–lysosomal processing, i.e. autophagy. This loss, com-
bined with the triggering of tau aggregation, would have two
consequences, illustrated schematically in Fig. 4. The first is that
endosomal–lysosomal processing is, in effect, the only pathway
available for clearance of proteolytically stable tau oligomers once
these have begun to accumulate. The oligomers are inherently
resistant to cytosolic proteases once formed. However, their
accumulation would only add to the load placed on an already
failing system and would cause further failure/overload of the
endosomal–lysosomal processing pathway. We have previously
shown that one of the early pathological features of tau aggregation,
namely the appearance of granulovacuolar degeneration, is in fact
derived from the endosomal–lysosomal system full of tau oligomers
truncated at the hallmark Glu-391 position [98]. In other words, a
phase in the tau aggregation pathway is in effect a tau-lysosomal
storage disease. The second consequence is that as tau oligomers
continue to be formed in the cytosol, but fail to be cleared by
endosomal–lysosomal pathway, they become the seeds for further
autocatalytic propagation of the tau aggregation cascade.

The action of TAIs of the MT type is not only to inhibit for
formation of new oligomers, but more importantly to release
soluble tau from oligomers and PHFs in a monomeric form which is
susceptible to proteases [51]. Thus, aggregated forms of tau, which
can otherwise be cleared only inefficiently via the endosomal–
lysosomal pathway due to proteolytic stability, have available



Fig. 4. The fate of tau protein in the endosomal–lysosomal pathway. (1) Proteins derived from mitochondrial turnover and other membrane proteins feed into the lysosomal

pathway. This pathway becomes defective in later life, leading to release of partially digested/aggregated mitochondrial degradation products which accumulate in the

cytosol as lipofuscin. These deposits are the most likely substrate for initial seeding or nucleation of tau aggregation. (2) Nucleation of tau generates oligomeric tau aggregates,

capturing normal tau (or mutant tau in the case of FTD) in the process. Tau oligomers can only be cleared via the endosomal–lysosomal processing pathway, as they are

inherently resistant to cytosolic proteases. These contribute to further congestion and dysfunction in lysosomal processing. (3) Tau aggregation propagates itself by

autocatalytic binding of tau and ultimate formation of tau fibrils or PHFs. (4) Proteolytically stable tau aggregates are able to spread to neighbouring neurons by exocytosis/

endocytosis or via cellular nanotubes. This leads to autocatalytic propagation of the tau aggregatation cascade in interconnecting neurons. Various mutations of APP and

presenilin, being membrane proteins and requiring processing via the already congested endosomal–lysosomal pathway, may bring forward the timing of critical failure

leading to escape of aggregated mitochondrial degradation products and triggering tau aggregation. Such mutations would not be directly causative of tau aggregation in the

absence of endogenous age-related failure of the pathway. APP, b-amyloid protein precursor; PS, presenilin; TREM2, triggering receptor expressed on myeloid cells 2 protein

[96,97].
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more efficient proteolytic and proteasomal clearance pathways in
the presence of TAIs. This provides direct relief both to kinetic
trapping of aggregated tau, but more importantly blocks autocat-
alytic propagation of the process by destroying the tau oligomer
seeds which catalyse the cascade.

5.2. Role of b-amyloid in tau aggregation

What of the role of APP/b-amyloid and presenilin proteins in
this model? According to this model, APP turnover, and in
particular defective APP/presenilin turnover resulting from patho-
genic mutations, would simply contribute to the progressive
failure of the endosomal–lysosomal processing, since as mem-
brane-bound complexes, they are obligate users of this pathway.
Pathogenic mutations would simply bring forward the timing of
critical failure in the pathway. This kind of understanding would
provide explanations for two otherwise paradoxical features of b-
amyloid accumulation. On the upstream side, mutations in the
APP/presenilin complexes (in those rare individuals with these
mutations) would simply add to the age-related failure of
endosomal–lysosomal processing, bringing forward the age at
which there is critical triggering of the tau aggregation cascade
(Fig. 5). In this way, such mutations would appear to ‘‘cause’’ early
onset AD, or to ‘‘potentiate’’ the toxicity tau aggregation [102].
However, what is missing in the pure APP/presenilin causal
hypothesis is the ageing component. In other words, the mutations
alone, in the absence of age-related loss of endosomal–lysosomal
processing efficiency, would not be causative. The second
paradoxical feature of b-amyloid accumulation is that it increases
substantially only after the onset of tau aggregation [48,58,69].
This is difficult to explain if abnormal processing of APP/presenilin
is conceived as directly causative of the tau aggregation cascade.
However, if the critical link is failure of endosomal–lysosomal
processing, then extracellular accumulation of b-amyloid would
simply represent another manifestation of endosomal–lysosomal
failure mediated by the postulated tau-lysosomal storage disease.

A scenario such as that outlined would then provide a basis for
understanding the following features of AD: (1) presence of b-
amyloid deposits in the AD brain, (2) the potential upstream role of
mutant APP/presenilin in bringing forward the age of onset of AD,
(3) the potential downstream accumulation of b-amyloid deposits
after the onset of tau aggregation. It would also provide a way of
understanding both the potential ‘‘causative’’ role of APP/
presenilin dysmetabolism and also the failure of therapeutic
approaches targeting any aspect of this supposed causative
pathway. The latter is explained simply by the data showing that
neither the accumulation nor the clearance of amyloid impacts
directly on cognitive decline in humans. Having more or less
amyloid does not seem to make humans any more or less
demented [3,22].

5.3. Implications for b-amyloid intervention trials

As to the currently ongoing preventative study in the
Dominantly Inherited Alzheimer’s Disease Network (DIAN) trial
[4], the foregoing analysis predicts that an intervention critically
targeting the lysosomal processing of the aberrant APP/
presenilin complex could delay, but not ultimately prevent,



Fig. 5. Involvement of the endosomal–lysosomal pathway in removal of aggregated proteins. Congestion of the clearance pathway associated with progressive age-related

failure of normal mitochondrial turnover leads to release of products of failed clearance which become seeds for triggering tau aggregation. The resulting tau oligomers add to

congestion in the pathway and themselves catalyse further tau aggregation. Abnormal amyloid processing simply adds to the endogenous load on endosomal processing, and

brings forward the time of critical failure (A). The effect of abnormal amyloid processing resulting from genetic mutations simply brings forward the timing of the population

risk curve for initiation of the tau aggregation pathway that would have in any case occurred in the absence of such mutations (as depicted in B). Although mutations in APP

and the presenilin proteins can cause a left-shift of the population risk curve and lead to early-onset AD, it does not follow that preventing these abnormalities will affect the

age-related drivers of the tau aggregation cascade. The tau aggregation cascade proceeds by an autocatalytic process of binding and proteolysis of tau, initiated by its capture

by products of failed mitochondrial clearance resulting from age-related failure of endosomal–lysosomal processing (A).
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the onset of AD. It is not clear however that any of the
interventions currently being tested do intervene in this
manner. As for the Anti-Amyloid in Asymptomatic Alzheimer’s
Disease (A4) trial [4], the expectation would be that there is no
greater likelihood of efficacy than the failures already docu-
mented in mild/moderate AD.

Such efficacy as has been shown for b-amyloid intervention, for
example in the solanezumab trials, is thought to be based on
sequestering b-amyloid in the peripheral circulation by binding to
circulating antibodies delivered by regular infusions. This pre-
sumably alters the on-off kinetics for formation of b-amyloid
oligomers/polymers within neurons in the brain, thereby reducing
the load on endosomal–lysosomal processing and thereby
indirectly lowering the rate of accumulation of tau aggregates.
However, more direct inhibition of tau aggregation via a TAI
provides a much more efficient way to achieve the same result by
releasing tau from oligomers and PHFs, and permitting clearance
by much more efficient proteases and proteasomal clearance
pathways. Comparing the available results with those from our
phase 2 trial of TAI therapy, the disease-modifying effect of
solanezumab appears to be modest.

The optimal time for seeing the disease-modifying effect for
either drug in mild AD is between 40 weeks and 80 weeks. This is
because decline typically seen in clinical trials in subjects with mild
AD are minimal for the first 6–9 months. It is unlikely that there is a
real difference in rate of decline between weeks 0–40 versus weeks
40–80. Rather this initial failure to decline is thought to be linked to
the availability of cognitive reserve [99], i.e. the ability of subjects to
call on alternative cognitive strategies to help in their responses to
typical cognitive instruments such as ADAS-cog.

b-Amyloid sequestration in mild AD using solanezumab
produced a reduction in the rate of decline between week 40
and week 80 of 22% (�16%), or a reduction from 6.7 to 5.2 ADAS-cog
units of decline per annum (an effect size of 1.5 ADAS-cog units at 80
weeks, as against 2.7 ADAS-cog units for cholinesterase inhibitors at 26
weeks [19]). In other words, those receiving active treatment
continued to decline, but at a rate equivalent to 78% of the expected
decline. By comparison, the effect seen in our phase 2 study
represented an 87% (�30%) reduction in the rate of disease
progression over 12 months in mild/moderate AD, i.e. those receiving
treatment of 138 mg MT per day progressed at a rate equivalent to
13% of expected decline. It appears unlikely that therapy targeting
b-amyloid will be able to arrest progression altogether, based both on
the solanezumab data and the earlier data from Holmes et al. [3]. As
for TAI therapy, it remains to be seen whether complete arrest of
progression can be achieved at a higher therapeutic dose than those
tested to date. Exactly the same argument as advanced for the b-
amyloid approach, namely that earlier intervention is likely to have
greater potential efficacy in slowing disease progression, can be
advanced for TAI therapy. As tau aggregation begins about 20 years
before clinical symptoms appear, there is ample scope for early
preventative intervention in the tau aggregation pathway, preventing
the prion-like spread of the pathology out of medial temporal lobe
structures at Braak stages 1 or 2.

6. Conclusion

A recent meeting hosted by the New York Academy of Sciences
had the title: ‘‘A Truce in the BAP-tist/Tau-ist War?’’ A truce only
needs to be called when one side no longer sees any hope of
outright victory. The extraordinary history of repeated clinical trial
failures at phases 2 and 3 based on the b-amyloid hypothesis does
suggest a need for bAP-tists to find a way out of an untenable
situation. For long-term Tau-ists such as the authors, it is early
days in the campaign, as we are only conducting the very first tau-
based phase 3 clinical trial. It would be understandable that we
would see no need for a truce at this stage. As we have sketched out
in this paper, the actual role of altered processing of APP may be
much less significant than previously assumed. If this is borne out
in clinical trials, then the terms of any truce are unlikely to prove
acceptable to long-term bAP-tists. The long debate about tau vs b-
amyloid, which in effect began already in Alzheimer’s time, will
ultimately be resolved where it began, in the clinic. The long and
extremely expensive diversion into the b-amyloid theory may
ultimately fall by the wayside, and ordinary clinical practice,
particularly in developing countries, will be shaped by the simple
principles of efficacy and cost. How it came about that 20 years of
research endeavour came to be dominated by a theory which was
fundamentally flawed from the outset will be a matter for the
historians of medicine to explain.
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