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1 Introduction

The current document contains the proofs of the COMMA 2014 submission “Strong Admissibility re-
visited”. It does not duplicate any of the definitions or existing proofs from the COMMA submission.
Hence, this document should be read in conjunction with it.

One thing to keep in mind when reading the current document isthat its structure is quite different
from that of the COMMA submission. The COMMA submission starts with the extension-based
definition of strong admissibility (“Strongly Admissible Sets”) and then subsequently discusses the
labelling-based version of strong admissibility (“Strongly Admissible Labellings”). This was done
because the concept of strong admissibility already existed in its extension-based form (see the AIJ
2007 paper of Baroni and Giacomin) and we wanted to start withsomething people might already
familiar with. In the current technical report, however, westart with the labelling-based version of
strong admissibility, before going to the extension-basedversion of strong admissibility. This is done
because we first need to establish some results for the labelling-based version of strong admissibility,
which can then later be applied also for proving properties of the extension-based version of strong
admissibility. For instance, the equivalence of Baroni andGiacomin’s notion of a strongly admissible
set and our own notion of a strongly admissible set (Theorem 1in the COMMA submission) is proved
using strongly admissible labellings as an intermediary.

2 Proofs

The idea of a partial min-max numbering is to have some form ofmin-max numberings that are not
completely “ready”, meaning that not everyin or out-labelled argument is already numbered (some
are still unnumbered) but thosein and out-labelled arguments thatare already numbered have a
correct min-max number, as far as the current partial numbering is concerned. In this way, partial
min-max numberings serve as intermediate results of the iterative numbering procedure sketched in
the COMMA submission and made fully formal in the current technical report.

Definition 1 (partial min-max numbering). Let Lab be an admissible labelling of argumentation
framework(Ar , att). A partial min-max numberingis a partial functionMMLab : in(Lab) ∪
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out(Lab) → N such that for eachA ∈ Ar that is numbered byMMLab (that is, for which
MMLab(A) is defined) it holds that:

• if Lab(A) = in then allout-labelled attackers ofA are numbered byMMLab andMMLab(A) =
max({MMLab(B) | B is anout-labelled attacker ofA}) + 1

• if Lab(A) = out then there is at least onein-labelled attacker ofA that is numbered by
MMLab andMMLab(A) = min({MMLab(B) | B is anin-labelled attacker ofA that is
numbered byMMLab}) + 1

Definition 2 (ExtendIn/ExtendOut). LetLab be an admissible labelling andMMSLab be the set
of all partial functionsMMLab : in(Lab) ∪ out(Lab) → N.
We define the functionExtendIn : MMSLab → MMSLab as follows:
ExtendIn(MMLab) = {(A,numberA) | A is anin-labelled argument not numbered byMMLab,
all out-labelled attackers ofA are numbered byMMLab andnumberA = max({MMLab(B) | B
is anout-labelled attacker ofA that is numbered byMMLab}) + 1}
We define the functionExtendOut : MMSLab → MMSLab as follows:
ExtendOut(MMLab) = {(A,numberA) | A is anout-labelled argument not numbered byMMLab,
there exists anin-labelled attacker ofA that is numbered byMMLab andnumberA = min({MMLab(B) |
B is anin-labelled attacker ofA that is numbered byMMLab}) + 1}

Definition 3 (numbering run). Given an admissible labellingLab, a numbering runis a sequence
MM0

Lab,MM1
Lab,MM2

Lab, . . . such that:

• MM0
Lab is the empty partial min-max numbering (that is, the partialmin-max numbering

where each argument is unnumbered)

• for each eveni ≥ 0, MMi+1
Lab

= MMi
Lab ∪ ExtendIn(MMi

Lab)

• for each oddi ≥ 1, MMi+1
Lab = MMi

Lab ∪ ExtendOut(MMi
Lab)

To illustrate these definitions, consider again the argumentation framework of Figure 1 of the
COMMA submission, and the grounded labelling thereof.
MM0

Lab is the empty numbering (so∅)
MM1

Lab = MM0
Lab ∪ ExtendIn(MM0

Lab) = ∅ ∪ {(A, 1), (D, 1)}
MM2

Lab = MM1
Lab ∪ ExtendOut(MM1

Lab) = {(A, 1), (D, 1)} ∪ {(B, 2), (E, 2)}
MM3

Lab = MM2
Lab ∪ ExtendIn(MM2

Lab) = {(A, 1), (D, 1), (B, 2), (E, 2)} ∪ {(C, 3), (F, 3)}
MM4

Lab = MM3
Lab ∪ ExtendOut(MM3

Lab) = {(A, 1), (D, 1), (B, 2), (E, 2), (C, 3), (F, 3)} ∪ ∅
MM5

Lab = MM4
Lab ∪ ExtendIn(MM4

Lab) = {(A, 1), (D, 1), (B, 2), (E, 2), (C, 3), (F, 3)} ∪ ∅
It can be verified that for anyi ≥ 3, MMi

Lab = MM3
Lab.

We would like to prove that everyMMi
Lab in the numbering run is a partial min-max numbering.

A possible strategy for doing so would be to use induction. The basis would be the observation that
MM0

Lab is a partial min-max numbering. The induction step would then have to handle two cases:
one wherei is even and one wherei is odd. For eveni, we would have to show thatMMi+1

Lab =
MMi

Lab ∪ ExtendIn(MMi
Lab) is a correct partial min-max numbering, whereas for oddi, we

would have to show thatMMi+1
Lab = MMi

Lab ∪ ExtendOut(MMi
Lab) is a correct partial min-max

numbering. In both cases, the induction hypothesis is thatMMi
Lab is already a correct min-max

numbering.
The problem of such an approach, however, is that the induction hypothesis is not strong enough.

For instance, consider the grounded labelling of the argumentation framework of Figure 1 of the

2



COMMA submission. Here,MMLab = {(A, 1), (B, 2), (C, 3), (E, 4)} is a correct partial min-max
numbering, butMMLab∪ExtendIn(MMLab) = {(A, 1), (B, 2), (C, 3), (E, 4)}∪{(D, 1), (F, 5)}
is not a correct min-max numbering, becauseout-labelled argumentE is numbered with4, whereas
the minimal min-max number of itsin-labelled attackers that are numbered is1, so it should have
been numbered with2 instead! So the bare fact that someMMn

Lab is a partial min-max numbering is
not sufficient to prove thatMMi+1

Lab is also a partial min-max numbering. Clearly, we need a stronger
induction hypothesis.

As a first observation towards such a stronger induction hypothesis, it can be observed that the
above mentioned min-max numbering{(A, 1), (B, 2), (C, 3), (E, 4)} cannot actually occur in a num-
bering run, as the same step that numberedA with 1 would also have numberedD with 1. If we look
at the actual numbering run, we observe that each time we go from MMi

Lab to MMi+1
Lab, it holds

thatall possiblei + 1 numbers are generated, not just some of them. This leads to the concept ofn-
completeness. The idea is that each unnumbered argument that could be numbered given the existing
min-max numbers, would have a correct min-max number of bigger thann. That is, up ton there are
no missing numbers.

Definition 4 (n-complete). LetLab be an admissible labelling of argumentation framework(Ar , att).
A partial min-max numberingMMLab is calledn-completeiff

• for each unnumberedin-labelled argument of which allout-labelled attackers are already
numbered, the MAX+1 value of itsout-labelled attackers is bigger thann

• for each unnumberedout-labelled argument that has anin-labelled attacker that is already
numbered, the MIN+1 value of itsin-labelled attackers is bigger thann

Given a set of argumentsArgs , the MAX+1 value ofArgs is max({MMLab(A) | A ∈ Args}) + 1,
whereas the MIN+1 value ofArgs ismin({MMLab(A) | A ∈ Args}+ 1.

So the idea ofn-completeness is that the numbering is already “complete” for numbers up ton.
It can be verified that in the earlier mentioned numbering run, eachMMi

Lab is in fact i-complete. It
can also be observed that, as a general property,MMi

Lab ⊆ MMi+1
Lab for eachi ≥ 0. Moreover, in

the earlier mentioned numbering run, it holds that eachadditionalnumber generated byMMi+1
Lab (so

eachj such that(A, j) ∈ MMi+1
Lab \MMi

Lab for some argumentA) is i+ 1. This turns out to be a
general property, as we will see.

We are now ready to sketch the structure of the induction proof. The idea is first, as a basis,
to observe thatMM0

Lab is a correct min-max numbering. Then, we need two different induction
steps, one ofExtendIn where for some eveni we go fromMMi

Lab to MMi+1
Lab

= MMi
Lab ∪

ExtendIn(MMi
Lab), and one forExtendOutwhere for some oddi we go fromMMi

Lab toMMi+1
Lab

=
MMi

Lab ∪ ExtendOut(MMi
Lab). For both induction steps, we apply an induction hypothesisthat

for a giveni it holds that:

1. MMi
Lab is a correct partial min-max numbering,

2. for eachj ∈ {1, . . . , i}, each “new” number inMMj
Lab

is j, and

3. MMi
Lab is i-complete

Lemma 1. LetMM0
Lab,MM1

Lab,MM2
Lab, . . . be a numbering run of an admissible labellingLab

and leti ≥ 0 be an even number. If

(1) MMi
Lab is a correct partial min-max numbering,
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(2) for eachj ∈ {1, . . . , i} it holds that for each(A, k) ∈ MMj
Lab \ MMj−1

Lab whereA is an
argument,k = j, and

(3) MMi
Lab is i-complete

then

(1’) MMi+1
Lab

is a correct partial min-max numbering,

(2’) for eachj ∈ {1, . . . , i + 1} it holds that for each(A, k) ∈ MMj
Lab \MMj−1

Lab whereA is an
argument,k = j, and

(3’) MMi+1
Lab is (i+ 1)-complete

Proof. We first observe that sincei is even,MMi+1
Lab

= MMi
Lab ∪ ExtendIn(MMi

Lab).

(1’) We need to show thatMMi+1
Lab is a correct partial min-max numbering. LetA be an arbitrary

argument that is numbered byMMi+1
Lab. We distinguish two cases:

• Lab(A) = in. We then need to show that allout-labelled attackers ofA are numbered by
MMi+1

Lab and thatMMi+1
Lab(A) is the MAX+1 value of itsout-labelled attackers. Given

thatMMi+1
Lab

= MMi
Lab ∪ ExtendIn(MMi

Lab), we distinguish two subcases:

1. A was already numbered byMMi
Lab. SinceMMi

Lab is a correct partial min-max
numbering (induction hypothesis (1)) it follows that allout-labelled attackers ofA
are numbered byMMi

Lab and thatMMi
Lab(A) is the MAX+1 value of these. As

MMi
Lab ⊆ MMi

Lab, it follows that MMi+1
Lab

(A) = MMi
Lab(A) and that the

MAX+1 value of theout-labelled attackers ofA in MMi+1
Lab

is the same as the
MAX+1 value of theout-labelled attackers ofA in MMi

Lab. Hence,A is correctly
numbered byMMi+1

Lab
.

2. A as not numbered byMMi
Lab but became numbered byExtendIn(MMi

Lab).
However, by definition ofExtendIn, this implies thatA is correctly numbered by
MMi+1

Lab.

• Lab(A) = out. We then need to show that there is at least onein-labelled attacker
of A that is numbered byMMi+1

Lab
and thatMMi+1

Lab
(A) is the MIN+1 value of allin-

labelled attackers ofA that are numbered byMMi+1
Lab

. Given thatMMi+1
Lab

= MMi
Lab∪

ExtendIn(MMi
Lab), together with the fact thatExtendIn does not number anyout-

labelled arguments, it then follows thatA is numbered byMMi
Lab. SinceMMi

Lab is
a correct partial min-max numbering (induction hypothesis(1)) it follows that there is at
least onein-labelled attacker ofA that is numbered byMMi

Lab and thatMMi
Lab(A) is

the MIN+1 value of thesein-labelled attackers ofA that are numbered byMMi
Lab. As

MMi
Lab ⊆ MMi+1

Lab, it holds thatMMi+1
Lab(A) = MMi

Lab(A), so it suffices to prove
that the MIN+1 value of allin-labelled attackers ofA that are numbered byMMi+1

Lab is
still the same as the MIN+1 value of allin-labelled attackers ofA that are numbered by
MMi

Lab. For this, we ask ourselves two questions:

– Can the MIN+1 value of thein-labelled attackers ofA that are numbered byMMi+1
Lab

bebigger than the MIN+1 value of thein-labelled attackers ofA that are numbered
by MMi

Lab ?
SinceMMi

Lab ⊆ MMi+1
Lab

, it follows that the set ofin-labelled attackers ofA that
are numbered byMMi+1

Lab
is asupersetof the set ofin-labelled attackers ofA that
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are numbered byMMi
Lab, so the minimal element of the former set can never be

bigger than the minimal element of the latter set, so the answer is no.

– Can the MIN+1 value of thein-labelled attackers ofA that are numbered byMMi+1
Lab

besmallerthan the MIN+1 value of thein-labelled attackers ofA that are numbered
by MMi

Lab ?
Suppose, towards a contradiction, that this would be the case. SinceMMi+1

Lab =
MMi

Lab ∪ ExtendIn(MMi
Lab), this means thatExtendIn(MMi

Lab) produced a
number that islower than that of each of thein-labelled attackers ofA that are num-
bered byMMi

Lab. Since the maximal number that can possibly occur inMMi
Lab is

i (induction hypothesis (2)) this implies thatExtendIn(MMi
Lab) produced a num-

ber smaller thani. But thenMMi
Lab is not i-complete, which is in contradiction

with induction hypothesis (3). Therefore the answer is again no.

(2’) It suffices to show that for each(A, k) ∈ MMi+1
Lab \ MMi

Lab it holds thatk = i + 1. That
is, we need to show that for each(A, k) ∈ ExtendIn(MMi

Lab) it holds thatk = i + 1. Let
(A, k) ∈ ExtendIn(MMi

Lab). We ask ourselves two questions:

• Cank besmallerthani+ 1?
If this is the case, then (Definition 2)A is not numbered byMMi

Lab, all its out-labelled
attackers are numbered byMMi

Lab and their MAX+1 value is smaller thani + 1, so
smaller or equal toi. But this implies thatMMi

Lab is noti-complete, which is in contra-
diction with induction hypothesis (3). So the answer is no.

• Cank bebigger thani+ 1?
If this is the case, then (Definition 2)A is not numbered byMMi

Lab, all its out-labelled
attackers are numbered byMMi

Lab and their MAX+1 value is bigger thani+1. From the
definition of MAX+1, this implies thatA has anout-labelled attacker that is numbered by
MMi

Lab with a min-max number bigger thani. This is in contradiction with induction
hypothesis (2), that implies that each min-max number inMMi

Lab is less or equal toi.
So the answer is no.

(3’) We need to show thatMMi+1
Lab is (i + 1)-complete. For this, we need to show two things

(Definition 4).

• if A is an unnumberedin-labelled argument of which all itsout-labelled attackers are
numbered byMMi+1

Lab
, then the MAX+1 value of theseout-labelled attackers is bigger

thani+ 1.
Let A be an unnumbered (byMMi+1

Lab
) argument of which all itsout-labelled attackers

are numbered. From the fact thatMMi
Lab ⊆ MMi+1

Lab
it follows thatA is also unnum-

bered byMMi
Lab. From the fact thatMMi+1

Lab = MMi
Lab ∪ ExtendIn(MMi

Lab),
together with the fact thatExtendIn does not number anyout-labelled arguments, it
follows that all theout-labelled attackers ofA are also numbered byMMi

Args
. But this

would imply thatA is numbered byExtendIn(MMi
Lab), and therefore (sinceMMi+1

Lab
=

MMi
Lab ∪ ExtendIn(MMi

Lab)) thatA is numbered byMMi+1
Lab

. Contradiction.

• if A is an unnumberedout-labelled argument that has anin-labelled attacker that is num-
bered byMMi+1

Lab
, then the MIN+1 value of all itsin-labelled attackers that are numbered

by MMi+1
Lab

is bigger thani+ 1.
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LetA be an unnumbered (byMMi+1
Lab) out-labelled argument that has anin-labelled at-

tacker that is numbered byMMi+1
Lab

. From the fact thatMMi
Lab ⊆ MMi+1

Lab
, it follows

thatA is also unnumbered byMMi
Lab. We distinguish two cases:

1. A has anin-labelled attacker that is numbered byMMi
Lab. Then, from the fact that

MMi
Lab is i-complete (induction hypothesis (3)) it follows that the MIN+1 value

of its in-labelled attackers that are numbered byMMi
Lab is bigger thani. This

means that the min-max number of the lowest numberedin-attacker ofA (sayB)
is bigger thani − 1, so bigger or equal toi. However, we recall thati is an even
number, and that each numberedin-labelled argument inMMi

Lab has an odd mix-
max number (this follows from induction hypothesis (2), together with the definition
of the numbering run). This then implies that the min-max number ofB is bigger or
equal toi+ 1. Furthermore, anyin-labelled attacker ofA that became numbered by
ExtendIn(MMi

Lab) (sayC) will have a min-max number ofi+ 1 (this is what we
have just observed in (2’)). This means that the lowest numberedin-labelled attacker
of A in MMi+1

Lab
is still bigger or equal toi + 1. This then implies that the MIN+1

value of allin-labelled attackers ofA in MMi+1
Lab is bigger or equal toi + 2, so

bigger thani+ 1, thus satisfying the requirement ofi-completeness.

2. A does not have anin-labelled attacker that is numbered byMMi
Lab. Then, from

the fact thatA does have anin-labelled attacker that is numbered byMMi+1
Lab =

MMi
Lab ∪ ExtendIn(MMi

Lab), it then follows that everyin-labelled attacker of
A that is numbered byMMi+1

Lab is numbered byExtendIn(MMi
Lab). From the

earlier obtained result (2’) it then follows that everyin-labelled attacker ofA that is
numbered byMMi+1

Lab
is numbered with the min-max numberi+1. This implies that

the MIN+1 value of thein-labelled attackers ofA that are numbered byMMi+1
Lab

is
i+ 2, which is bigger thani+ 1, thus satisfying the requirement ofi-completeness.

Lemma 2. LetMM0
Lab,MM1

Lab,MM2
Lab, . . . be a numbering run of an admissible labellingLab

and leti ≥ 0 be an odd number. If

(1) MMi
Lab is a correct partial min-max numbering,

(2) for eachj ∈ {1, . . . , i} it holds that for each(A, k) ∈ MMj
Lab \ MMj−1

Lab whereA is an
argument,k = j, and

(3) MMi
Lab is i-complete

then

(1’) MMi+1
Lab is a correct partial min-max numbering,

(2’) for eachj ∈ {1, . . . , i + 1} it holds that for each(A, k) ∈ MMj
Lab

\MMj−1

Lab
whereA is an

argument,k = j, and

(3’) MMi+1
Lab is (i+ 1)-complete

Proof. We first observe that sincei is odd,MMi+1
Lab = MMi

Lab ∪ ExtendOut(MMi
Lab).

(1’) We need to show thatMMi+1
Lab

is a correct partial min-max numbering. LetA be an arbitrary
argument that is numbered byMMi+1

Lab
. We distinguish two cases.
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• Lab(A) = in. We then need to show that allout-labelled attackers ofA are num-
bered byMMi+1

Lab
and thatMMi+1

Lab
(A) is the MAX+1 value of itsout-labelled attack-

ers. Given the fact thatMMi+1
Lab

= MMi
Lab ∪ ExtendOut(MMi

Lab) and the fact that
ExtendOut(MMi

Lab) does not number anyin-labelled arguments, it follows thatA is
numbered byMMi

Lab. From the fact thatMMi
Lab is a correct partial min-max number-

ing (induction hypothesis (1)), it follows that allout-labelled attackers ofA are numbered
by MMi

Lab. From the fact thatMMi
Lab ⊆ MMi+1

Lab it then follows that all theout-
labelled attackers ofA are also numbered byMMi+1

Lab and that the MAX+1 value of
theseout-labelled attackers ofA is the same underMMi+1

Lab as underMMi
Lab. Hence,

from the fact thatA is correctly numbered underMMi
Lab it follows thatA is correctly

numbered underMMi+1
Lab.

• Lab(A) = out. We then need to show thatA has at least onein-labelled attacker that
is numbered byMMi+1

Lab
and that and thatMMi+1

Lab
(A) is the MIN+1 value of thein-

labelled attackers ofA that are numbered byMMi+1
Lab

. Given thatMMi+1
Lab

= MMi
Lab∪

ExtendOut(MMi
Lab), we distinguish two subcases.

1. A was already numbered byMMi
Lab. From the fact thatMMi

Lab is a correct
partial min-max numbering, it then follows that there is at least onein-labelled at-
tacker ofA that is numbered byMMi

Lab, andMMi
Lab(A) is the MIN+1 value

of the in-labelled attackers ofA that are numbered byMMi
Lab. As MMi

Lab ⊆
MMi+1

Lab, it follows that MMi+1
Lab(A) = MMi

Lab(A). Moreover, the fact that
ExtendOut(MMi

Lab) does not number anyin-labelled arguments implies that the
MIN+1 value of thein-labelled attackers ofA that are numbered byMMi+1

Lab is the
same as the MIN+1 value of thein-labelled attackers ofA that are numbered by
MMi

Lab. Hence,A is still correctly numbered byMMi+1
Lab

.
2. A is numbered byExtendOut(MMi

Lab). From the definition ofExtendOut, it then
follows thatA has at least onein-labelled attacker that is numbered byMMi

Lab, and
thatExtendOut(MMi

Lab)(A) is the MIN+1 value of thein-labelled attackers ofA
that are numbered byMMi

Lab. Hence,A is correctly numbered byMMi+1
Lab.

(2’) It suffices to show that for each(A, k) ∈ MMi+1
Lab

\MMi
Lab it holds thatk = i + 1. That is,

we need to show that for each(A, k) ∈ ExtendOut(MMi
Lab) it holds thatk = i + 1. Let

(A, k) ∈ ExtendOut(MMi
Lab). We ask ourselves two questions:

• Cank besmallerthani+ 1?
If this is the case, then (Definition 2)A is not numbered byMMi

Lab, and it has anin-
labelled attacker that is numbered byMMi

Lab, and the MIN+1 value of itsin-labelled
attackers that are numbered byMMi

Lab is smaller thani + 1, so smaller or equal toi.
But this means thatMMi

Lab is not i-complete, which is in contradiction with induction
hypothesis (3). So the answer is no.

• Cank bebigger thani+ 1?
If this is the case, then (Definition 2)A is not numbered byMMi

Lab and it has anin-
labelled attacker that is numbered byMMi

Lab and the MIN+1 value of itsin-labelled
attackers that are numbered byMMi

Lab is bigger thani + 1. From the definition of
MIN+1, this then implies thatA has anin-labelled attacker that is numbered byMMi

Lab

with a min-max number that is bigger thani. This is in contradiction with induction
hypothesis (2), that implies that each min-max number inMMi

Lab is less or equal toi.
So the answer is no.
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(3’) We need to show thatMMi+1
Lab is (i + 1)-complete. For this, we need to show two things

(Definition 4).

• If A is an unnumberedin-labelled argument of which all itsout-labelled attackers are
numbered byMMi+1

Lab, then the MAX+1 value of theseout-labelled attackers is bigger
thani+ 1.
Let A be an unnumberedin-labelled argument of which all itsout-labelled attackers are
numbered byMMi+1

Lab. We distinguish two subcases.

1. All the out-labelled attackers ofA were also numbered byMMi
Lab.

Then, from the fact thatMMi
Lab is i-complete (induction hypothesis (3)) it follows

that the MAX+1 value of these attackers isbigger than i. This (by definition of
MAX+1) means that the min-max number of the highest numberedout-labelled at-
tacker ofA (sayB) is bigger thani − 1, so bigger or equal toi. However, we recall
that i is an odd number, and that eachout-labelled argument that is numbered by
MMi

Lab has min-max number that is even (this follows from inductionhypothesis
(2), together with the definition of a numbering run). This then implies that the min-
max number ofB is bigger than i, so that the MAX+1 value of theout-labelled
attackers ofA that are numbered byMMi

Lab is bigger thani + 1. From the fact
thatMMi

Lab ⊆ MMi+1
Lab it then follows that the MAX+1 value of theout-labelled

attackers ofA that are numbered byMMi+1
Lab is also bigger or thani + 1, which

satisfies the requirement ofi-completeness.

2. At least oneout-labelled attacker ofA (sayB) is numbered byExtendOut(MMi
Lab).

Then, from (2’) it follows thatMMi+1
Lab

(B) = i + 1. This then implies that the
MAX+1 value of theout-labelled attackers ofA that are numbered byMMi+1

Lab is
bigger or equal toi + 2, so bigger thani + 1, which satisfied the requirement of
i-completeness.

• If A is an unnumberedout-labelled argument of which at least onein-labelled attacker
is numbered byMMi+1

Lab, then the MIN+1 value of thein-labelled attackers ofA that are
numbered byMMi+1

Lab is bigger thani+ 1.
LetA be an unnumberedout-labelled argument of which at least onein-labelled attacker
(sayB) is numbered byMMi+1

Lab. SinceMMi+1
Lab = MMi

Lab ∪ ExtendOut(MMi
Lab)

andExtendOut(MMi
Lab) does not number anyin-labelled arguments, it follows thatB

was also numbered byMMi
Lab. But from the definition ofExtendOut (Definition 2) it

would then follow thatA is numbered byMMi+1
Lab

. Contradiction.

Theorem 1. Let MM0
Lab,MM1

Lab,MM2
Lab, . . . be a numbering run of an admissible labelling

Lab. For everyi ≥ 0, MMi
Lab is a partial min-max numbering

Proof. We prove this by induction overi.

basis We observe that fori = 0 it trivially holds that
(1) MMi

Lab is a correct partial min-max numbering,
(2) for eachj ∈ {1, . . . , i} = ∅ it holds that for each(A, k) ∈ MMj

Lab \MMj−1
Lab whereA is

an argument,k = j, and
(3) MMi

Lab is i-complete.
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step Suppose that for a giveni ≥ 0 it holds that
(1) MMi

Lab is a correct partial min-max numbering,
(2) for eachj ∈ {1, . . . , i} it holds that for each(A, k) ∈ MMj

Lab \MMj−1

Lab whereA is an
argument,k = j, and
(3) MMi

Lab is i-complete.
We have to prove that:
(1’) MMi+1

Lab
is a correct partial min-max numbering,

(2’) for eachj ∈ {1, . . . , i+1} it holds that for each(A, k) ∈ MMj
Lab \MMj−1

Lab whereA is
an argument,k = j, and
(3’) MMi+1

Lab is (i+ 1)-complete.
If i is even, this result follows from Lemma 1. Ifi is odd, this result follows from Lemma 2.

Definition 5. LetMM∗
Lab be a partial min-max numbering of admissible labellingLab. We define

the functionAddInf(MM∗
Lab) as{(A,∞) | A is unnumbered byMM∗

Lab}.

Theorem 2. LetLab be an admissible labelling of argumentation framework(Ar , att) and letMM0
Lab,

MM1
Lab, MM2

Lab, . . . be a numbering run ofLab. LetMM∗
Lab = ∪∞

i=0MMi
Lab andMMLab =

MM∗
Lab ∪ AddInf(MM∗

Lab). It holds thatMMLab is a min-max numbering ofLab.

Proof. We first observe thatMM∗
Lab is a partial min-max numbering withExtendIn(MM∗

Lab) =
ExtendOut(MM∗

Lab) = ∅. LetA ∈ in(Lab) ∪ out(Lab). We distinguish two cases:

1. Lab(A) = in. We distinguish two subcases.

(a) MMLab(A) ∈ N. In that case,A is numbered byMM∗
Lab. From the fact thatMM∗

Lab

is a partial min-max numbering, it follows thatMM∗
Lab(A) is the MAX+1 value of all

its out-labelled attackers. SinceMM∗
Lab ⊆ MMLab, it follows thatMMLab(A) =

MM∗
Lab(A) and the MAX+1 value of all theout-labelled attackers ofA is the same

in MMLab as inMM∗
Lab. Therefore,MMLab(A) is the MAX+1 value of all theout-

labelled attackers ofA (underMMLab). Hence, Definition 9 of the COMMA submission
(first bullet) is satisfied.

(b) MMLab(A) = ∞. In that case,A is numbered byAddInf(MM∗
Lab), so A is not

numbered byMM∗
Lab. This, together with the fact thatExtendIn(MM∗

Lab) = ∅,
implies that not allout-labelled attackers ofA are numbered byMM∗

Lab. Let B be
an out-labelled attacker ofA that is not numbered byMM∗

Lab. SinceMMLab =
MM∗

Lab ∪ AddInf(MM∗
Lab), it then follows thatMMLab(B) = ∞. Hence, the

MAX+1 value of theout-labelled attackers ofA is ∞ (underMMLab). Hence, Defi-
nition 9 of the COMMA submission (first bullet) is satisfied.

2. Lab(A) = out. We distinguish two subcases.

(a) MMLab(A) ∈ N. In that case,A is numbered byMM∗
Lab. From the fact thatMM∗

Lab

is a partial min-max numbering, it follows thatA has at least onein-labelled attacker
that is numbered byMM∗

Lab andMM∗
Lab is the MIN+1 value of thein-labelled at-

tackers ofA that are numbered byMM∗
Lab. SinceMM∗

Lab ⊆ MMLab, it follows
thatMMLab(A) = MM∗

Lab(A). Also, anyin-labelled attacker ofA that is unnum-
bered byMM∗

Lab will be numbered with∞ by MMLab. Therefore, the MIN+1 value
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of the in-labelled attackers ofA underMMLab will be the same as the MIN+1 value
of all numberedin-labelled attackers ofA underMM∗

Lab. Hence, Definition 9 of the
COMMA submission (second bullet) is satisfied.

(b) MMLab(A) = ∞. In that case,A is numbered byAddInf(MM∗
Lab), so A is not

numbered byMM∗
Lab. This, together with the fact thatExtendOut(MM∗

Lab) = ∅,
implies that eachin-labelled attacker ofA is unnumbered byMM∗

Lab. This also implies
that eachin-labelled attacker ofA is numbered byAddInf(MM∗

Lab), so it is numbered
with ∞ by MMLab. This means that the MIN+1 value of thein-labelled attackers ofA
underMMLab is ∞. Hence, Definition 9 of the COMMA submission (second bullet)is
satisfied.

Now that we have proved that the outcome of the numbering procedure is a correct min-max
numbering, we proceed to prove that this min-max numbering is unique.

Theorem 3. LetLab be an admissible labelling of argumentation framework(Ar , att) and letMM0
Lab,

MM1
Lab, MM2

Lab, . . . be a numbering run ofLab. LetMM∗
Lab = ∪∞

i=0MMi
Lab andMMLab =

MM∗
Lab∪AddInf(MM∗

Lab). For any min-max numberingMM′
Lab ofLab, it holds thatMM′

Lab =
MMLab.

Proof. Let MM′
Lab be a min-max numbering ofLab. We first show that for everyA ∈ Ar , if

MMLab(A) ∈ N thenMMLab(A) = MM′
Lab(A). We do this by inductively proving that for each

i ≥ 0 it holds that:
(a)MMi

Lab ⊆ MM′
Lab, and

(b) for each argument B of whichMM′
Lab(B) ∈ {1, . . . , i}, MMi

Lab(B) = MM′
Lab(B)

basis (i = 0) SinceMM0
Lab = ∅ it trivially holds thatMM0

Lab ⊆ MM′
Lab. Also, it trivially holds

that for each argumentB of whichMM′
Lab(B) ∈ ∅, MMi

Lab(B) = MM′
Lab(B).

step (ExtendIn) (a) Suppose that for some eveni ≥ 0 it holds thatMMi
Lab ⊆ MM′

Lab. We now
prove that alsoMMi+1

Lab ⊆ MM′
Lab. Let A be an arbitrary argument that is numbered by

MMi+1
Lab. Sincei is even, it holds thatMMi+1

Lab = MMi
Lab ∪ ExtendIn(MMi

Lab), so we
can distinguish two cases:

1. A is numbered byMMi
Lab. Then from induction hypothesis (a) it directly follows

that MMi
Lab(A) = MM′

Lab(A), so (sinceMMi
Lab ⊆ MMi+1

Lab) MMi+1
Lab(A) =

MM′
Lab(A).

2. A is numbered byExtendIn(MMi
Lab). This implies that all itsout-labelled attackers

are numbered byMMi
Lab. From induction hypothesis (a) it then follows that the MAX+1

value of theout-labelled attackers ofA underMM′
Lab is the same as underMMi

Lab.
Hence, the fact thatMMi+1

Lab andMM′
Lab are (partial) min-max labellings, it follows

thatMMi+1
Lab(A) = MM′

Lab(A).

(b) LetB be an argument of whichMM′
Lab(B) ∈ {1, . . . , i+1}. As induction hypothesis (b)

tells us that for eachB with MM′
Lab(B) ∈ {1, . . . , i} it holds thatMMi

Lab(B) = MM′
Lab

andMMi
Lab ⊆ MMi+1

Lab
, we only have to consider the case ofi+ 1.

So letB be an argument withMM′
Lab(B) = i+ 1. Sincei is even, it holds thatB is labelled

in byLab. So from the fact thatMM′
Lab is a min-max numbering withMM′

Lab(B) = i+1,
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it follows that the MAX+1 value of theout-labelled attackers ofB (underMM′
Lab) is i + 1.

This implies that for eachout-labelled attacker ofB (sayC), it holds thatMM′
Lab(C) ≤ i.

Induction hypothesis (b) then implies thatMMi
Lab(C) = MM′

Lab(C), so the MAX+1 value
of the out-labelled attackers ofB underMMi

Lab is the same as the MAX+1 value of the
out-labelled attackers ofB underMM′

Lab. SinceMM′
Lab(B) = i + 1 andMM′

Lab is a
min-max numbering, it follows that the MAX+1 value of theout-labelled attackers ofB under
MM′

Lab is i+1. Hence, the MAX+1 value of theout-labelled attackers ofB underMMi
Lab

is alsoi + 1, so (sinceMMi
Lab ⊆ MMi+1

Lab) the MAX+1 value of theout-labelled attackers
of B underMMi+1

Lab is alsoi + 1. SinceMMi+1
Lab is (i + 1)-complete, it then follows that

MMi+1
Lab(B) = i+ 1.

step (ExtendOut) (a) Suppose that for some oddi ≥ 0 it holds thatMMi
Lab ⊆ MM′

Lab. We now
prove that alsoMMi+1

Lab ⊆ MM′
Lab. Let A be an arbitrary argument that is numbered by

MMi+1
Lab. Sincei is odd, it holds thatMMi+1

Lab = MMi
Lab ∪ ExtendOut(MMi

Lab), so we
can distinguish two cases:

1. A is numbered byMMi
Lab. Then from induction hypothesis (a) it directly follows

that MMi
Lab(A) = MM′

Lab(A), so (sinceMMi
Lab ⊆ MMi+1

Lab) MMi+1
Lab(A) =

MM′
Lab(A).

2. A is numbered byExtendOut(MMi
Lab). This implies that there exists anin-labelled

attacker ofA that is numbered byMMi
Lab andExtendOut(MMi

Lab)(A) is the MIN+1
value of thein-labelled attackers ofA that are numbered byMMi

Lab. From induction
hypothesis (a) it follows that thein-labelled attackers ofA that are numbered byMMi

Lab

are numbered the same byMM′
Lab. We ask ourselves two questions.

(a) Can the MIN+1 value of thein-labelled attackers ofA underMM′
Lab be bigger

than the MIN+1 value of thein-labelled attackers ofA (underMMi
Lab) that are

numbered byMMi
Lab ?

The answer is no, because the former MIN+1 value is based on a superset of argu-
ments as what the latter MIN+1 value is based on.

(b) Can the MIN+1 value of thein-labelled attackers ofA underMM′
Lab be smaller

than the MIN+1 value of thein-labelled attackers ofA (underMMi
Lab) that are

numbered byMMi
Lab ?

If this were the case, then there should be anin-labelled attacker ofA (sayB) for
which MM′

Lab(B) is smaller than the smallest in-out number (underMMi
Lab) of

thein-labelled attackers ofA that are numbered byMMi
Lab, so smaller thani. But

induction hypothesis (b) then implies thatB is numbered with the same number by
MMi

Lab. Contradiction. So the answer is no.

It then follows that the MIN+1 value of thein-labelled attackers ofA underMM′
Lab

is equal to the MIN+1 value of thein-labelled attackers ofA (underMMi
Lab) that are

numbered byMMi
Lab. From the fact thatA is numbered byExtendOut(MMi

Lab), it
follows that its min-max number (underMMi+1

Lab
) is i + 1, so the MIN+1 value of the

in-labelled attackers ofA underMM′
Lab is alsoi + 1. From the fact thatMM′

Lab is a
min-max numbering, it then follows thatMM′

Lab(A) = i+ 1.

(b) LetB be an argument of whichMM′
Lab(B) ∈ {1, . . . , i+1}. As induction hypothesis (b)

tells us that for eachB with MM′
Lab(B) ∈ {1, . . . , i} it holds thatMMi

Lab(B) = MM′
Lab

andMMi
Lab ⊆ MMi+1

Lab
, we only have to consider the case ofi+ 1.
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So letB be an argument withMM′
Lab(B) = i+1. Sincei is odd, it holds thatB is labelledout

by Lab. So from the fact thatMM′
Lab is a min-max numbering withMM′

Lab(B) = i + 1,
it follows that the MIN+1 value of thein-labelled attackers ofB (underMM′

Lab) is i + 1.
This means that the smallest number (usingMM′

Lab) among thein-labelled attackers ofB is
i. LetC be anin-labelled attacker ofB that is numbered withi by MM′

Lab. From induction
hypothesis (b) it then follows thatMMi

Lab(C) = MM′
Lab(C) = i, so the MIN+1 value of the

numberedin-labelled attackers ofB (usingMMi
Lab) is equal to the MIN+1 value of thein-

labelled attackers ofB (usingMM′
Lab). The fact thatMMi+1

Lab is a partial min-max numbering
and thatMM′

Lab is a min-max numbering then implies thatMMi
Lab(B) = MM′

Lab(B).

From the thus proved fact for everyi ≥ 0 it holds thatMMi
Lab ⊆ MM′

Lab it follows thatMM∗
Lab ⊆

MM′
Lab. So for eachA ∈ Ar , if MMLab(A) ∈ N thenMMLab = MM′

Lab.
We proceed to show that also for everyA ∈ Ar , if MMLab(A) = ∞ thenMMLab = MM′

Lab.
Suppose, towards a contradiction, that there exists an argument whose min-max number underMMLab

is ∞ but whose min-max number underMM′
Lab is a natural number. This implies that the set

{A ∈ Ar | MMLab(A) = ∞∧MM′
Lab(A) ∈ N} is non-empty. LetA be an argument from this

set whereMM′
Lab(A) is minimal (sayn). We distinguish two possibilities.

1. Lab(A) = in

In that case, from the fact thatMM′
Lab is a min-max numbering, it follows thatn is the MAX+1

value of theout-labelled attackers ofA. This implies that for eachout-labelled attackerB of
A, MM′

Lab(B) < n. Sincen is the smallestnumber for which there exists an argument
that is numbered withn by MM′

Lab but with ∞ by MMLab, it holds thatB is numbered
with a natural number byMMLab, meaning that it is numbered byMM∗

Lab. However, since
MM∗

Lab ⊆ MM′
Lab, it then follows thatMM∗

Lab(B) = MM′
Lab(B). Since this holds for

anyout-labelled attacker ofA, it follows that the MAX+1 value of theout-labelled attackers
of A underMM′

Lab (n) is equal to the MAX+1 value of theout-labelled attackers ofA un-
derMM∗

Lab (alson). But thenMMLab is not a correct min-max numbering, becauseA is
numbered with∞ whereas the MAX+1 value of itsout-labelled attackers isn. Contradiction.

2. Lab(A) = out

In that case, from the fact thatMM′
Lab is a min-max numbering, it follows thatn is the MIN+1

value of thein-labelled attackers ofA. This implies that there exists anin-labelled attacker
B of A with MM′

Lab(B) = n − 1. Sincen is thesmallestnumber for which there exists
an argument that is numbered withn by MM′

Lab but with∞ by MMLab, it follows thatB
is numbered with a natural number byMMLab, meaning that it is numbered byMM∗

Lab.
However, sinceMM∗

Lab ⊆ MM′
Lab, it then follows thatMM∗

Lab(B) = MM′
Lab(B). This

then implies that the MIN+1 value of thein-labelled attackers ofA (underMM∗
Lab) is at most

n. But thenMMLab is not a correct min-max numbering, becaueA is numbered with∞
whereas theMIN + 1 value of itsin-labelled attackers is at mostn (so a natural number).
Contradiction.

Theorem 4 of the COMMA submission then directly follows fromTheorem 2 and Theorem 3.
That is, we just spent 12 pages just to prove one theorem from the COMMA submission (the topic of
strong admissibility is far from trivial).

We now proceed to prove Theorem 5 from the COMMA paper. We do soin two parts.
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Theorem 4. Given an argumentation framework(Ar , att). If Lab is a strongly admissible labelling,
thenArgs = Lab2Args(Lab) is a strongly admissible set.

Proof. LetMM0
Lab,MM1

Lab,MM2
Lab, . . . be the numbering run ofLab. LetMM∗

Lab be∪∞
i=0MMi

Lab

and letMMLab beMM∗
Lab ∪ AddInf(MM∗

Lab). For eachi ≥ 0 we defineArgs i as{A ∈ Ar |
Lab(A) = in andA is numbered byMMi

Lab}. We now show, by induction overi, that eachArgs i

is a strongly admissible set

basis (i=0) It holds thatArgs0 = ∅ and the empty set is trivially strongly admissible.

step (i is even)SupposeArgs i is a strongly admissible set, for some eveni ≥ 0. We need to
prove thatArgsi+1 is a strongly admissible set as well. We first observe that, sincei is even,
MMi+1

Lab = MMi
Lab ∪ ExtendIn(MMi

Lab), soArgs i ⊆ Args i+1. Let A ∈ Args i+1. We
distinguish two possibilities.

1. A ∈ Args i. From the fact thatArgs i is a strongly admissible set, it follows thatA is
defended by someArgs ′ ⊆ Argsi \ {A} which in its turn is again strongly admissible.
SinceArgs i ⊆ Args i+1 it then follows thatArgs ′ ⊆ Args i+1 \ {A}, hence satisfying the
requirement of strong admissibility.

2. A ∈ Args i+1 \ Args i. We first show thatA is defended byArgs i. LetB be an argument
that attacksA. From the fact thatLab is an admissible labelling, it follows thatLab(B) =
out. From the fact thatA is numbered byExtendIn(MMi

Lab) (this follows fromA ∈
Args i+1 \ Args i) it then follows that allout-labelled attackers ofA are numbered by
MMi

Lab. SinceMMi
Lab is a partial min-max numbering, it holds that for everyout-

labelled argument that is numbered (for instanceB), there exists anin-labelled attacker
that is also numbered (sayC). SoC ∈ Argsi. Hence,Args i defendsA. We also observe
thatA 6∈ Args i (this follows fromA ∈ Args i+1 \ Args i). Furthermore, we recall that
Args i ⊆ Args i+1. So, to sum up,A is defended byArgsi ⊆ Args i+1 \ {A} which in its
turn is again strongly admissible.

step (i is odd) SupposeArgsi is a strongly admissible set, for some oddi ≥ 0. We need to prove that
Args i+1 is a strongly admissible set as well. We first observe that, sincei is odd,MMi+1

Lab =
MMi

Lab ∪ ExtendOut(MMi
Lab). However, asExtendOut(MMi

Lab) does not number any
in-labelled arguments, it holds thatArgs i+1

Lab = Args i
Lab. From the fact thatArgs i

Lab is a
strongly admissible set, it then trivially follows thatArgs i+1 is a strongly admissible set.

Let Args∗ be {A ∈ Ar | Lab(A) = in andA is numbered byMM∗
Lab}. From the fact that

eachArgs i is a strongly admissible set, it follows thatArgs∗ is a strongly admissible set (after all,
MM∗

Lab is just someMMj
Lab

for some j such thatMMj
Lab

= MMj+1

Lab
). We now proceed to show

thatArgs∗ = Args .

“Args∗ ⊆ Args” Let A ∈ Args∗. ThenA is labelledin by Lab, so (by definition ofLab2Args)
A ∈ Args.

“Args ⊆ Args∗” Let A ∈ Args. The fact thatLab is a strongly admissible labelling implies that no
argument is numbered with∞ by MMLab = MM∗

Lab ∪ AddInf(MM∗
Lab), so no argument

is numbered byAddInf(MM∗
Lab), which then implies that everyin or out-labelled argument

is numbered byMM∗
Lab. This means thatA is also numbered byMM∗

Lab. Therefore (by
definition ofArgs∗) A ∈ Args∗.
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Theorem 5. Given an argumentation framework(Ar , att). If Args ⊆ Ar is a strongly admissible
set thenLab = Args2Lab(Args) is a strongly admissible labelling.

Proof. Suppose, towards a contradiction, thatArgs is a strongly admissible set but thatLab is not
a strongly admissible labelling. This implies that there exists an argument (sayB) that is numbered
with ∞ by MMLab, which means thatB argument is unnumbered byMM∗

Lab. We want to show
that there exists at least onein-labelled argument that is unnumbered byMM∗

Lab (sayA). For this,
we distinguish two cases.

1. B is labelledin byLab. In that case, takeA to beB.

2. B is labelledout byLab. In that case, from the fact thatB is numbered with∞ byMMLab, it
follows that the MIN+1 value of itsin-labelled attackers is∞, so it has anin-labelled attacker
(sayA) that is numbered with∞ by MMLab, so that is unnumbered byMM∗

Lab.

From the fact thatArgs is a strongly admissible set, it follows thatA is defended by someArgs ′ ⊆
Args \ {A} which in its turn is again strongly admissible. Can it be the case that all arguments in
Args ′ are numbered byMM∗

Lab? If this were the case, then theout-labelled attackers ofA are also
numbered byMM∗

Lab (this follows from the fact thatExtendOut(MM∗
Lab) = ∅) soA itself would

be numbered byMM∗
Lab (this follows from the fact thatExtendIn(MM∗

Lab) = ∅). Contradiction.
Hence, there exists at least one argument inArgs ′ (sayA′) that is unnumbered byMM∗

Lab.
SinceArgs ′ is again a strongly admissible set, it follows thatA′ is defended by someArgs ′′ ⊆

Args ′ \ {A′} that in its turn is again strongly admissible. Using similarreasoning as above, we obtain
thatArgs ′′ contains some argumentA′′ that is unnumbered byMM∗

Lab.
SinceArgs ′′ is again a strongly admissible set, it follows thatA′′ is defended by someArgs ′′′ ⊆

Args ′′\{A′′} that in its turn is again strongly admissible. Using similarreasoning as above, we obtain
thatArgs ′′′ contains some argumentA′′′ that is unnumbered byMM∗

Lab, etc.
Can this line of reasoning go on forever? SinceArgs is a finite set of arguments, and every

step we are essentially removing at least one argument, thismeans that at after some finite number
of steps, we will encounter a strongly admissible setArgs# which is equal to∅. However, in line
with the above reasoning, thisArgs# should still contain someA# that is unnumbered byMM∗

Lab.
Contradiction.

Theorem 5 from the COMMA submission then follows from Theorem 4 and Theorem 5 of the
current technical report.

We now proceed to prove Theorem 1 of the COMMA submission. Theidea is first to prove
equivalence to strongly admissible labellings.

Lemma 3. LetArgs ⊆ Args ′. If A is strongly defended byArgs thenA is also strongly defended by
Args ′.

Proof. LetArgs1 beArgs , Args ′1 beArgs ′, andA1 beA. Assume towards a contradiction thatA1 is
strongly defended byArgs1 but not strongly defended byArgs ′1. By definition of strong defence, the
latter means that not each attackerB1 of A1 is attacked by someC1 ∈ Args ′1\{A1} s.t.C1 is strongly
defended byArgs ′1 \ {A1}. So there exists an attackerB1 of A1 s.t. anyC1 ∈ Args ′1 \ {A1} that
attacks it is not strongly defended byArgs ′1 \ {A1}. However, the fact thatA1 is strongly defended
by Args1 implies that each attackerB1 of A1 is attacked by someC1 ∈ Args1 \ {A1} such that
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C1 is strongly defended byArgs1 \ {A1}. SoC1 is strongly defended byArgs1 \ {A1} but not by
Args ′1 \ {A1}. Notice that fromArgs ⊆ Args ′ it follows thatArgs \ {A1} ⊆ Args ′ \ {A1}.

Let Args2 beArgs1 \ {A1}, Args ′2 beArgs ′1 \ {A1}, andA2 beC1. It then holds thatA2 is
strongly defended byArgs2 but not byArgs ′2. Using similar reasoning as above, we obtain that there
exists aC2 that is strongly defended byArgs2 \ {A2} but not byArgs ′2 \ {A2}.

Let Args3 beArgs2 \ {A2}, Args ′3 beArgs ′2 \ {A2}, andA3 beC2. It then holds thatA3 is
strongly defended byArgs3 but not byArgs ′3. Using similar reasoning as above, we obtain that there
exists aC3 that is strongly defended byArgs3 \ {A3} but not byArgs ′3 \ {A3}.

Can this line of reasoning go on infinitly? The answer is no, because at every step (perhaps with
the exception of the first one) we are effectively removing anargument (Aj) from Args . SinceArgs

contains only a finite number of arguments (as we consider only finite argumentation frameworks)
this means that at some moment we will encounter ani for which Args i = ∅. The fact thatAi is
strongly defended byArgs i then implies thatAi does not have any attackers. But thenAi would also
be strongly defended byArgs ′i. Contradiction.

Theorem 6. Given an argumentation framework(Ar , att). If Lab is a strongly admissible labelling,
thenArgs = Lab2Args(Lab) strongly defends each of its arguments.

Proof. LetMM0
Lab,MM1

Lab,MM2
Lab, . . . be the numbering run ofLab, letMM∗

Lab be∪∞
i=0MMi

Lab

and letMMLab beMM∗
Lab ∪ AddInf(MM∗

Lab). For eachi ≥ 0 we defineArgs i as{A ∈ Ar |
Lab(A) = in andA is numbered byMMi

Lab}. We now show, by induction overi, that eachArgs i

strongly defends each of its arguments.

basis (i = 0) It holds thatArgs0 = ∅, which trivially defends each of its arguments.

step (i is even) SupposeArgsi strongly defends each of its arguments, for some eveni ≥ 0. We
need to show thatArgs i+1 strongly defends each of its arguments as well. We first observe
that, sincei is even,MMi+1

Lab = MMi
Lab ∪ ExtendIn(MMi

Lab), soArgs i ⊆ Argsi+1. Let
A ∈ Argsi+1. We distinguish two possibilities.

1. A ∈ Argsi. From the fact thatArgs i strongly defends each of its arguments (induction
hypothesis) it follows thatArgs i strongly defendsA. SinceArgs i ⊆ Args i+1 it then
follows from Lemma 3 thatArgsi+1 also strongly defendsA.

2. A ∈ Argsi+1 \ Args i. We first show that each attackerB of A is attacked by some
C ∈ Argsi. Let B be an argument that attacksA. From the fact thatLab is an ad-
missible labelling, it follows thatLab(B) = out. From the fact thatA is numbered by
ExtendIn(MMi

Lab) (this follows fromA ∈ Argsi+1 \ Args i) it then follows that all
out-labelled attackers ofA (includingB) are numbered byMMi

Lab. SinceMMi
Lab is

a partial min-max numbering, it holds that for everyout-labelled argument that is num-
bered (for instanceB) there exists anin-labelled attacker that is also numbered (sayC).
SoC ∈ Argsi. We also observe thatA 6∈ Args i (this follows fromA ∈ Args i+1\Args i).
To sum up, each attackerB of A is attacked by someC ∈ Argsi = Args i \ {A} ⊆
Args i+1 \ {A}. Furthermore, the induction hypothesis implies thatC (by being member
of Args i) is strongly defended byArgs i = Args i \ {A} so that (Lemma 3)C is strongly
defended byArgs i+1 \ {A}, therefore satisfying the defintion of strong defence.

step (i is odd) SupposeArgs i strongly defends each of its arguments, for some oddi ≥ 0. We need
to show thatArgsi+1 strongly defends each of its arguments as well. We first observe that, since
i is odd,MMi+1

Lab
= MMi

Lab ∪ ExtendOut(MMi
Lab). SinceExtendOut does not number

15



anyin-labelled arguments, it follows thatArgs i+1 = Argsi, so we can immediately apply the
induction hypothesis and obtain the desired result.

Theorem 7. Given an argumentation framework(Ar , att). If Args ⊆ Ar strongly defends each of
its arguments thenLab = Args2Lab(Args) is a strongly admissible labelling.

Proof. LetMM0
Lab,MM1

Lab,MM2
Lab, . . . be the labelling run ofLab. LetMM∗

Lab be∪∞
i=0MMi

Lab

and letMMLab beAddInf(MM∗
Lab). Recall thatLab is a strongly admissible labelling iffMMLab

does not number any argument with∞. Suppose, towards a contradiction, thatMMLab doesnumber
an argument (sayA1) with ∞. SinceMMLab only numbers arguments that are labelledin or out,
we distinguish two cases.

1. Lab(A1) = in. The fact thatMMLab(A1) = ∞ implies thatA1 is unnumbered byMM∗
Lab.

From the fact thatExtendIn(MM∗
Lab) = ∅ it then follows that there is anout-labelled at-

tacker (sayB1) ofA1 that is unnumbered byMM∗
Lab. From the fact thatExtendOut(MM∗

Lab) =
∅ it follows that eachin-labelled attacker ofB1 is unnumbered byMM∗

Lab. The fact thatArgs

strongly defendsA1 (the fact thatLab(A1) = in implies thatA1 ∈ Args , andArgs strongly
defends each of its arguments) then implies there is aC1 ∈ Args \ {A1} that attacksB1 and is
strongly defended byArgs \ {A1}.

Let A2 be equal toC1 (a different name for the same argument).A2 is strongly defended by
Args \ {A1}. However, it is unnumbered byMM∗

Lab. Using similar reasoning as above,
we obtain that there is an unnumbered (byMM∗

Lab) C2 ∈ Args \ {A1, A2} that is strongly
defended byArgs \ {A1, A2}.

Let A3 be equal toC2 (a different name for the same argument).A3 is strongly defended by
Args \ {A1, A2}. However, it is unnumbered byMM∗

Lab. Using similar reasoning as above,
we obtain that there is an unnumbered (byMM∗

Lab) C3 ∈ Args \{A1, A2, A3} that is strongly
defended byArgs \ {A1, A2, A3}.

What happens if we continue to perform steps like the above? In essence, at every step we are
removing some argumentAi fromArgs . SinceArgs contains only a finite number of arguments
(this is because we only consider finite argumentation frameworks) this can be done only a finite
number of times (sayn times). That is, aftern steps, we obtain a setArgs\{A1, A2, . . . , An} =
∅ and some argumentCn that is strongly defended by this set, which implies thatCn does not
have any attackers. From the fact thatExtendIn(MM∗

Lab) = ∅ it then follows thatCn is
numbered (with1) byMM∗

Lab. Contradiction.

2. Lab(A1) = out. The fact thatMMLab(A1) = ∞ implies thatA1 is unnumbered byMM∗
Lab.

From the fact thatExtendOut(MM∗
Lab) = ∅ it then follows that eachin-labelled attacker of

A1 is unnumbered byMM∗
Lab. From the fact thatLab is an admissible labelling, it follows

that there is at least onein-labelled attacker ofA1 (sayA′
1), which then has to be unnumbered

by MM∗
Lab. The rest of the proof then follows the same structure as the previous point.

We are now ready to prove Theorem 1 of the COMMA submission.

Theorem 8(Theorem 1 of the COMMA submission). Let (Ar , att) be an argumentation framework
andArgs ⊆ Ar . Args is a strongly admissible set iff eachA ∈ Args is strongly defended byArgs .
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Proof. We prove this using strongly admissible labellings.

“⇒” LetArgs be a strongly admissible set. Then (Theorem 5)Lab = Args2Lab(Args) is a strongly
admissible labelling. Therefore (Theorem 6)Args ′ = Lab2Args(Lab) strongly defends each
of its arguments. Also, from the definitions ofArgs2Lab andLab2Args it follows thatArgs ′ =
Args .

“⇐” LetArgs strongly defend each of its arguments. Then (Theorem 7)Lab = Args2Lab(Args) is
a strongly admissible labelling. Therefore (Theorem 4)Args ′ = Lab2Args(Lab) is a strongly
admissible set. Also, from the definitions ofArgs2Lab andLab2Args it follows thatArgs ′ =
Args .
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