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Abstract

Mammalian filamins (FLNs) are a family of three large actin-binding proteins. FLNa, the founding member of the family, was
implicated in migration by cell biological analyses and the identification of FLNA mutations in the neuronal migration
disorder periventricular heterotopia. However, recent knockout studies have questioned the relevance of FLNa to cell
migration. Here we have used shRNA-mediated knockdown of FLNa, FLNb or FLNa and FLNb, or, alternatively, acute
proteasomal degradation of all three FLNs, to generate FLN-deficient cells and assess their ability to migrate. We report that
loss of FLNa or FLNb has little effect on migration but that knockdown of FLNa and FLNb, or proteolysis of all three FLNs,
impairs migration. The observed defect is primarily a deficiency in initiation of motility rather than a problem with
maintenance of locomotion speed. FLN-deficient cells are also impaired in spreading. Re-expression of full length FLNa, but
not re-expression of a mutated FLNa lacking immunoglobulin domains 19 to 21, reverts both the spreading and the
inhibition of initiation of migration. Our results establish a role for FLNs in cell migration and spreading and suggest that
compensation by other FLNs may mask phenotypes in single knockout or knockdown cells. We propose that interactions
between FLNs and transmembrane or signalling proteins, mediated at least in part by immunoglobulin domains 19 to 21
are important for both cell spreading and initiation of migration.
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Introduction
Cell migration is critical throughout development and in

adulthood. Migration is required in response to injury or infection

and excessive or impaired migration leads to pathologies ranging

from brain defects, to vascular disease, inflammation and cancer

[1]. Understanding cell migration is therefore of profound

physiological and medical significance. Detailed analyses of

cultured cells continue to provide insights into cell migration,

permitting recognition of general principles and identification of

key mechanisms and proteins [2].

Cell migration is an actin-dependent process and many proteins

that regulate F-actin polymerization, de-polymerization, branch-

ing, cross-linking or bundling have now been implicated in

controlling migration [3]. Filamins (FLNs) make up one important

class of actin-binding and cross-linking proteins. Vertebrate FLNs

are non-covalent dimers of 240–280 kDa subunits composed of an

N-terminal actin-binding domain followed by 24 tandem immu-

noglobulin-like domains (IgFLN1–24), the last of which mediates

dimerization [4–7]. Hinges between IgFLN15 & 16 (H1) and

IgFLN23 & 24 (H2) result in a V-shaped flexible actin-crosslinker

capable of stabilizing orthogonal networks with high-angle F-actin

branching [8]. In addition, FLNs bind many transmembrane

receptors, signaling and adapter proteins [5,9,10]. Through these

interactions, often mediated by IgFLN16–24, FLNs complex

multiple partners in close proximity to one another, potentially

enhancing signal transduction by aiding assembly of networks

linking receptors with signaling proteins and the cytoskeleton [5].

Humans have three FLN genes, encoding filamin A (FLNa,

ABP-280 or filamin-1 [4]), filamin B (FLNb, ABP-278/276, b
filamin or filamin-3 [11,12]) and filamin C (FLNc, c-filamin,

ABPL or filamin-2 [13,14]). With the exception of the H1 and H2

regions, and an 81 amino acid insertion in IgFLNc20, they show

homology over their entire length. FLNa is the most abundant and

widely expressed, FLNb is also widely expressed while FLNc is

thought to be largely restricted to striated muscle [5,6].

A requirement for FLNa during cell migration was first

proposed based on the impaired locomotion of human melanoma

lines lacking FLNa, and the ability of re-expressed FLNa to restore

migration [15]. The FLNA gene is located on the X-chromosome

and mutations leading to loss of FLNa expression or function were

later identified as causative in X-linked periventricular heterotopia

(PVH) in heterozygous females, revealing a role for FLNa in
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neuronal migration [16]. Furthermore, FILIP, a FLNa-interacting

protein, was reported to control neuronal migration by regulating

FLNa levels [17,18]. Thus it was proposed that FLNa plays an

essential role in the basic processes of cell migration. However, the

phenotypes of two independently generated strains of FLNa-

deficient mice and the observation that cells derived from these

mice lacked obvious defects in migration [19,20] has cast doubt on

this conclusion. Furthermore, there is no evidence that the

neurons in human PVH nodules lack FLNa, and, the percentage

of heterotopic neurons is usually small despite the expectation that,

assuming random X-inactivation, ,50% of neurons in the

heterozygous PVH patients should lack FLNa [9]. In addition,

several males with FLNa mutations have PVH patterns similar to

females [9]; while these are likely to be only partial loss-of-function

mutations they indicate that most neurons organize correctly

without any fully-functional FLNa. Nonetheless, other evidence

continues to point to roles for FLNs in cell migration: over-

expressed FLNa inhibits migration of M2 cells [15] and mouse

cortical neurons [21], MEKK42/2 mice exhibit PVH associated

with neurons that over-express FLNa and b [21], and a male

patient with severe PVH has a FLNa gene duplication [22],

suggesting that excess FLNa leads to migration defects. Further-

more tight binding of FLN to integrin b tails correlates with

inhibition of integrin-mediated cell migration [23]. In vivo

migration defects have not been reported in FLNb2/2 mice but

migration is impaired in FLNb2/2 fibroblasts, which also have

reduced FLNa levels [24]. Thus, while FLNa may not be essential

for cell migration, FLNs do appear to modulate migration and the

possibility that FLNb may compensate for loss of FLNa has been

raised [25]. Here we have used short-hairpin RNA (shRNA)-

mediated knockdown of FLNa and/or FLNb, as well as acute

proteasome-mediated degradation of all FLNs, to investigate the

roles of FLN in cell migration. We find that cells deficient in FLN

exhibit impaired initiation of random cell migration and defects in

cell spreading but that once migration has been initiated FLN-

deficient cells are capable of efficient migration at speeds

comparable to wild-type cells. We suggest that the lack of overt

migration phenotypes in many FLNa-deficient cells and organisms

is likely to be due to the presence of co-expressed FLNb, or FLNc,

which is able to compensate for the lack of FLNa, and that in some

cases the plasticity of tissue development may accommodate the

delay in initiation of cell migration caused by loss of FLNa.

Results

Generation of FLNa knockdown cells
To study the functions of FLNa we established HT-1080 human

fibrosarcoma cell lines lacking FLNa expression. HT1080 cells

were transfected with a pSM2c vector encoding shRNA against

human FLNa, pools of stably transfected cells were obtained by

antibiotic selection, and FLNa levels were assessed by western

blotting. Two different shRNA sequences were tested and the one

producing most efficient FLNa knockdown was chosen for further

analysis. Clonal knockdown lines were obtained by limiting

dilution. From these a FLNaKD line, with less than 10% of

FLNa remaining compared to HT1080 wild type (WT) cells, was

selected for further analysis (Figure 1A). Notably, FLNb, vinculin,

actin and b1 integrin levels were unchanged in these FLNaKD

cells (Figure 1A, B, D).

FLNa knockdown cells can spread and form actin stress
fibres

Previous studies have shown FLNa to play a critical role in

maintaining mechanical stability of the cortical actin filaments

[15,26], so the effect of FLNa knockdown on the actin cytoskeleton

was assessed by phalloidin staining. Even with an almost complete

loss of FLNa, the actin cytoskeleton of HT1080 FLNaKD cells

spread on fibronectin (FN) was not dramatically altered

(Figure 1B). Furthermore, no significant effect on cell spreading

was observed 1 hour after plating on 5 mg/ml FN (Figure 1C).

FLNa-deficient M2 melanoma cells exhibit a characteristic

plasma membrane blebbing [15] but we did not observe blebbing

in FLNaKD cells, either during routine cell culture or 1 hour after

plating on FN (Figure 1B). The lack of membrane blebbing in

FLNaKD HT1080 cells is consistent with observations in FLNa

knockout fibroblasts [19,20]. Analysis of another FLNaKD line

and the polyclonal FLNaKD population (data not shown),

confirmed our conclusion that significant reduction in FLNa

levels does not dramatically alter HT1080 cell spreading, actin

cytoskeleton or membrane stability.

FLNa knockdown does not affect random cell migration
To assess the role of FLNa in cell migration we used time-lapse

microscopy to compare the random migration of FLNaKD and

wild-type HT1080 cells. Cells were suspended, washed, and

control and knockdown cells mixed before seeding onto FN-coated

plates, 10 minutes after plating unattached cells were washed away

and imaging was initiated 1 hour after plating. At the end of the

time-lapse recording, cells were fixed and stained for FLNa

expression allowing us to assess FLNa levels in the individual cells

whose migration was recorded (Figure 2A and movie S1). By

washing off unattached cells we synchronised the cell adhesion to

within the initial 10 minute period, reducing variability due to

differential attachment times. Furthermore, as both control and

knockdown lines were seeded onto the same plate and imaged

simultaneously, migration could be compared under the same

conditions, and any correlation with the FLNa expression levels

detected by immunofluorescence could be observed. This provides

a control for potential variability in coating, temperature, serum,

etc, between experiments and allows direct comparison of cell

motility with FLNa levels. Overall, our migration protocol enables

us to follow migration in detail in a controlled 2D environment

over a defined time period (usually 5 hours), permitting measure-

ment of the total distance traveled, the displacement from origin,

and calculation of mean speed and directional persistence

(Figure 2B). Additionally, the morphology and spreading of

migrating cells were also assessed. Migration was generally

recorded between 1 and 6 hours post plating as the cells were

fully spread by 1 hour and the mean cell area did not increase

during the time-lapse recording (Figure 2C; wild-type p = 0.209,

74 cells; FLNaKD p = 0.646, 82 cells from 5 independent

experiments).

Using this approach we observed no significant difference in

mean speed of the wild-type and FLNaKD cells (Figure 2D). The

cells also showed no significant difference in directionality

(Figure 2E) or in circularity (Figure 2F). Similar results were

obtained with a second FLNaKD line (data not shown). This

suggests that neither the motility nor spreading of HT1080 cells is

impacted by FLNa knockdown.

Generation and characterisation of FLNab double
knockdown cells

The preceding results, showing that wild-type levels of FLNa are

not required for HT1080 cell migration, raise the possibility that

endogenous FLNb (Figure 1A), may compensate for lack of FLNa

[25]. To test this possibility we knocked down FLNb in HT1080

WT (FLNbKD) and FLNa knockdown (FLNabKD) cells. Cells

were transfected with pGIPZ vectors encoding shRNA against

Filamins in Cell Migration
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Figure 1. Generation of FLNaKD cells. A) FLNa and FLNb expression in FLNaKD cells was quantified comparing 10 mg of cell lysate to a curve of
cell lysates prepared from HT1080 WT cells. Vinculin expression was used as loading control. The bar chart depicts average of 4 independent western
blots normalized to control 6 SEM. B) HT1080 WT or FLNaKD were plated on 5 mg/ml FN coated coverslips overnight, fixed, permeabilized and
stained with anti-FLNa (FLNa), anti-FLNb (FLNb), phalloidin (phall) and DAPI (shown in blue in the merged image). Bar = 20 mm. C) HT1080 WT and
HT1080 FLNaKD cells were detached, mixed and seeded on a 3.5 cm petri dish coated with 5 mg/ml FN, allowed to adhere and spread. Cells were
fixed after 1 hour and stained with anti-FLNa to discriminate between WT and FLNaKD cells. The area was measured by manually rendering the cell
contour in the phase images. 1 pixel2 = 1.664 mm2 (Sample size WT = 74; FLNaKD = 82 from 5 independent experiments). Error bars show SEM. D)
Integrin beta1 present on the membrane surface of WT and FLNaKD cells. The left panel show histogram a representative histogram plot, the right
panel shows the average of 4 experiments 6 standard deviation.
doi:10.1371/journal.pone.0007830.g001
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human FLNb and pools of stably transfected cells were obtained

by antibiotic selection. FLNb was significantly reduced in

FLNbKD cells while FLNa was unaffected in these cells. Both

FLNa and FLNb expression were reduced in the double FLNab

KD cells (Figure 3 A,B). Vinculin, actin and surface b1 integrin

levels were not significantly altered in these cells (Figure 3A and

3C).

We next investigated the actin cytoskeleton in spread FLNb and

FLNab knockdown lines. As was the case for FLNa, the removal of

FLNb in FLNbKD cells, did not dramatically impact the actin

cytoskeleton (Figure 3D). Analysis of FLNabKD cells revealed a

slight decrease in phalloidin staining (Figure 3D), suggesting a

decrease in overall F-actin levels and western blotting showed that

this was not related to a change in actin expression levels

(Figure 3A). The FLNabKD cells present a normal morphology

without plasma membrane blebbing (Figure 3D), however, as we

have previously reported [27], removing both FLNa and FLNb

reduces the final spread area of the cells (Figure 4A). Spreading

was not affected in single FLNa or FLNb knockdown lines

(Figure 1C and 4B). Expression of an shRNA resistant FLNa-GFP

mutant (FLNa*) in FLNabKD cells is sufficient to completely

rescue the cell spreading defect (Figure 4C) showing that the effect

on spreading is due to reductions in FLN expression.

The reduction in area of FLNabKD cells cannot be explained

by a delay in cell spreading as images from time-lapse migration

assays showed that the cells were fully spread 1 hour after plating

and did not spread further over an additional 5 hours (Figure 4D).

Time-lapse analysis of early time points of cell spreading in WT

Figure 2. FLNaKD cells in random cell migration assay. A) Flow chart of the time-lapse experiments. Cells were suspended, washed, and
control and knockdown cells mixed before seeding onto FN-coated plates. 10 minutes after plating unattached cells were washed away and imaging
was initiated 1 hour after plating. At the end of the time-lapse recording, cells were fixed and stained for FLNa expression. WT cells are outlined in
white, FLNaKD cells in green. B) Schematic diagram of migration parameters. Cell is considered migratory if max d.25 (average cell radius); final
speed = Total cell path/tend; directionality = dend/Total cell path. C) Comparison of cell area at the start and at the end of time-lapse recording. 1
square pixel2 = 1.664 mm2. Dots plot shows the overall population distribution (sample size: WT = 74; FLNaKD = 82; from 5 independent experiments),
dotted line shows the mean, box and whiskers plots show quartiles. P values were calculated using a paired t-test. D) Speed of HT1080 WT and
FLNaKD (sample size WT = 38; FLNaKD = 41; from 4 independent experiments). E) Directionality (defined as dend/total cell path) comparison between
HT1080 WT and FLNaKD (sample size: WT = 29; FLNa = 33; from 3 independent experiments). F) Circularity (as defined in ImageJ = 4p(area/perimeter2)
comparisons between HT1080 WT and FLNaKD cells 6 hours after plating (sample size: WT = 49; FLNaKD = 83; from 4 independent experiments).
doi:10.1371/journal.pone.0007830.g002
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and FLNabKD cells did however suggest a slight delay in the time

needed to reach the maximal area as wild-type cell spreading

appeared to plateau approximately 30 minutes post-plating while

the FLNabKD cells plateaued around 40–45 minutes after plating

(Figure 4E).

In summary, while knockdown of either FLNa or FLNb does

not produce dramatic effects on HT1080 cell spreading or

morphology, knockdown of both FLNa and FLNb impairs cell

spreading and reduces F-actin levels without major effects on cell

morphology.

Figure 3. Generation of FLNabKD cells. A) FLNa and FLNb protein expression was quantified comparing 10 mg of cell lysate prepared from
FLNaKD, FLNbKD and FLNabKD cells to a curve of cell lysates prepared from HT1080 WT lysates. Vinculin and actin were used as loading control. B)
Quantification of FLNa and FLNb protein expression; bars show mean value normalized to control 6SEM (n = 4). C) Integrin beta1 present on the
membrane surface of WT, FLNbKD and FLNabKD cells. The left panel shows a representative histogram plot, the right panel shows the average of 4
experiments 6 standard deviation. D) HT1080WT, FLNbKD or FLNabKD cells were plated on FN-coated coverslips, incubated overnight, fixed,
permeabilized and stained with anti-FLNa (FLNa), anti-FLNb (FLNb) or phalloidin (phall). Bar = 20 mm.
doi:10.1371/journal.pone.0007830.g003

Filamins in Cell Migration

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7830



Knockdown of FLNa and FLNb impairs initiation of cell
migration

To assess the effect of FLNb knockdown on random cell

migration we used time-lapse migration assays to compare wild-

type and FLNbKD cells. Assays were performed as previously

described (Figure 2A,B movie S2 and S3) and after fixation cells

were stained for FLNb. Removal of FLNb did not significantly

alter the speed of FLNbKD cells, although as was seen for

FLNaKD cells, thereS was a trend towards a slight reduction in

speed (Figure 5A; Figure 2D). However, comparison of the double

knockdown cells (FLNabKD) with FLNaKD cells revealed a

decrease in cell speed suggesting that removal of both FLNa and

FLNb results in a migration defect (Figure 5B).

Careful examination of the time-lapse recording of FLNabKD

cells suggested that many of these cells were not migratory at all.

As described in the methods section, we track the movement of the

nuclear region of the cell over time, and small oscillations in the

position of the nucleus in non-migrating cells with active

membranes, coupled with error associated with manual rendering

of the nuclear position can result in calculation of low speeds for

cells that are not actively migrating. Therefore, independently of

cell speed, we scored cells as motile only if they had a maximum

displacement of .25 mm, the average cell radius, at some point

during the course of the assay. This means that to be scored as

motile, irrespective of cell speed, the nucleus must exit a circle of

radius 25 mm centered on the nuclear position in the first frame

(Figure 2B). If the cell turns and subsequently re-enters the circle it

will still be scored as motile because it had a displacement .25 mm

at some point. This ensures that small oscillations do not result in a

cell being classed as motile; instead motility requires a degree of

persistent movement. Although the choice of one cell diameter is

somewhat arbitrary, qualitatively our results do not change even if

the threshold is reduced to 10 mm.

Scoring motility in our paired cell migration assays revealed that

knockdown of FLNa or FLNb produced only small, not

statistically significant, increases in the percentage of non-motile

cells (Figure 5C–D). However, FLNabKD cells had a significant

increase in non-motile cells compared to the FLNaKD line, and

even after 5 hours of observation ,35% of cells did not class as

migratory (Figure 5E). This suggested that defects in initiation of

migration might account for the reduced speed of FLNabKD cells.

Indeed when the non-motile cells are excluded from the analysis

the difference in speed between FLNaKD and FLNabKD cells is

reduced in magnitude and significance (Figure 5F) but nonetheless

a statistically significant reduction in speed remains.

The data obtained with FLNabKD cells suggested that loss of

FLNa and b impairs initiation of migration and may also reduce

the mean speed of those cells that do migrate. As these conclusions

were based on one double knockdown line we examined a second

independent FLNab knockdown line (FLNabKD1). These cells

expressed less that 10% FLNa and 35% FLNb compared to wild-

type cells and had normal vinculin and actin levels (Figure 3A,B).

Figure 4. FLNabKD cells exhibit spreading defects. A,B) FLNaKD and FLNabKD (A) or HT1080 WT and FLNbKD (B) cells were mixed and plated
on FN-coated plates. After 6 hours cells were fixed and stained with anti-FLNb to discriminate between the two populations. The area was measured
by manually rendering the cell contour in the phase contrast. (Sample size: FLNaKD = 85; FLNabKD = 89 from 5 experiments; WT = 76; FLNbKD = 59
from 3 independent experiments) 1 pixel2 = 1.664 mm2. Error bars show SEM. C) FLNabKD cells were transfected with FLNa*-GFP. 24 hours later cells
were detached, replated and allowed to adhere and spread as described in A and B. After fixation cells were stained with anti-FLNa to identify FLNa*
expressing cells (sample size: $10 from 6 independent experiments). 1 pixel2 = 1.664 mm2. Error bars show SEM. D) Comparison of cell area at the
start and end of time-lapse recording. 1 pixel2 = 1.664 mm2. Dot plot shows the overall population distribution (sample size = 213; from 10
independent experiments) dotted line shows the mean value, box and whiskers plots show quartiles. P values were calculated using a paired t-test. E)
HT1080 WT and FLNabKD cells were plated on plates coated with 5 mg/ml FN, and analyzed in high resolution time-lapse (1 frame/minute) 5 minutes
after the plating. Values are shown as the average % of the maximum cell area 6SEM (sample size: WT = 12; FLNabKD = 9 from 3 independent
experiments).
doi:10.1371/journal.pone.0007830.g004
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Analysis of FLNabKD1 cells also revealed a significant increase in

the percentage of non-motile cells (Figure 5G), but in this case the

reduction in mean cell speed was not statistically significant

(Figure 5H). Exclusion of non-motile cells from the analysis

resulted in further convergence of mean speed of the motile

FLNaKD and FLNabKD1 populations (Figure 5H). Comparison

Figure 5. FLNs play a role in initiation of cell migration. A,B,F and H) Speed of HT1080 WT and FLNbKD (A), FLNaKD and FLNabKD (B), FLNaKD(motile)
and FLNabKD(motile) (F), or FLNaKD and FLNabKD1 (H) were compared in time-lapse migration assays. Dot plot shows the overall population distribution
(sample size: WT = 137; FLNbKD = 99; FLNaKD = 74 in B and 53 in H; FLNabKD = 71; FLNabKD1 = 48; at least 4 independent experiments were performed for
each pair), dotted line shows the mean value, box and whiskers plots show quartiles. C,D,E and G) % of non motile cells in the time lapse experiments
expressed as mean 6 SEM. I) relation between cell speed and FLNb expression in FLNaKD (black dots), FLNabKD (red dots) and FLNabKD1 (blue dots). J) FLNb
content of FLNaKD, FLNabKD motile and FLNabKD non-motile cells. Total fluorescence of FLNb staining was measured at the end of time-lapse recording. Bars
show mean value 6SEM (sample size: FLNaKD = 58; FLNabKDmotile = 22; FLNabKDnon-motile = 15 from 3 independent experiments).
doi:10.1371/journal.pone.0007830.g005
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of FLNb expression with cell speed in FLNaKD, FLNabKD and

FLNabKD1 cells (Figure 5I) shows that cell speed is independent

of FLNb content. It is not clear why some FLNab knockdown cells

are motile and some are not but differences in the degree of

knockdown do not readily to account for this as comparison of

FLNb levels between motile and non motile FLNabKD cells shows

no significant difference (Figure 6J). As the FLNabKD cells were

generated from the clonal FLNaKD line and this, like the

FLNabKD line, shows high levels of stable FLNa knockdown we

conclude that the motile cells do not have higher levels of FLN

than the non-motile cells. We propose that FLNs regulate

initiation of cell migration such that below a certain FLN

expression threshold initiation is reduced and the probability of

observing it during the time-lapse recording is decreased.

To further test whether the phenotypes observed in FLNabKD

cells were specific and caused by loss of FLN expression, we

attempted to rescue FLNabKD cells by re-expression of shRNA-

resistant FLNa-GFP (FLNa*). This construct rescued the spread-

ing defect in these cells showing that it is functional (Figure 4C).

FLNabKD cells were transfected with FLNa* and migration was

assessed in time-lapse assays as previously described. Cells were

then fixed and stained for FLNa allowing us to quantify the levels

of re-expressed FLNa. Cells expressing ,1–2 fold wild-type levels

of FLNa were scored for motility and speed and compared to non-

expressing cells on the same plate. As shown in Figure 6A, re-

expression of FLNa rescued the immotile phenotype of FLNabKD

cells but did not increase the mean cell speed (Figure 6B) again

suggesting that loss of FLN mainly effects initiation of cell

migration rather than cell speed.

IgFLNa domains 19–21 are required for FLNa-mediated
cell spreading and initiation of cell migration

FLNs are important adaptor molecules and many filamin-

binding proteins interact with IgFLNa domains 19 to 21 [5,9]. As

an additional control for the specificity of the FLNa rescue

experiments, and to test whether IgFLNa19–21-mediated inter-

actions may be involved in cell spreading and initiation of cell

migration, we assessed the ability of an shRNA resistant FLNa-

GFP mutant lacking IgFLNa19–21 (FLNaD19–21) to rescue the

phenotype of FLNabKD cells. Unlike the wild-type FLNa-GFP

protein, the FLNaD19-21-GFP protein did not rescue spreading

(Figure 6C) or motility (Figure 6D) of FLNabKD cells, suggesting

that deletion of IgFLNa19–21 produces a FLNa molecule that is

defective in these processes, presumably because it is uncoupled

from key pathways.

HT1080 cells express Filamin C
FLNc has been reported to be largely specific to skeletal and

cardiac muscles [6,14] and no data are available on FLNc

expression in fibrosarcoma cells. Using an antibody specific for

FLNc (Figure 7A), we show that HT1080 cells express low, but

detectable, levels of FLNc (Figure 7B). Moreover, FLNc expression

is increased in the FLNa, FLNb and FLNab knockdown lines

(Figure 7B). A pan-FLN antibody that binds each FLN isoform

with equal affinity is not available therefore measuring total FLN

levels in cells is not straightforward. However, when fractionated

by SDS-PAGE all three FLNs migrate at approximately 280 kDa,

in a region where there are few other proteins, meaning that a

rough approximation of total FLN content can be obtained by

protein staining. To estimate the extent of total FLN knockdown

in the various cell lines, we fractionated cell lysates by SDS-PAGE

and assessed the intensity of staining of a band of approximately

280 kDa that is selectively reduced in FLN knockdown lines and

which co-migrates with bands detected by anti-FLNa antibodies

(Figure 7C). Estimation of total FLN levels (Figure 7C), together

with measurement of the extent of FLNa and FLNb knockdown,

and FLNc over-expression in FLNaKD, FLNbKD and FLNabKD

cells by western blotting (Figure 3A and Figure 7B), allowed us to

approximate the relative amounts of each FLN isoform. In wild-

type HT1080 cells FLNa represents 60%615%; FLNb

29%615% and FLNc 11%613% of the total FLN (Figure 7D).

We note that this analysis relies on the assumption that the entire

,280 kDa band is composed only of FLNa, FLNb and FLNc

while in fact it is possible that other large proteins contribute to

this band. If this is the case, our calculation of total FLN

knockdown in Figure 7C will be an underestimation (i.e. total FLN

levels will be even lower in knockdown cells) and FLNc will make

up a smaller percentage of the total FLN than indicated in

Figure 7D. Thus, despite the large margin of error, this analysis

shows that, total FLN levels are lower in the double knockdown

FLNabKD cell lines than in the FLNaKD or FLNbKD lines even

though these lines have increased levels of FLNc.

Figure 6. FLNa* but not FLNa*D19–21 rescues motility of
FLNabKD cells. A and B) FLNabKD cells were transfected with FLNa*-
GFP and assessed in time-lapse migration assays. Re-expressing cells
were identified by staining for FLNa. Mean % of non-motile cells (A) and
mean cell speed (B) in untransfected and FLNa-re-expressing FLNabKD
cells. Values 6SEM from at least 4 independent experiments: sample size
FLNabKD = 75; FLNabKD+FLNa* = 9). C and D) FLNabKD cells were
transfected with FLNaD19–21 and assessed in time-lapse migration
assays. Cells expressing FLNaD19–21 were identified by staining for FLNa.
Mean cell area was measured by manually rendering the cell contour in
the phase contrast (C) and motility assessed as described previously (D).
Values 6 SEM from at least 4 independent experiments: (sample size
FLNabKD = 94; FLNabKD+FLNa*D19–21 = 10). 1 pixel2 = 1.664 mm2.
doi:10.1371/journal.pone.0007830.g006
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ASB2a targets all 3 FLNs for degradation
Identification of FLNc in HT1080 cells and its up-regulation in

FLN knockdown cells complicates our analysis of the role of FLNs in

cell migration. To circumvent generation of a triple knockdown line

lacking FLNa, b and c, and avoid potential problems associated with

clonal lines we used ASB2a, a component of an E3 ubiquitin ligase

complex, to acutely trigger proteasomal degradation of all three

FLNs. We have previously shown that ASB2a targets FLNa and

FLNb for polyubiquitylation and proteasomal degradation [27,28].

Furthermore, using a label-free quantitative proteomic strategy to

identify ASB2a substrates [29] we observed that ASB2a expression

also triggered degradation of the low levels of endogenous FLNc

detectable in myeloid leukaemia cells (table S1). Consistent with

these results, when co-expressed in HT1080 cells, ASB2a efficiently

triggered degradation of FLNa-GFP, FLNb-GFP and FLNc-GFP

(Figure 7E). Western blotting also shows degradation of endogenous

FLNc after transient transfection with ASB2a (Figure 7F). In

contrast, expression of an inactive ASB2a mutant (ASB2aD), which

lacks the SOCS box rendering it unable to assemble into an E3

ubiquitin ligase complex [27], did not decrease FLN levels

(Figure 7E,F and Figure 8A). Our anti-FLNc antibody does not

work for immunofluorescence in HT1080 cells but staining with

anti-FLNa and anti-FLNb antibodies shows the extent of FLNa and

FLNb degradation in ASB2a-expressing HT1080 cells (Figure 8A).

Thus, all three FLNs are ASB2a substrates and, as these are the only

known ASB2a targets, transient transfection with ASB2a provides a

mechanism to acutely degrade all three FLN isoforms and to

generate FLN-deficient cells.

Acute FLN-degradation impairs initiation of cell
migration without altering cell speed

To test the effect of ASB2a-mediated FLN degradation on cell

migration, HT1080 cells were transfected with ASB2a and the

Figure 7. HT1080 express FLNc. A) Cell lysates from HEK 293 cells or HEK cells expressing FLNa-GFP, FLNb-GFP or FLNc-GFP were probed by an
anti-FLNc antibody (upper panel) or an anti-GFP antibody (lower panel). B) 30 mg of lysates from the indicated cell lines were probed for FLNc
content (red signal) and vinculin (green signal) used as loading control. C) Cell lysates were fractionated by SDS-PAGE and gels stained for total
protein. The extent of staining of a band of approximately 280 kDa (marked with an asterisk) that co-migrates with bands detected by anti-FLNa
antibodies was measured. Bars show the results from 5 experiments (mean 6 SEM). D) Estimation of total FLN levels in HT1080 WT. E) HT1080 WT
cells were co-transfected with FLNa-GFP (left panel), FLNb-GFP (middle panel), or FLNc-GFP (right panel) and GFP, GFP-ASB2a or GFP-ASB2aD as
indicated. 24 hours after transfection cells were lysed, and analysed by western blotting for GFP. Vinculin staining was used as loading control. F)
HT1080 FLNaKD cells were transfected with either GFP-ASB2a or GFP-ASB2aD. 20 hours after transfection cells were lysed and analysed by western
blotting for FLNc and GFP. Vinculin was used as loading control.
doi:10.1371/journal.pone.0007830.g007
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migration of ASB2a-expressing cells was compared to the cells in

the same microscope field that were not expressing ASB2a and

thus retained FLN expression (Figure 8A and movie S4). As an

additional control we assessed the effect of ASB2aD, which did not

degrade FLNs (Figure 8A), on migration. ASB2a expression

significantly increased the percentage of non-motile cells

Figure 8. ASB2a inhibits initiation of cell migration without affecting cell speed. A) HT1080 transfected with GFP-ASB2a (left panel) or
GFP-ASB2aD (right panel) were detached after 20 hours and fixed 6 hours after re-plating on 5 mg/ml FN and stained for FLNa or FLNb. B) Percent of
non-motile cells in the time-lapse recording expressed as mean 6 SEM (6 experiments for ASB2a; 3 for ASB2aD). C) HT1080 ASB2a expressing or non-
expressing cells (NE) were stained at the end of time lapse experiments to measure FLNa content in motile and non motile cells (sample size NE = 20;
ASB2a-motile = 12; ASB2a non motile = 17; from 3 independent experiments). D) HT1080 ASB2a expressing (blue line) or non-expressing (black line)
cells were recorded for 15 hours at 1 frame/5 minutes and the mean percent of non motile cells at each time point plotted. (Sample size: NE = 43;
ASB2a= 13; from 2 independent experiments). E) Speed of HT1080 ASB2a expressing or non-expressing cells: total population (left) or migratory
population (right). (Sample size: NE all = 75; ASB2a all = 39; NE motile = 51; ASB2a motile = 19; from 6 independent experiments).
doi:10.1371/journal.pone.0007830.g008
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(Figure 8B). The immotility phenotype is not due to ASB2a-

induced toxicity as these cells attach in 10 minutes, spread within

1 hour, and remain attached and spread over the course of the

6 hour assay. To further test the hypothesis that loss of FLNs

delays initiation of migration we extended our time-lapse assays to

16 hours and quantified the percentage of motile and non-motile

cells in the ASB2a-expressing and non-expressing populations

over the course of the experiment. The number of non-motile cells

is higher in the ASB2a-expressing population at virtually all time

points assessed (Figure 8D), however the percentage of non-motile

cells decreases over time suggesting that cells eventually begin to

migrate.

As was observed for FLNabKD cells, many ASB2a-expressing

cells were capable of migrating. To determine whether differences

in the efficiency of FLN degradation explained why some ASB2a-

expressing cells were motile but not others, we assessed FLNa

levels in the motile and non-motile ASB2a-expressing cells

(Figure 8C). This clearly showed that FLNa was efficiently

degraded in all ASB2a-expressing cells, whether motile or non-

motile, suggesting that wild-type FLN levels are not essential for

cell migration but instead, as described above, FLNs control

initiation of cell migration

ASB2a expression also results in a reduction of mean cell speed

(Figure 8E). However, this effect is primarily due to the delay in

initiation of migration as when the non-motile cells are removed

from the analysis the mean speed of the ASB2a-expressing and

control cells is comparable. Taken together, the data from FLN

knockdown cells and ASB2a-expressing cells, suggest that FLNs

are important for initiation of cell movement, but that the presence

or the absence of FLNs does not alter the speed of migrating cells.

Knockdown of FLNa and FLNb impairs initiation of cell
migration in Jurkat cells

The preceding sections show that in HT1080 cells knockdown

or proteolytic degradation of FLNs impairs the ability of cells to

become motile. To test whether this is a more general

phenomenon we analysed the migration of the Jurkat immortal-

ized T lymphoblast cell line. FLNabKD Jurkat cells stably

transfected with shRNA against FLNa and FLNb were generated

and showed dramatically reduced levels of FLNa and FLNb (Fig. 9

A and B) with no detectable expression of FLNc (Fig. 9 C). FLN

knockdown did not impact b1 integrin expression levels in these

cells (data not shown). Jurkat cells are smaller and more rounded

than HT1080 cells which facilitates the scoring of cells as motile or

non-motile (see movie S5). As observed with HT1080 cells, the

FLNabKD Jurkat cells show a significant increase in the

percentage of non-motile cells (Fig. 9D). Furthermore, similar to

ASB2a-transfected cells (Fig. 8 D) the percentage of non motile

cells decreases over time for both wild-type and FLNabKD cells

but the percentage of non-motile cells remains higher in

FLNabKD cells at virtually all time points (Fig. 9E). The decrease

in non-motile cells over time indicates that cells initially scored as

non-motile can initiate movement showing that non-motile cells

are not dying and that lack of FLNs does not completely block the

initiation of migration. Finally FLNabKD Jurkat cells exhibit a

decrease in average speed which is, as in the case of ASB2a
transfected cells, primarily due to the increased presence of non-

migratory cells in the overall population (Fig. 9F left panel). In fact,

removing the non-motile cells from the analysis decreases the

difference of mean cell speed under the level of statistical

significance (Fig. 9F right panel). Thus the effect of FLN-deficiency

on cell motility is conserved in both HT1080 fibrosarcoma cells

and Jurkat T-lymphoblasts.

Discussion

A role for FLNs in cell migration was first proposed 17 years ago

based on the phenotype of FLNa-deficient melanoma cells [15].

The idea that FLNa is important for migration was reinforced by

identification of loss-of-function mutations in FLNa as causative

for PVH [16], a disease associated with defective neuronal

migration. However, the identification of FLNb and FLNc

[11–13] and the finding that FLNa and FLNb are co-expressed

in some cell types [25] raised the potential that other FLN isoforms

may also function in migration. More recent data from FLNa-

deficient mice have questioned the importance of FLNa in cell

migration [19,20] however we note that while FLNa-deficient

mice do not develop PVH they do exhibit a thinning of the

cerebral cortex that may indicate a role in migration [20]. In order

to address the question of whether FLNa, and/or other FLNs, play

roles in migration, and if so to investigate at which stages they are

important, we used shRNA-mediated knockdown and ASB2a-

mediated proteasomal degradation as two independent methods to

remove FLNs from cells. We found that almost total ablation of

either FLNa or FLNb does not significantly affect the ability of

HT1080 cells to migrate in time-lapse random migration assays

but that shRNA-mediated knockdown of both FLNa and FLNb,

or ASB2a-mediated targeting of all three FLNs, leads to defects in

migration. This establishes a role for FLNs in migration and

suggests that compensation by other FLN isoforms [25] may mask

the migration phenotype in single knockdown cells or single

knockout cells or animals. We further characterised the migration

defect to be primarily a deficiency in initiation of motility rather

than a problem with maintenance of locomotion speed once

migration has been initiated. In addition, while we observe no

profound impact of FLN deficiency on cell shape or the actin

cytoskeleton, we find that FLN-deficient cells spread to a lesser

extent than wild-type or single knockdown cells. Thus FLNs are

important for cell spreading and contribute to the initiation of cell

migration, but appear dispensable for maintenance of normal cell

speed once migration has been initiated.

Much of the work implicating FLNa in cell migration has relied

on use of a FLNa-deficient melanoma cell line (M2) and stable cell

lines re-expressing FLNa [15]. While the M2 line has proved

valuable, differences in expression of cell surface proteins, such as

integrin adhesion receptors, between the M2 and reconstituted

lines [30] complicates its use in migration assays. For this reason

we used alternative methods to generate FLN-deficient HT1080

cells that did not show alteration in integrin expression levels. Use

of both stable knockdown lines and acute ASB2a-mediated

degradation provides a number of advantages. Knockdown lines

offer the convenience of stable populations and the ability to

rescue phenotypes by re-expressing knockdown-resistant FLN

confirms the specificity of observed phenotypes. However, while

knockdown was extensive it was not complete and FLNc levels

were elevated. We therefore also used transient ASB2a expression

to acutely remove all three FLNs. An additional benefit of this

approach is that since FLNs are rapidly degraded the risk of

selecting cells with compensatory adaptations that mitigate the

effects of loss of FLNs is greatly reduced. Unfortunately, due to the

number of lysines in these large proteins (156 in FLNa and 173 in

FLNb) and the lack of a detailed understanding of the mechanism

by which ASB2a targets FLNs for degradation, we cannot yet

generate ASB2a-resistant FLNs for rescue experiments. Hence, we

cannot completely exclude effects of other yet-to-be-identified

ASB2a targets on cell migration. However, the similarity in

phenotype of ASB2a-expressing and FLNabKD cells points to the

importance of FLNs during initiation of migration and cell
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spreading. Furthermore the similarity in phenotype between FLN-

deficient HT1080 and Jurkat cells suggests that FLNs have a

general role in migration that is not restricted to a single cell type.

Our time-lapse migration assays allowed us to observe that the

major defect associated with loss of FLNa and FLNb was failure to

initiate migration rather than a change in mean speed of migration

or directional persistence. Both ASB2a expression and knockdown

of FLNa and FLNb resulted in significant increases in the

percentage of cells that failed to migrate during the experiment

and the phenotype was reversed by re-expressing FLNa in the

FLNabKD cells. In FLNaKD cells the number of non-motile cells

also consistently increased but this did not reach statistical

Figure 9. FLNs play a role in initiation of cell migration in Jurkat cells. A) FLNa and FLNb protein expression was quantified comparing
20 mg of cell lysate prepared from Jurkat FLNabKD cells to a curve of cell lysates prepared from Jurkat WT lysates. Vinculin was used as loading
control. B) Quantification of FLNa and FLNb protein expression; bars show mean value normalized to control 6SEM (n = 4). C) 20 mg of a cell lysate
from Jurkat WT or Jurkat FLNabKD was probed for FLNc content, 20 mg of lysate from HT1080 FLNabKD cells was used as positive control. D) Percent
of non-motile cells in the time-lapse recording expressed as mean 6 SEM (from 6 independent experiments). E) Percent of non-motile cells were
analysed at each time point in 5 experiments and the average 6 SEM is plotted. Blue line shows Jurkat WT cells red line Jurkat FLNabKD cells. F)
Speed of Jurkat WT and FLNabKD cells: total population (left) or migratory population (right). (Sample size: WT all = 29; FLNabKD all = 35; WT
motile = 25; FLNabKD motile = 19; from 6 independent experiments).
doi:10.1371/journal.pone.0007830.g009

Filamins in Cell Migration

PLoS ONE | www.plosone.org 12 November 2009 | Volume 4 | Issue 11 | e7830



significance in the paired experiments (n = 38 in WT and 41 in

FLNaKD). However, combining data from all the HT1080 WT

and FLNaKD experiments (even those not directly comparing

WT and FLNaKD on the same plate) revealed a small but

statistically significant increase in the percentage of non-motile

FLNaKD cells (WT 7.3% n = 175; FLNaKD 15.7% n = 116

p = 0.01). This suggests that loss of 95% of FLNa expression is

sufficient to produce a mild migration phenotype but that the

additional loss of FLNb is required to produce a more robust

effect, presumably because FLNb compensates for the lack of

FLNa [25]. Even in FLNabKD or ASB2a-expressing cells the

penetrance of the inhibition of motility was not complete and

many knockdown cells did migrate, furthermore the number of

motile cells increased over time; suggesting that FLNs are not

indispensable for initiation of migration but that they control the

propensity that a cell has to initiate migration. Thus while FLN-

deficient cells are capable of migration in any given time period

they are less likely to initiate migration. One possible explanation

for this is that the initiation of migration is controlled both by

internal and external signals and that loss of FLN can be overcome

by external stimuli such as polarization due to random asymmetry

in the coating surface.

We note that in our assay the definition of motility requires a

minimum displacement from the origin and accept that the

threshold at which we consider cells motile is somewhat arbitrary.

We have selected a nuclear centroid displacement of approxi-

mately one cell diameter to constitute a motile cell, as cells showing

this degree of displacement are clearly motile. However, use of a

smaller threshold yields a very similar conclusion, namely that loss

of FLN increases the percentage of non-motile cells. Our assay is

not dependent on cell speed and so helps us to discriminate

between truly motile cells and immotile cells that oscillate around

their origin due to small changes in nuclear position or error in

manual rendering of the nucleus on recorded images. Drawbacks

of this method are that very slowly moving cells may be scored as

non-motile because they fail to move far enough in the 5 h

recording and that once a cell starts to migrate it take some time,

depending on cell speed and persistence, to pass the displacement

threshold and class as motile so there will be a lag in classifying

cells, particularly slower cells, as motile. Overall we do not think

that these present major problems for the interpretation of our

data because as mentioned previously the results hold true for a

range of cell types using different displacement thresholds and

because we have based most of our conclusions on results obtained

after 5 hours of migration.

It is well established that FLNs are important actin crosslinking

proteins [5] and FLNa stabilizes the orthogonal actin networks in

membrane protrusions [26]. Given the role of FLNs in actin

crosslinking it is somewhat surprising that no major effects on F-

actin staining or shape of FLN knockdown, or ASB2a-expressing,

HT1080 cells were evident. However, FLNa knockout cells also

retained the ability to organise the actin cytoskeleton [19,20] and

stress fibres were largely unchanged in other ASB2a-expressing

lines [27] indicating that this is not an HT1080 specific effect. We

note that our knockdown lines are not fully FLN-deficient and

residual FLNa or FLNb along with up-regulated FLNc may

provide sufficient crosslinking activity so we do not exclude a role

for FLNs in regulation of the actin cytoskeleton. Indeed, double

knockdown FLNabKD cells show somewhat reduced F-actin

staining and in single FLNaKD cells stress fibres were thinner than

those in wild-type cells (Baldassarre and Calderwood unpublished

data). Loss of both FLNa and FLNb did however result in cells

that spread less well than wild-type cells and like initiation of cell

migration this required the IgFLNa19–21 domains suggesting that

the spreading and initiation of migration phenotypes may be

linked.

Currently we favour the idea that FLNs enhance initiation of

migration through interactions with associated signalling or

receptor molecules that govern early steps such as polarization,

membrane dynamics, contractility or symmetry breaking

[5,23,31,32]. In support of this idea, re-expression of full-length

FLNa rescues the defect in initiation of migration in FLNabKD

cells, but the phenotype is not rescued by the FLNaD19–21

mutant, which should still be capable of binding and crosslinking

F-actin [33]. This suggests that some of the more than 20 reported

FLN-binding proteins whose interactions sites overlap with

IgFLNa19–21, may contribute to initiation of migration. Future

work will seek to identify which of these are important. Notable

candidates include integrin [34], migfilin [35] and Rho family

GTPases [5]. However, as IgFLN domains can form domain-pairs

and so regulate neighbouring domains [36] the D19–21 mutation

could also exert its effects by modulating ligand binding to

adjacent IgFLN domains.

Although we detect clear effects of FLN-deficiency on initiation

of migration we do not find an evident role for FLNs in control of

cell speed as there was no consistent difference in the speed of

motile FLN expressing and deficient cells. We conclude that FLNs

are not important for determining cell speed but accept that low

levels of residual FLN in our cells means that we cannot

completely rule out a role for FLN in setting cell speed.

Our data provide an explanation for the apparently conflicting

results in the literature. Compensation by other FLN isoforms is a

likely explanation for the lack of major migratory defects in most

tissues of single knockout animals. Furthermore, as loss of FLNs

results in a defect, or delay, in initiation of migration rather than a

complete block, it might be predicted that tissues in which the

exact timing of migration is critical will be the most severely

effected by loss of FLNs. This appears to be the case in human

PVH patients.

Materials and Methods

Reagents and DNA constructs
Monoclonal anti-FLNa (Chemicon), monoclonal anti-vinculin

antibody (Sigma), monoclonal anti-Actin (Abcam) polyclonal anti-

GFP (Rockland), polyclonal anti-FLNc (Kinasource), anti-CD29

(Dako, Via Real Carpinteria CA), secondary anti-rabbit Alexa-568,

anti-rabbit and anti-goat Alexa-680 conjugated (Invitrogen, Carls-

bad CA), anti-mouse FITC conjugated (Pierce, Rockford, IL ), anti-

mouse IRDye 800 (LI-COR Biotechnology, Lincoln NB), phalloi-

din alexa-568 conjugated were purchased. Anti-FLNa and anti-

FLNb anti serum raised against the domains 19 to 21 of the

respective proteins and were previously described [27]. Fibronectin

(FN) solution 1 mg/ml was purchased from Sigma. FLNa-GFP and

FLNaD19–21 have been described previously [34,36], FLNb-GFP

was provided by A. Sonnenberg (Netherlands Cancer Centre,

Netherlands), [37] and FLNc-GFP was a gift from D. O. Fürst and

P. F. M. van der Ven (University of Bonn, Germany). GFP-tagged

knockdown resistant FLNa*GFP and FLNa*D19–21 were gener-

ated by QuikChange site-directed mutagenesis kit (Stratagene) and

confirmed by DNA sequencing. FLN-targeting shRNAs in the

pSM2c and pGIPZ vectors were purchased from OpenBiosystems.

GFP-ASB2a and GFP-ASB2D expression vectors were described

previously [27].

Cell Culture
Human fibrosarcoma HT1080 cells were cultured in Dulbecco’s

Modified Essential Medium (Invitrogen) containing 9% fetal
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bovine serum (Atlanta Biological, Lawrencewille, GA) and

penicillin/streptomycin (Invitrogen) and incubated at 37 uC in a

humidified atmosphere containing 5% CO2. Jurkat cells were

cultured in RPMI containing 9% fetal bovine serum, and

penicillin/streptomycin and incubated at 37uC in a humidified

atmosphere containing 5% CO2. For transfection, HT1080 cells

were seeded at 50% confluence and transfected 24 hours after

plating using Lipofectamine 2000 (Invitrogen) or seeded at 70%

confluence and transfected 8 hours later using calcium phosphate

protocols [38]. Jurkat cells in exponential growth phase were

electroporated using a BioRad Genepulser II and Ingenio

Electroporation Solution (Mirus Bio LLC) according to the

manufacturers’ instructions.

Immunofluorescence
Cells, seeded on either FN-coated coverslips or 3.5 cm Petri

dishes (Becton Dickinson), were fixed in 4% paraformaldehyde in

phosphate buffered saline (PBS) pH 7.4 for 15 minutes and

permeabilized for 30 min with PBS containing 0.02% saponin,

0.2% bovine serum albumin (BSA) and 50 mM NH4Cl. Cells were

then incubated with primary antibodies of interest or fluorophore-

conjugated phalloidin for 1 hour at room temperature, then, when

necessary, incubated with fluorophore-conjugated secondary

antibodies for 45 minutes washed again in PBS and coverslips

were mounted using the ProLongGold anti-fade mounting agent

(Invitrogen). Images were acquired on a Nikon TE2000 with a

106 or 406 objective using IPLab (version 3.5.2; Scanalytics,

Fairfax VA) software and analyzed using ImageJ (U. S. National

Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/;

versions 1.38–1.42).

Immunoblotting
Cells were lysed in RIPA buffer (0.35 M Tris pH 7.2, 0.5 M

NaCl, 10 mM MgCl2, 1% Triton X-100, 0.1% SDS, 0.5%

Sodium Deoxicolate) containing Protease Inhibitors Cocktail

Tablets (Roche). Lysates were run on SDS-PAGE, transferred

onto nitrocellulose membrane, blocked for 1 hour with 5% not-fat

milk in T-TBS (0.1 M Tris pH 7.4, 135 mM NaCl, 0.05%

Tween-20). Membranes were probed 1 hour at room temperature

or overnight at 4uC with primary antibody, washed in T-TBS and

incubated for 1 hour with fluorescent secondary antibodies. Signal

was detected using the Odyssey infrared imaging system (LI-COR

Biotechnology).

Generation of FLN knockdown cell lines
Polyclonal HT1080 FLNa knockdown cell lines were generated

by transfecting HT-1080 wild-type (WT) cells with pSM2 vector

expressing FLNa shRNA and selected using 2 mg/ml Puromycin

(Sigma). Single clone lines were obtained by limiting dilution of the

polyclonal population. Single clones were screened for FLNa

content by immunofluorescence staining with FLN antibodies in

96 well plates and the signal quantified on a fluorescence plate

reader (Safire). To correct for well to well variation in cell number

the FLN signal was normalized to actin. FLNb and FLNab

knockdown cell lines were generated by transfecting HT-1080 WT

and single cloned FLNaKD with pGIPZ vector expressing FLNb

shRNA. Polyclonal populations were selected using 1 mg/ml

Hygromycin (Invitrogen). Jurkat FLNa and FLNab knockdown

were generated as above with the following modification; since the

pGIPZ vector codes for GFP in addition to the shRNA cassette,

after establishing a polyclonal FLNabKD line cells were

FACSorted to select a homogeneous GFP-expressing population

allowing enrichment of knockdown cells.

Quantification of FLN expression levels
To quantify FLN expression in the knockdown cell lines,

increasing amounts of lysate from WT cells were run alongside

knockdown lysates after western blotting probed with anti-FLNa

or anti-FLNb antibodies and anti-vinculin and anti-actin antibod-

ies as loading controls. Membranes were scanned using the

Odyssey infrared imaging system. The signals were quantified

using ImageJ, and FLN knockdown calculated according to the

standard curve generated from the WT lysates after correction for

loading using the actin and vinculin signals.

Cytofluorometry
Cells were detached in trypsin EDTA, washed twice in PBS,

then incubated for 30 min at 0uC with anti-CD29 (integrin Beta1),

washed twice in PBS, incubated other 30 min at 0uC with anti-

mouse FITC conjugated, washed twice in PBS and analysed using

FACS Calibur machine (BD Bioscience).

Time-lapse migration assays
Cells were washed, detached and plated on 5 mg/ml (FN)

coated non-tissue culture treated 3.5 cm dishes. Grids were etched

on the bottom of the plate to aid location of cells following

staining. Both control and knockdown cells were seeded in the

same dish. Ten minutes after plating, unattached cells were

removed by washing. Starting 1 hour after plating cells are imaged

by phase contrast every 5 min for 5 hours, or for 15 hours, on a

Nikon TE2000 with a 106objective. The cells were kept at 37uC
using a home-designed thermostatic chamber. Cells were then

fixed with 4% PFA for 15 min and immuno-fluorescence staining

for FLNa or b was performed. Cells in the imaged field are

identified and FLN levels were measured using ImageJ by

multiplying the mean fluorescence, corrected for the background,

by the area of the cell.

Jurkat cells were analysed during their exponential growth

phase. A mix of WT and FLNabKD cells were plated on 3.5 cm

dishes coated with 10 mg/ml FN and washed 30 minutes after

plating then processed as above.

Analysis of the track of each cell in the field is quantified by

manual rendering of the nuclear profile in all frames allowing

localization of the coordinates of the nucleus centroid and

calculation of path length, displacement from origin, and average

speed (total path length/time). To allow rapid classification based

on these parameters, special macros were developed in the open

source software ImageJ. Cells entering in the field, exiting the field

or those that divide during the time-lapse recording were excluded

from the analysis. Error associated with manual rendering of

images at 106 can result in low speeds (up to 5 mm/hours) in

otherwise stationary cells. Thus in both knockdown and ASB2a
transfection experiments, cells were scored as ‘‘motile’’ if the

maximum displacement from the origin was $25 mm in HT1080

and $9 mm in Jurkat cells (,cell radius). Cell area and circularity

were measured by manually rendering the cells in the phase

images. Graphing and statistical analyses were performed using

KaleidaGraph 4.02 (Synergy Software, Reading, PA). All p values

were calculated using t-test (populations were of equal variance)

or, where indicated, paired t-test.

Supporting Information

Table S1 Identification and label-free quantification of FLNa,

FLNb, FLNc and Talin 1 in myeloid leukaemia cells expressing

wild-type or an E3 ubiquitin-ligase defective mutant of ASB2

Found at: doi:10.1371/journal.pone.0007830.s001 (0.04 MB

DOC)
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Movie S1 Cells were suspended, washed, and HT1080 WT and

FLNaKD mixed before seeding onto 5 mg/ml FN-coated plates,

10 minutes after plating unattached cells were washed away and

imaging was initiated 1 hour after plating at 1 frame/5 minutes for

5 hours. At the end of the time-lapse recording, cells were fixed

and stained for FLNa expression. FLNaKD cells were outlined in

the last frame and in the immunofluorescence image. Bar

= 20 mm.

Found at: doi:10.1371/journal.pone.0007830.s002 (0.90 MB

MOV)

Movie S2 Cells were suspended, washed, and HT1080 WT and

FLNbKD mixed before seeding onto 5 mg/ml FN-coated plates,

10 minutes after plating unattached cells were washed away and

imaging was initiated 1 hour after plating at 1 frame/5 minutes.

At the end of the time-lapse recording, cells were fixed and stained

for FLNb expression. FLNbKD cells were outlined in the last

frame and in the immunofluorescence image. Bar = 20 mm

Found at: doi:10.1371/journal.pone.0007830.s003 (0.86 MB

MOV)

Movie S3 Cells were suspended, washed, and HT1080

FLNaKD and FLNabKD mixed before seeding onto 5 mg/ml

FN-coated plates, 10 minutes after plating unattached cells were

washed away and imaging was initiated 1 h after plating at 1

frame/5 minutes for 5 hours. At the end of the time-lapse

recording, cells were fixed and stained for FLNb expression.

FLNabKD cells were outlined in the last frame and in the

immunofluorescence image. Bar = 20 mm.

Found at: doi:10.1371/journal.pone.0007830.s004 (0.80 MB

MOV)

Movie S4 HT1080 cells were transfected with ASB2a. After

20 hours cells were suspended, washed, and seeded onto 5 mg/ml

FN-coated plates, 10 minutes after plating unattached cells were

washed away and imaging was initiated 1 hour after plating at 1

frame/5 minutes for 5 hours. At the end of the time-lapse

recording, cells were fixed and stained for FLNa expression.

ASB2a expressing cells were outlined in the last frame and in the

immunofluorescence image. Bar = 20 mm.

Found at: doi:10.1371/journal.pone.0007830.s005 (0.96 MB

MOV)

Movie S5 WT and FLNabKD Jurkat cells were mixed before

seeding onto 10 mg/ml FN-coated plates, 20 minutes after plating

unattached cells were washed away and imaging was initiated 1 h

after plating at 1 frame/5 minutes for 5 hours. At the end of the

time-lapse recording cells were imaged in fluorescence to

discriminate FLNabKD (expressing GFP) from WT cells.

FLNabKD cells were outlined in the last frame Bar = 20 mm..

Found at: doi:10.1371/journal.pone.0007830.s006 (0.12 MB

MOV)
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