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1 Introduction

The current document contains the proofs of the COMMA 20bfrgssion “Strong Admissibility re-
visited”. It does not duplicate any of the definitions or &xig proofs from the COMMA submission.
Hence, this document should be read in conjunction with it.

One thing to keep in mind when reading the current documehaists structure is quite different
from that of the COMMA submission. The COMMA submission &awith the extension-based
definition of strong admissibility (“Strongly Admissiblees”) and then subsequently discusses the
labelling-based version of strong admissibility (“Strongdmissible Labellings”). This was done
because the concept of strong admissibility already eXistéts extension-based form (see the AlJ
2007 paper of Baroni and Giacomin) and we wanted to start gathething people might already
familiar with. In the current technical report, however, start with the labelling-based version of
strong admissibility, before going to the extension-basadion of strong admissibility. This is done
because we first need to establish some results for theitapblhsed version of strong admissibility,
which can then later be applied also for proving propertiethe extension-based version of strong
admissibility. For instance, the equivalence of Baroni &mcomin’s notion of a strongly admissible
set and our own notion of a strongly admissible set (Theorémitie COMMA submission) is proved
using strongly admissible labellings as an intermediary.

2 Proofs

The idea of a partial min-max numbering is to have some forrmiof max numberings that are not
completely “ready”, meaning that not evetry or out-labelled argument is already numbered (some
are still unnumbered) but thosen and out-labelled arguments thatre already numbered have a
correct min-max number, as far as the current partial nuimdpés concerned. In this way, partial
min-max numberings serve as intermediate results of thatite numbering procedure sketched in
the COMMA submission and made fully formal in the currentigcal report.

Definition 1 (partial min-max numbering)Let Lab be an admissible labelling of argumentation
framework (Ar, att). A partial min-max numberings a partial function MM ., : in(Lab) U



out(Lab) — N such that for eachA € Ar that is numbered byMIM ., (that is, for which
MM a(A) is defined) it holds that:

e if Lab(A) = inthen allout-labelled attackers oft are numbered by M ., and MM 4, (A) =
maz({MM _q(B) | Bis anout-labelled attacker ofd}) + 1

e if Lab(A) = out then there is at least ongén-labelled attacker of4 that is numbered by
MM apy and MM gy (A) = min({MMqp(B) | B is anin-labelled attacker ofd that is
numbered byVIM £4}) + 1

Definition 2 (ExtendIn/ExtendOut). Let Lab be an admissible labelling anMMS .., be the set

of all partial functionSMM 4, - in(Lab) U out(Lab) — N.

We define the functiobxtendIn : MMS o — MMS £ as follows:

ExtendIn(MM ) = {(A4, numberA) | Ais anin-labelled argument not numbered BJM 1,

all out-labelled attackers ofi are numbered byM M ,;, and numberd = maz({ MM q(B) | B

is anout-labelled attacker ofd that is numbered by M 4}) + 1}

We define the functiobxtendOut : MMS o — MMS 4 as follows:

ExtendOut(MM,) = {(A4, numberA) | Ais anout-labelled argument not numbered BY M s,
there exists ann-labelled attacker ofd that is numbered by .M ., and numberA = min({ MM zq,(B) |
B is anin-labelled attacker o that is numbered byM M . }) 4+ 1}

Definition 3 (numbering run) Given an admissible labellingab, a numbering ruris a sequence
MM s MM MM, ... such that:

° MMOEab is the empty partial min-max numbering (that is, the partisih-max numbering
where each argument is unnumbered)

o for each everi > 0, MMt} = MM?Y,, UExtendIn(MM?Y,,)
o for each oddi > 1, MM%} = MM, UExtendOut(MME,,)

To illustrate these definitions, consider again the arguatem framework of Figure 1 of the
COMMA submission, and the grounded labelling thereof.
MM, is the empty numbering ($8)

M./\/llﬁab = M./\/l%ab U ExtendIn(M./\/lOLab) =0U{(A1),(D,1)}

MM, = MML_, UExtendOut(MML ) = {(A,1),(D,1)} U{(B,2),(E,2)}

MM, = MM?2,, UExtendIn(MM?%,,) = {(A,1),(D,1),(B,2),(F,2)} U{(C,3),(F,3)}
MM% = MM, UExtendOut(MM:3 ) = {(A,1),(D,1),(B,2),(E,2),(C,3),(F,3)} Ul
MM3yy, = MMy, UExtendIn(MMp,,) = {(4,1),(D,1),(B,2),(E,2),(C,3),(F,3)} UD

It can be verified that for any> 3, MM , = MM?.,.

We would like to prove that everyt M., in the numbering run is a partial min-max numbering.
A possible strategy for doing so would be to use inductione Bbasis would be the observation that
M/\/lomb is a partial min-max numbering. The induction step wouldhthave to handle two cases:
one wherei is even and one whergis odd. For eveni, we would have to show thavtM'F) =
MM, U ExtendIn(MM? ;) is a correct partial min-max numbering, whereas for eddve
would have to show thaIM'F} = MM?Y . U ExtendOut(MM: ) is a correct partial min-max
numbering. In both cases, the induction hypothesis is a1/, is already a correct min-max
numbering.

The problem of such an approach, however, is that the instuiypothesis is not strong enough.
For instance, consider the grounded labelling of the arguatien framework of Figure 1 of the
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COMMA submission. HereMM ., = {(A,1),(B,2),(C,3),(E,4)} is a correct partial min-max
numbering, bUMM (o, UExtendIn(MMq) = {(4,1),(B,2),(C,3), (E,4)}U{(D,1),(F,5)}

is nota correct min-max numbering, becauses-labelled argumenE is numbered witht, whereas

the minimal min-max number of itén-labelled attackers that are numbered ,iso it should have

been numbered withinstead! So the bare fact that sothé&M?: , is a partial min-max numbering is
not sufficient to prove thaMMZZ;}) is also a partial min-max numbering. Clearly, we need a geon
induction hypothesis.

As a first observation towards such a stronger induction thgsis, it can be observed that the
above mentioned min-max numberifig4, 1), (B, 2), (C, 3), (F,4)} cannot actually occur in a num-
bering run, as the same step that numbetesith 1 would also have humbered with 1. If we look
at the actual numbering run, we observe that each time weogo MY, to MM’ it holds
thatall possible; + 1 numbers are generated, not just some of them. This leads toticept oh-
completenessThe idea is that each unnumbered argument that could beeraohigiven the existing
min-max numbers, would have a correct min-max number ofdsitjgann. That is, up ton there are
no missing numbers.

Definition 4 (n-complete) Let Lab be an admissible labelling of argumentation framewfk:, att).
A partial min-max numbering I M ., is calledn-completeiff

e for each unnumberedn-labelled argument of which abut-labelled attackers are already
numbered, the MAX+1 value of itmt-labelled attackers is bigger thain

e for each unnumberedut-labelled argument that has am-labelled attacker that is already
numbered, the MIN+1 value of itsa-labelled attackers is bigger tham

Given a set of argumentdrgs, the MAX+1 value ofdrgs is max({ MM q(A) | A € Args}) + 1,
whereas the MIN+1 value oflrgs is min({ MM q(A) | A € Args} + 1.

So the idea ofi-completeness is that the numbering is already “completehfimbers up ta.

It can be verified that in the earlier mentioned numbering eathM M., is in facti-complete. It
can also be observed that, as a general propttyt%.,, < MML for eachi > 0. Moreover, in
the earlier mentioned numbering run, it holds that eadditional number generated bMM?;}, (so
eachj such that 4, j) € MM\ MM~ , for some argumentl) is i + 1. This turns out to be a
general property, as we will see.

We are now ready to sketch the structure of the inductionfprdte idea is first, as a basis,
to observe thatmtM? , is a correct min-max numbering. Then, we need two differadtiction
steps, one ofxtendIn where for some evenwe go fromMM?%,, to MM = MM, U
ExtendIn(MM?,,), and one foExtendOut where for some odéwe go fromM M., to MME! =
MM » U ExtendOut(MM ). For both induction steps, we apply an induction hypothtsis
for a given: it holds that:

1. MM, is a correct partial min-max numbering,
2. foreachj € {1,...,:}, each “new” number in\/lMZ:ab is j, and
3. MM, isi-complete

Lemma 1. Let MM ), MM L, MM, ... be a numbering run of an admissible labellidgb
and let: > 0 be an even number. If

(1) MM, is a correct partial min-max numbering,
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(2) for eachj € {1,...,d} it holds that for each(A,k) € MM, \ MM} where A is an
argumentk = j, and

(3) MM, isi-complete
then

1) Mm ab is a correct partial min-max numbering,

(2') for eachj € {1,...,i + 1} it holds that for each{ 4, k) € MM, , \ MM ! whereA is an
argumentk = j, and

(3) MM} is (i + 1)-complete
Proof. We first observe that sinads even, MM% = MM, UExtendIn(MM. ).

(1) We need to show tha/tvl/\/l“L is a correct partial min-max numbering. Létbe an arbitrary
argument that is numbered lz'yl/\/lZle We distinguish two cases:

e Lab(A) = in. We then need to show that alkt-labelled attackers oft are numbered by
MM} and thatMM ) (A) is the MAX+1 value of itsout-labelled attackers. Given
that MM'H) = MM, UExtendIn(MM?%,,), we distinguish two subcases:

1. A was already numbered WM. ,. Since MM, is a correct partial min-max
numbering (induction hypothesis (1)) it follows that ailt-labelled attackers aft
are numbered byM M., and thatM M., (A) is the MAX+1 value of these. As
MMy, © MMy, it follows that MM L, (A) = MM, (A) and that the
MAX+1 value of theout-labelled attackers ofl in /\/U\/lZ+ |s the same as the
MAX+1 value of theout-labelled attackers oft in MM ;. HenceA is correctly
numbered byVM' ).

2. A as not numbered byM M., but became numbered BxtendIn(MMY ;).
However, by definition oExtendIn, this implies thatA is correctly numbered by
MM

e Lab(A) = out. We then need to show that there is at least ondabelled attacker
of A that is numbered by M’} and thatMIM%H (A) is the MIN+1 value of allin-
labelled attackers ofl that are numbered bMMZ}, Given thatMM'F) = MM, U
ExtendIn(MM? ), together with the fact tha@xtendIn does not number anyut-
labelled arguments, it then follows thatis numbered byM M. ;. Since MM , is
a correct partial min-max numbering (induction hypoth€&}3 it follows that there is at
least onein-labelled attacker ofl that is numbered by M. , and that\I M., (A) is
the MIN+1 value of thesen-labelled attackers oft that are numbered byt M. . As
MM © MM it holds that MM (A) = MM, (A), so it suffices to prove
that the MIN+1 value of allin-labelled attackers ofl that are numbered byt M’} is
still the same as the MIN+1 value of alh-labelled attackers ofl that are numbered by
MM, For this, we ask ourselves two questions:

— Canthe MIN+1 value of thén-labelled attackers of that are numbered byt M5
bebigger than the MIN+1 value of then-labelled attackers ofl that are numbered
by MMEab
Since MM, C MM?}), it follows that the set ofin-labelled attackers ofl that
are numbered by\/l/\/lhL is asupersedf the set ofin-labelled attackers ofl that
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are numbered byMM’.,, so the minimal element of the former set can never be
bigger than the minimal element of the latter set, so the angno.

— Can the MIN+1 value of then-labelled attackers of that are numbered byt M}
besmallerthan the MIN+1 value of then-labelled attackers ofl that are numbered
by MM, ?

Suppose, towards a contradiction, that this would be the.c&nce ML =
MM, U ExtendIn(MMY,, ), this means theExtendIn(MM? ;) produced a
number that idower than that of each of then-labelled attackers ofl that are num-
bered byM M. ,,. Since the maximal number that can possibly occukdi®. , is
i (induction hypothesis (2)) this implies thettendIn(MM~. ;) produced a num-
ber smaller thani. But then MM, is noti-complete, which is in contradiction

with induction hypothesis (3). Therefore the answer ismagai.

(2)) It suffices to show that for each, k) € MM, \ MM, it holds thatk = i + 1. That
is, we need to show that for ea¢i, k) € ExtendIn(MM,,) it holds thatk = i + 1. Let
(A, k) € ExtendIn(MMY,,). We ask ourselves two questions:

e Cank besmallerthani + 1?
If this is the case, then (Definition 2) is not numbered by M~ ,, all its out-labelled
attackers are numbered by(AM®. , and their MAX+1 value is smaller than+ 1, so
smaller or equal te. But this implies thatM M., is noti-complete, which is in contra-
diction with induction hypothesis (3). So the answer is no.

e Cank bebiggerthani + 1?
If this is the case, then (Definition 2) is not numbered by M~ ,, all its out-labelled
attackers are numbered B M. , and their MAX+1 value is bigger thain+ 1. From the
definition of MAX+1, this implies thatd has arput-labelled attacker that is numbered by
MM, with @ min-max number bigger than This is in contradiction with induction
hypothesis (2), that implies that each min-max numbeMuM ., is less or equal to.
So the answer is no.

(3') We need to show tha)\\/l/\/lij;}7 is (i + 1)-complete. For this, we need to show two things
(Definition 4).

e if A is an unnumberedn-labelled argument of which all itsut-labelled attackers are
numbered by/\/l/\/lig;}), then the MAX+1 value of theseut-labelled attackers is bigger
thani + 1.

Let A be an unnumbered (bMMZZ;})) argument of which all iteut-labelled attackers
are numbered. From the fact thed M., C MM} it follows that A is also unnum-
bered byMM. . From the fact thatMM'F) = MM, U ExtendIn(MM-%, ),
together with the fact thaixtendIn does not number anyut-labelled arguments, it
follows that all theout-labelled attackers ofl are also numbered bMMlergs. But this

would imply thatA is numbered bxtendIn(MM? ), and therefore (sinc8I M} =
MM, UExtendIn(MM?Y,,)) that A is numbered by M’} Contradiction.

e if Ais an unnumberedut-labelled argument that has an-labelled attacker that is num-
bered byM M} then the MIN+1 value of all itsn-labelled attackers that are numbered
by MM4H is bigger thani + 1.



Let A be an unnumbered (bMMZZ;})) out-labelled argument that has an-labelled at-
tacker that is numbered byt M’ . From the fact thatM M., © MM it follows
that A is also unnumbered byt M. . We distinguish two cases:

1. A has anin-labelled attacker that is numbered BM". . Then, from the fact that
MM, is i-complete (induction hypothesis (3)) it follows that the N1 value
of its in-labelled attackers that are numbered . oyM®. , is bigger thani. This
means that the min-max number of the lowest numbetedttacker ofA (say B)
is bigger thani — 1, so bigger or equal te. However, we recall that is an even
number, and that each numberaglabelled argument itMM?. , has an odd mix-
max number (this follows from induction hypothesis (2),dtiter with the definition
of the numbering run). This then implies that the min-max banof B is bigger or
equal toi + 1. Furthermore, anyn-labelled attacker ofi that became numbered by
ExtendIn(MM? ;) (sayC) will have a min-max number of+ 1 (this is what we
have just observed in (2’)). This means that the lowest nuethim-labelled attacker
of Ain MM is still bigger or equal td + 1. This then implies that the MIN+1
value of allin-labelled attackers oft in MM%" is bigger or equal ta + 2, SO
bigger thari + 1, thus satisfying the requirement 8€ompleteness.

2. A does not have amn-labelled attacker that is numbered B¢ M¢. ,. Then, from
the fact that4 does have ann-labelled attacker that is numbered WMt} =
MM U ExtendIn(MM? ), it then follows that everyn-labelled attacker of
A that is numbered by\M'} is numbered byExtendIn(MM?%,,). From the
earlier obtained result (2') it then follows that eveny-labelled attacker of that is
numbered by\/l/\/lig;}) is numbered with the min-max number 1. This implies that
the MIN+1 value of thein-labelled attackers afl that are numbered bt ML is
i + 2, which is bigger than + 1, thus satisfying the requirement 8€ompleteness.

O

Lemma 2. Let MM ,, MME . MM?2_,. ... be anumbering run of an admissible labellidgb
and let: > 0 be an odd number. If

(1) MM.., is a correct partial min-max numbering,

(2) for eachj € {1,...,i} it holds that for each(A, k) € M/\/li:ab \ MMZ; where A is an
argumentk = j, and

(3) MM, isi-complete
then

(1) MM} is a correct partial min-max numbering,

(2') foreachj € {1,...,i+ 1} it holds that for eachA, k) € MM, \ MM whereA is an
argumentk = j, and

(3) MMiilis (i + 1)-complete
Proof. We first observe that sinads odd, MM’} = MM, UExtendOut(MM?%, ).
(1) We need to show thaMMZ}) is a correct partial min-max numbering. Létbe an arbitrary

argument that is numbered WIMZE;}) We distinguish two cases.
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e Lab(A) = in. We then need to show that alht-labelled attackers ofA are num-
bered byMM%H1 and thatM ML (A) is the MAX+1 value of itsout-labelled attack-
ers. Given the fact thalt M1 = MM, U ExtendOut(MM?,,) and the fact that
ExtendOut(MM? ;) does not number anyn-labelled arguments, it follows that is
numbered by\I M. ,. From the fact thati M. , is a correct partial min-max number-
ing (induction hypothesis (1)), it follows that alht-labelled attackers ol are numbered
by MM ,. From the fact thatmM?,, € MM'E it then follows that all theout-
labelled attackers ofi are also numbered byt M’} and that the MAX+1 value of
theseout-labelled attackers ofl is the same undetM M’} as undetM M. Hence,
from the fact thatA is correctly numbered undevi M7, it follows that A is correctly
numbered undeMMEHL.

e Lab(A) = out. We then need to show that has at least onén-labelled attacker that
is numbered byM M, and that and thaM M) (A) is the MIN+1 value of thein-
labelled attackers ofl that are numbered byt M%) . Given thatM M%) = MM, U
ExtendOut(MM? ), we distinguish two subcases.

1. A was already numbered byIM?. ,. From the fact thatMiM'., is a correct
partial min-max numbering, it then follows that there iseddt onein-labelled at-
tacker of A that is numbered by\ M. ,, and MM, (A) is the MIN+1 value
of the in-labelled attackers oft that are numbered byt M".,,. As MM, C
MM it follows that MM%(A) = MM, (A). Moreover, the fact that
ExtendOut(MM7,,) does not number anyn-labelled arguments implies that the
MIN+1 value of thein-labelled attackers afl that are numbered bt ML is the
same as the MIN+1 value of thim-labelled attackers ofi that are numbered by
MM, Hence A is still correctly numbered byt M.

2. Ais numbered b¥xtendOut(MM?7 ;). From the definition oExtendOut, it then
follows thatA has at least onin-labelled attacker that is numbered Sy M?. ,, and
thatExtendOut(MM,,)(A) is the MIN+1 value of thein-labelled attackers oft
that are numbered bt M?. . Hence A is correctly numbered b)MM?;L},.

(2') It suffices to show that for ead, k) € MM, \ MM, it holds thatk = i + 1. That s,

we need to show that for ea¢, k) € ExtendOut(MM,,) it holds thatk = i + 1. Let
(A, k) € ExtendOut(MM ;). We ask ourselves two questions:

e Cank besmallerthani + 1?
If this is the case, then (Definition 2) is not numbered byMAM®.,, and it has arin-
labelled attacker that is numbered WM. ., and the MIN+1 value of itin-labelled
attackers that are numbered BYM-. , is smaller than + 1, so smaller or equal ta
But this means thaM M., is noti-complete, which is in contradiction with induction
hypothesis (3). So the answer is no.

e Cank bebiggerthani + 1?

If this is the case, then (Definition 2} is not numbered byM M. , and it has arin-
labelled attacker that is numbered ByM%. , and the MIN+1 value of itsn-labelled
attackers that are numbered MM’ , is bigger thani + 1. From the definition of
MIN+1, this then implies thatl has anin-labelled attacker that is numbered by M. ,
with a min-max number that is bigger than This is in contradiction with induction
hypothesis (2), that implies that each min-max numbeMuM ‘. , is less or equal to.
So the answer is no.



(3') We need to show tha)\\/l/\/l?;}7 is (i + 1)-complete. For this, we need to show two things
(Definition 4).

e If A is an unnumberedn-labelled argument of which all itsut-labelled attackers are
numbered byM M’} then the MAX+1 value of theseut-labelled attackers is bigger
thani + 1.

Let A be an unnumberetih-labelled argument of which all itsut-labelled attackers are
numbered byM M} We distinguish two subcases.

1. All the out-labelled attackers ol were also numbered byt MY .

Then, from the fact thamM .M, is i-complete (induction hypothesis (3)) it follows
that the MAX+1 value of these attackershigger thani. This (by definition of
MAX+1) means that the min-max number of the highest numbetadiabelled at-
tacker of A (say B) is bigger than — 1, so bigger or equal to However, we recall
thati is an odd number, and that eachit-labelled argument that is numbered by
MM, has min-max number that is even (this follows from inductiypothesis
(2), together with the definition of a numbering run). Thisrtimplies that the min-
max number ofB is bigger thani, so that the MAX+1 value of theut-labelled
attackers ofA that are numbered byt M2 , is bigger thani + 1. From the fact
that M., € MM} it then follows that the MAX+1 value of theut-labelled
attackers ofA that are numbered byt M%) is also bigger or thar + 1, which
satisfies the requirement 6tompleteness.

2. Atleast oneut-labelled attacker ofl (sayB) is numbered b‘]jlxtendOut(M./\/liLab).
Then, from (2) it follows thatM M%) (B) = i + 1. This then implies that the
MAX+1 value of theout-labelled attackers aft that are numbered byt M5 is
bigger or equal to + 2, so bigger than + 1, which satisfied the requirement of
i-completeness.

e If Ais an unnumberedut-labelled argument of which at least ofne-labelled attacker
is numbered by\ M. | then the MIN+1 value of then-labelled attackers of that are
numbered by M’ is bigger than + 1.

Let A be an unnumbereslut-labelled argument of which at least one-labelled attacker
(sayB) is numbered byMM'F . SinceMM%T) = MM, UExtendOut(MMY,,)
andExtendOut(MM? ;) does not number anyn-labelled arguments, it follows thdt
was also numbered byt M. ,. But from the definition oExtendOut (Definition 2) it
would then follow that4 is numbered byM{ M’} . Contradiction.

O

Theorem 1. Let MM%ab,MM};ab,MM%ab, ... be a numbering run of an admissible labelling
Lab. For everyi > 0, MM, is a partial min-max numbering

Proof. We prove this by induction over

basis We observe that foi = 0 it trivially holds that
(1) MM, is acorrect partial min-max numbering, ' '
(2) for eachj € {1,...,i} = 0 it holds that for eactiA, k) € MM, \ MM whereA is
an argumenty = j, and
(3) MM, is i-complete.



step Suppose that for a given> 0 it holds that
(1) MM, is a correct partial min-max numbering,
(2) for eachj € {1,...,i} it holds that for eacti4, k) € MM, \ MM whereA is an
argumentk = j, and
(3) MM, isi-complete.
We have to prove that:
(1) MMF1is a correct partial min-max numbering,
(2') for eachj € {1,...,i+ 1} itholds that for eacliA, k) € MM, \ MM} whereA is
an argumentt = j, and
(3) MMELis (i + 1)-complete.
If 7 is even, this result follows from Lemma 1.:fs odd, this result follows from Lemma 2.

O

Definition 5. Let M M7, be a partial min-max numbering of admissible labellifgb. We define
the functionAddInf(MM7,,) as{(A4,oo) | A is unnumbered by M7, }.

Theorem 2. LetLab be an admissible labelling of argumentation framewtk, att) and let MM,
MMy MM, ... be a numbering run ofab. Let MM, = U MM, and MM £, =
MM p U AddInt (MM ). It holds that MM £, is @ min-max numbering afab.

Proof. We first observe thaM M7, is a partial min-max numbering witbxtendIn(MM7,,) =
ExtendOut(MM},;,) = 0. Let A € in(Lab) U out(Lab). We distinguish two cases:

1. Lab(A) = in. We distinguish two subcases.

(@) MM _ap(A) € N. In that caseA is numbered by M7 ,,. From the fact thatMI M7,
is a partial min-max numbering, it follows that! M7, (A) is the MAX+1 value of all
its out-labelled attackers. Sinc&I M7, € MMy, it follows that MM 4 (A) =
MM, (A) and the MAX+1 value of all theut-labelled attackers ofl is the same
in MM g as inMM7,,. Therefore MM q;,(A) is the MAX+1 value of all theout-
labelled attackers ofl (underMM ..;). Hence, Definition 9 of the COMMA submission
(first bullet) is satisfied.

(b) MM fap(A) = oo. In that case,A is numbered byaddInf(MM?7,;), SO A is not
numbered byMAM?7. .. This, together with the fact th@xtendIn(MM7,,) = 0,
implies that not allout-labelled attackers oA are numbered byM M7 .. Let B be
an out-labelled attacker ofA that is not numbered bM M7 .. Since MM g, =
MM U AddInt(MM%,,), it then follows that MM ., (B) = oo. Hence, the
MAX+1 value of theout-labelled attackers ol is oo (under MM ..). Hence, Defi-
nition 9 of the COMMA submission (first bullet) is satisfied.

2. Lab(A) = out. We distinguish two subcases.

(@) MM _a(A) € N. In that caseA is numbered by M7 ,,. From the fact thatM M7,
is a partial min-max numbering, it follows that has at least onén-labelled attacker
that is numbered byM M7, and MM, is the MIN+1 value of thein-labelled at-
tackers ofA that are numbered b} M7 .. Since MM, © MMy, it follows
that MM a5 (A) = MM, (A). Also, anyin-labelled attacker of that is unnum-
bered byM M., will be numbered withoo by MM ;. Therefore, the MIN+1 value



of the in-labelled attackers ofi under MM .., will be the same as the MIN+1 value
of all numberedin-labelled attackers off under MM ;. Hence, Definition 9 of the
COMMA submission (second bullet) is satisfied.

(b) MM fap(A) = oo. In that case,A is numbered byaddInf(MM7,;), SO A is not
numbered byM M7 ;. This, together with the fact th@txtendOut(MM7 ) = 0,
implies that eachn-labelled attacker ofl is unnumbered byM M7 .. This also implies
that eachin-labelled attacker ofl is numbered byddInf(MM7} ), S0 it is numbered
with co by MM ;4. This means that the MIN+1 value of tha-labelled attackers of
under MM .4 is 0o. Hence, Definition 9 of the COMMA submission (second buligt)
satisfied.

O

Now that we have proved that the outcome of the numberingeglore is a correct min-max
numbering, we proceed to prove that this min-max humbegngique.

Theorem 3. LetLab be an admissible labelling of argumentation framewtk, att) and let MM,
MME s MMZ,,, ... be a numbering run ofab. Let MM, = U MM, and MM o =
MM, ,UAddInt (MM ). For any min-max numberingt M ., of Lab, it holds that\M M., =
MMEab-

Proof. Let MM/, be a min-max numbering ofab. We first show that for everyd € Ar, if
MM ap(A) € Nthen MM g (A) = MM, (A). We do this by inductively proving that for each
i > 0it holds that:

@ MM, € MM, ,, and

(b) for each argument B of whicM M., (B) € {1,...,i}, MM, (B) = MM, (B)

basis (i = 0) Since MM, = 0 it trivially holds that MM, € MM/, _,. Also, it trivially holds
that for each argumert of which MM, (B) € 0, MM, (B) = MM/, (B).

step ExtendIn) (a) Suppose that for some eveir 0 it holds that/\/l/\/lzab C MM/, We now
prove that also/\/l/\/l?;}) C MM,,. Let A be an arbitrary argument that is numbered by

MM, Sincei is even, it holds that M, = MM, U ExtendIn(MMY,,), SO we

can distinguish two cases:

1. A is numbered byMM-%_,. Then from induction hypothesis (a) it directly follows
that MM, (A) = MM, (A), so (sinceMMb,, C MMy MMTLH(A) =
MMEab( )

2. Ais numbered bfExtendIn(MM?Y ;). This implies that all itsout-labelled attackers
are numbered by M. .,. From induction hypothesis (a) it then follows that the MAX+
value of theout-labelled attackers afl under MM/, is the same as undeviM?. ;.
Hence, the fact tha.t\/l/\/l“rl and MM/, are (partial) min-max labellings, it follows
that MME1(A) = MM M,( ).

(b) Let B be an argument of whicM M., (B) € {1,...,i+1}. Asinduction hypothesis (b)
tells us that for eact3 with MM, (B) € {1,...,i} |t holds that MM, (B) = MMy,
and MM~ € MM we only have to consider the caseiof 1.

So letB be an argument withM M/, . (B) = i + 1. Sincei is even, it holds thaB is labelled

in by Lab. So from the fact thabM M., is a min-max numbering witM M., (B) =i+ 1,
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it follows that the MAX+1 value of theut-labelled attackers aB (underM M/ ) isi + 1.
This implies that for eachbut-labelled attacker of3 (say C), it holds thatM M/, (C) < i.
Induction hypothesis (b) then implies th&t M., (C) = MMz, (C), so the MAX+1 value
of the out-labelled attackers oB under MM, is the same as the MAX+1 value of the
out-labelled attackers oB under MM.,,. SinceMM. ,(B) = i+ 1 and MM, is a
min-max numbering, it follows that the MAX+1 value of thet-labelled attackers aB under
MM, isi+ 1. Hence, the MAX+1 value of theut-labelled attackers aB underMM. .,

is alsoi + 1, so (sinceMM?,, C MMEL) the MAX+1 value of theout-labelled attackers
of B under MM%H is alsoi + 1. Slnce/\/l/\/l?}) is (i + 1)-complete, it then follows that
MMELB) =i+ 1.

step ExtendOut) (a) Suppose that for some odd- 0 it holds that/\/l/\/lzab C MM/, We now
prove that also/\/l/\/l?;}) C MM,. Let Abe an arbitrary argument that is numbered by

MM Sincei is odd, it holds thatM M} = MM?Y,, U ExtendOut(MM?Y,,), SO we

can distinguish two cases:

1. A is numbered by/\/l/\/lzab. Then from induction hypothesis (a) it directly follows
that MM, (A) = MM/, (A), so (sinceMMi,, © MM MMEL(A) =
MMEab( )

2. A is numbered byExtendOut(MM: ). This implies that there exists am-labelled
attacker ofA that is numbered b M , andExtendOut(MM%,)(A) is the MIN+1
value of thein-labelled attackers ofl that are numbered bytM% ,. From induction
hypothesis (a) it follows that thin-labelled attackers ol that are numbered bMMiEab
are numbered the same B M’ ,. We ask ourselves two questions.

(@) Can the MIN+1 value of then-labelled attackers off under MM/ rap D€ bigger
than the MIN+1 value of then-labelled attackers oft (under MM?.,) that are
numbered byVM%. , ?

The answer is no, because the former MIN+1 value is based apexset of argu-
ments as what the latter MIN+1 value is based on.

(b) Can the MIN+1 value of then-labelled attackers oft under MM, be smaller
than the MIN+1 value of then-labelled attackers oft (under MM ;) that are
numbered by\MM®. , ?

If this were the case, then there should beiafabelled attacker ofd (say B) for
which MM/, (B) is smaller than the smallest in-out number (undémn1’. ;) of
the in-labelled attackers oft that are numbered 1M’ ,, so smaller than. But
induction hypothesis (b) then implies thB&tis numbered with the same number by
MM, Contradiction. So the answer is no.

It then follows that the MIN+1 value of thén-labelled attackers oft underMM’Eab
is equalto the MIN+1 value of thein-labelled attackers afl (under MM ;) that are
numbered byM M. ,. From the fact thatd is numbered bfxtendOut(MM7,,), it
follows that its min-max number (undev{M'}) is i + 1, so the MIN+1 value of the
in-labelled attackers oft underM M/, is alsoi + 1. From the fact thatm M., is a
min-max numbering, it then follows that{ A/, ,(A) =i + 1.

(b) Let B be an argument of whicM M/, (B) € {1,...,i+ 1}. As induction hypothesis (b)
tells us that for eact with MAM'.,(B) € {1,...,i} it holds that MM, (B) = MM/,

and MM?%,, € MM we only have to consider the caseiof 1.
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So letB be an argument wWithI M., (B) = i+1. Sincei is odd, it holds thaB is labelledout
by Lab. So from the fact thatM M., is a min-max numbering with M. . (B) = i + 1,

it follows that the MIN+1 value of thein-labelled attackers oB (under MM ;) is i + 1.
This means that the smallest number (usiig\1/,,) among thein-labelled attackers aB is
i. LetC be anin-labelled attacker of3 that is numbered with by MM/, .. From induction
hypothesis (b) it then follows that/ M~ . (C) = MM, (C) = i, so the MIN+1 value of the
numberedin-labelled attackers oB (usingMM‘ ) 1S equal to the MIN+1 value of thén-
labelled attackers dB (usingMAM/,,,). The fact that/\/l/\/ll+ is a partial min-max numbering
and thatM M, is @ min-max numbering then implies thMMLab( ) = MM/, (B).

From the thus proved fact for every> 0 it holds thatM M. , € MM, it follows that MM, €
MMy, SO for eachd € Ar, if MM qp(A) € Nthen MM oy = MM,

We proceed to show that also for evetye Ar, if MM q(A) = cothen MM oy = MM .

Suppose, towards a contradiction, that there exists amanguwhose min-max number undet M .,

is co but whose min-max number und@ri M., is a natural number. This implies that the set
{A e Ar | MM a(A) = co A MM;,,(A) € N} is non-empty. Letd be an argument from this
set whereM M., (A) is minimal (sayn). We distinguish two possibilities.

1. Lab(A) = in

In that case, from the fact thAt M/, is a min-max numbering, it follows thatis the MAX+1
value of theout-labelled attackers ofl. This implies that for eachut-labelled attackeB of

A, MM, (B) < n. Sincen is the smallestnumber for which there exists an argument
that is numbered witl by MM/, but with co by MM 4, it holds thatB is numbered
with a natural number byM M .,;,, meaning that it is numbered bylAM. ,. However, since
MMy © MM, it then follows thatM M7, (B) = MM, (B). Since this holds for
any out-labelled attacker ofl, it follows that the MAX+1 value of theut-labelled attackers
of A underMM/.,, (n) is equal to the MAX+1 value of theut-labelled attackers afl un-
der MM, (alson). But then MM, is not a correct min-max numbering, becausés
numbered withbo whereas the MAX+1 value of itsut-labelled attackers is. Contradiction.

. Lab(A) = out

In that case, from the fact that M., is @ min-max numbering, it follows thatis the MIN+1
value of thein-labelled attackers ofl. This implies that there exists am-labelled attacker
B of A with MM/, (B) = n — 1. Sincen is the smallestnumber for which there exists
an argument that is numbered withby MM, but with co by MM £, it follows that B
is numbered with a natural number By M .., meaning that it is numbered bytM?7. ;.
However, sinceVIMF., C MM/, it then follows thatM M., (B) = MM, (B). This
then implies that the MIN+1 value of thai-labelled attackers ofl (underM M7 ;) is at most
n. But then MM, is not a correct min-max numbering, becades numbered withx
whereas the\/IN + 1 value of itsin-labelled attackers is at most(so a natural number).
Contradiction.

O

Theorem 4 of the COMMA submission then directly follows frarheorem 2 and Theorem 3.

That is, we just spent 12 pages just to prove one theorem fie®OMMA submission (the topic of
strong admissibility is far from trivial).

We now proceed to prove Theorem 5 from the COMMA paper. We do 80 parts.
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Theorem 4. Given an argumentation framewofKr, att). If Lab is a strongly admissible labelling,
thenArgs = Lab2Args(Lab) is a strongly admissible set.

Proof. Let MM, MM L MM . . . . be the numbering run dab. Let MM, beue MM
and letMM ,;, be MM, U AddInf(MAM?,,). For eachi > 0 we definedrgs’ as{A4 € Ar |
Lab(A) = in and A is numbered byVIM? ,}. We now show, by induction over that eachArgs’

is a strongly admissible set

basis (i=0) It holds that4rgs® = () and the empty set is trivially strongly admissible.

step (i is even) SupposeArgs’ is a strongly admissible set, for some even> 0. We need to
prove‘that,élrgs"“‘ is a strongly admissible set as well. We first observe thatesiis even,
MMZEJ;%) = M./\/lzﬁab.U”E.xtendIn(./\/leﬁab), soArgs’ C Args't!. Let A € Args'tt. We
distinguish two possibilities.

1. A € Args’. From the fact thatdrgs® is a strongly admissible set, it follows that is
defended by somelrgs’ C Args® \ {A} which in its turn is again strongly admissible.
SinceArgs’ C Args™t! it then follows thatdrgs’ C Args‘+1\ { A}, hence satisfying the
requirement of strong admissibility.

2. A€ Argstt1\ Argst. We first show thatd is defended bydrgs®. Let B be an argument
that attacksA. From the fact thatab is an admissible labelling, it follows th#@lub(B) =
out. From the fact thatd is numbered bExtendIn(MM-% ;) (this follows from A €
Args™t1\ Args?) it then follows that allout-labelled attackers oft are numbered by
MM, Since MM, is a partial min-max numbering, it holds that for everyt-
labelled argument that is numbered (for instafitye there exists ann-labelled attacker
that is also numbered (s&}). SoC € Args’. Hence,Args® defendsA. We also observe
that A ¢ Args® (this follows from A € Argsi*t! \ Args?). Furthermore, we recall that
Args® C ArgsiT!. So, to sum upA is defended bydrgs® C Args**1\ {A} which in its
turn is again strongly admissible.

step (i is odd) Supposedrys® is a strongly admissible set, for some add 0. We need to prove that
Argst1 is a strongly admissible set as well. We first observe thatesiis odd, MM%} =
MM, U ExtendOut(MM? ;). However, aExtendOut(MAM] ) does not number any
in-labelled arguments, it holds thatrgs} = Argsi.,,. From the fact thatdrgs’., is a
strongly admissible set, it then trivially follows thatrgs' ™! is a strongly admissible set.

Let Args* be {A € Ar | Lab(A) = in and A is numbered byM M7, }. From the fact that
eachArgs® is a strongly admissible set, it follows thatrgs* is a strongly admissible set (after all,
MM, is just someM A, , for some j such thaM M7, = MM, We now proceed to show
that Args* = Args.

“Args* C Args” Let A € Args*. ThenA is labelledin by Lab, so (by definition ofLab2Args)
A € Arygs.

“Args C Args*” Let A € Args. The fact thatCab is a strongly admissible labelling implies that no
argument is numbered witko by MM, = MM, U AddInf(MM7 ), SO no argument
is numbered byddInf(MM?7,,), which then implies that everyn or out-labelled argument
is numbered byM M7 .,. This means thal is also numbered byM M7 .. Therefore (by
definition of Args*) A € Args*.
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Theorem 5. Given an argumentation framewo(ilr, att). If Args C Ar is a strongly admissible
set thenCab = Args2Lab(.Args) is a strongly admissible labelling.

Proof. Suppose, towards a contradiction, tbéitgs is a strongly admissible set but thétb is not
a strongly admissible labelling. This implies that therésexan argument (saf) that is numbered
with oo by MM 5, Which means thaB argument is unnumbered byt M7 . We want to show
that there exists at least ona-labelled argument that is unnumbered byM7 , (say A). For this,
we distinguish two cases.

1. Bislabelledin by Lab. In that case, takd to beB.

2. Bislabelledout by Lab. In that case, from the fact th&tis numbered withvo by MM 4, it
follows that the MIN+1 value of itan-labelled attackers iso, so it has arin-labelled attacker
(sayA) that is numbered witho by MM £, SO that is unnumbered bYIM. ;.

From the fact thatdrgs is a strongly admissible set, it follows thdtis defended by somérgs’ C
Args \ {A} which in its turn is again strongly admissible. Can it be theecthat all arguments in
Args” are numbered byM M7, ? If this were the case, then thet-labelled attackers ofl are also
numbered byM M. , (this follows from the fact thaExtendOut(MM7} ;) = () so A itself would
be numbered byM M. ., (this follows from the fact thakxtendIn(MM7,,) = (). Contradiction.
Hence, there exists at least one argumemdins’ (say A’) that is unnumbered b{ M7 ;.

Since Args’ is again a strongly admissible set, it follows thétis defended by somérgs” C
Args’\ {A’} that in its turn is again strongly admissible. Using simiteaisoning as above, we obtain
that Args” contains some argument’ that is unnumbered b M7 ;.

SinceArgs” is again a strongly admissible set, it follows th#t is defended by somdrgs” C
Args"\ {A”} that in its turn is again strongly admissible. Using simitsaisoning as above, we obtain
that.Args” contains some argumedt” that is unnumbered byt M7, etc.

Can this line of reasoning go on forever? Sindeys is a finite set of arguments, and every
step we are essentially removing at least one argumentibéns that at after some finite number
of steps, we will encounter a strongly admissible deys* which is equal to). However, in line
with the above reasoning, thiérgs# should still contain somé# that is unnumbered byAM: ;.
Contradiction. O

Theorem 5 from the COMMA submission then follows from Theoré and Theorem 5 of the
current technical report.

We now proceed to prove Theorem 1 of the COMMA submission. iflea is first to prove
equivalence to strongly admissible labellings.

Lemma 3. Let Args C Args’. If Ais strongly defended hylrgs then A is also strongly defended by
Args'.

Proof. Let Args, be Args, Args| be Args’, andA; be A. Assume towards a contradiction thét is
strongly defended bylrgs; but not strongly defended hytrgs’. By definition of strong defence, the
latter means that not each attackrof A; is attacked by som€; € Args)\{A;} s.t. C; is strongly
defended byArgs; \ {A1}. So there exists an attack®q of A; s.t. anyCy € Args) \ {A;} that
attacks it is not strongly defended byrgs’ \ {A1}. However, the fact thatl; is strongly defended
by Args; implies that each attackdB; of A; is attacked by somé; € Args; \ {A;} such that
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(1 is strongly defended bylrgs, \ {A1}. SoC, is strongly defended bylrgs; \ {A1} but not by
Args| \ {A1}. Notice that fromArgs C Args’ it follows that.Args \ {41} C Args’ \ {4;1}.

Let Args, be Args; \ {A1}, Args, be Args| \ {A1}, and A, be Cy. It then holds thatd is
strongly defended bylrgs, but not by.Args,,. Using similar reasoning as above, we obtain that there
exists aC, that is strongly defended bytrgs, \ { A2} but not by Args,, \ {As}.

Let Argss be Args, \ {Az}, Argsh be Argsh, \ {Az}, and A3 be Cy. It then holds thatds is
strongly defended bylrgs; but not by.Args,. Using similar reasoning as above, we obtain that there
exists aC' that is strongly defended bytrgs; \ {As} but not by Argss \ {As}.

Can this line of reasoning go on infinitly? The answer is n@abse at every step (perhaps with
the exception of the first one) we are effectively removingaiegument 4;) from Args. SinceArgs
contains only a finite number of arguments (as we consider fimite argumentation frameworks)
this means that at some moment we will encountei o1 which Args, = (). The fact that4; is
strongly defended bylrgs; then implies thatd; does not have any attackers. But thérwould also
be strongly defended hylrgs;. Contradiction. O

Theorem 6. Given an argumentation framewofKr, att). If Lab is a strongly admissible labelling,
thenArgs = Lab2Args(Lab) strongly defends each of its arguments.

Proof. Let MM, MM L MM, . . . be the numbering run dab, let MM, beUuse o MM,
and letMM ,;, be MM, U AddInf(MAM?,,). For eachi > 0 we definedrgs’ as{A4 € Ar |
Lab(A) = in and A is numbered byVIM? ,}. We now show, by induction over that eachArgs'
strongly defends each of its arguments.

basis (i = 0) It holds thatArgs = (), which trivially defends each of its arguments.

step (i is even) SupposeArgs® strongly defends each of its arguments, for some gven0. We
need to show tha14rgsi+¥ strongly defends each of its arguments as well. We first obser
that, sincei is even, MM, = MM}, U ExtendIn(MM,,), SOArgs' C Args't!. Let
A € Args™1. We distinguish two possibilities.

1. A € Args. From the fact thatdrgs® strongly defends each of its arguments (induction
hypothesis) it follows thatdrgs® strongly defendsd. Since Args’ C Argst! it then
follows from Lemma 3 thatdrgs'*! also strongly defendd.

2. A € Argstt1\ Args’. We first show that each attacké of A is attacked by some
C € Args'. Let B be an argument that attacks From the fact thatCab is an ad-
missible labelling, it follows thaCab(B) = out. From the fact thatd is numbered by
ExtendIn(MM?® ;) (this follows from A € Args™t! \ Args?) it then follows that all
out-labelled attackers aft (including B) are numbered bM M. ,. Since MM, is
a partial min-max numbering, it holds that for everyt-labelled argument that is num-
bered (for instanceé3) there exists ann-labelled attacker that is also numbered (68y
SoC € Args'. We also observe that ¢ Args® (this follows fromA € Argsi™t\ Args?).
To sum up, each attackd? of A is attacked by somé&' € Args’ = Args' \ {A} C
Argst1\ {A}. Furthermore, the induction hypothesis implies thatby being member
of Args’) is strongly defended bylrgs’ = Args’ \ {A} so that (Lemma 3¥' is strongly
defended bydrgsi*t!\ {A}, therefore satisfying the defintion of strong defence.

step ( is odd) SupposeArgs® strongly defends each of its arguments, for someiodd). We need
to show that,étrysi+1 strongly defends each of its arguments as well. We first @bdbat, since
i is odd, MMt} = MM?Y,, UExtendOut(MM?Y,,). SinceExtendOut does not number
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any in-labelled arguments, it follows thatrgs'™! = Args’, so we can immediately apply the
induction hypothesis and obtain the desired result.

O

Theorem 7. Given an argumentation framewo(klr, att). If Args C Ar strongly defends each of
its arguments theLab = Args2Lab(.Args) is a strongly admissible labelling.

Proof. Let MM, MM,  MM?2,,. ... bethe labelling run ofab. Let MM, beUe MM,
and letMM ., beAddInf (MM7,,). Recall thatCabis a strongly admissible labelling 84 M 4,
does not number any argument with Suppose, towards a contradiction, thdtM .., doesnumber
an argument (sayl;) with co. Since MM ., only numbers arguments that are labelledor out,
we distinguish two cases.

1. Lab(A;) = in. The fact thatMM £4,(A1) = oo implies thatA, is unnumbered bypMM7. ;.
From the fact thaExtendIn(MM7},,) = 0 it then follows that there is abut-labelled at-
tacker (sayB;) of A; that is unnumbered byt M. ,,. From the fact theExtendOut(MM},;) =
( it follows that eachin-labelled attacker aB; is unnumbered by M7 .. The fact thatdrgs
strongly defendsd; (the fact thatCab(A;) = in implies that4; € Args, and.Args strongly
defends each of its arguments) then implies there(is a Args \ {A;} that attacks3; and is
strongly defended bylrgs \ {4 }.

Let A, be equal ta” (a different name for the same argument), is strongly defended by
Args \ {A1}. However, it is unnumbered byt M7 . Using similar reasoning as above,
we obtain that there is an unnumbered (byM7 ;) Co € Args \ {A1, A2} that is strongly
defended byArgs \ {A;, A2}

Let A3 be equal ta’; (a different name for the same argument; is strongly defended by
Args \ {A1, A2}. However, it is unnumbered byt M7 .. Using similar reasoning as above,
we obtain that there is an unnumbered (byM 7 ;) Cs € Args\ {41, Az, A3} thatis strongly
defended byArgs \ {A1, Aa, As}.

What happens if we continue to perform steps like the abonesssence, at every step we are
removing some argumedrt; from Args. SinceArgs contains only a finite number of arguments
(this is because we only consider finite argumentation fremnies) this can be done only a finite
number of times (say times). Thatis, aften steps, we obtain a sgtrgs\{A;, As,..., A} =

() and some argumeidt,, that is strongly defended by this set, which implies thatdoes not
have any attackers. From the fact tBatendIn(MM7} ) = 0 it then follows thatC,, is
numbered (with) by MM .. Contradiction.

2. Lab(A;) = out. The fact thatM M (A1) = oo implies thatA, is unnumbered by M7 ;.
From the fact thaExtendOut(MM7},,) = 0 it then follows that eachn-labelled attacker of
Ay is unnumbered byMM7 . From the fact thatCab is an admissible labelling, it follows
that there is at least orim-labelled attacker ofi; (say A}), which then has to be unnumbered
by MM} ,,- The rest of the proof then follows the same structure asriidqus point.

O
We are now ready to prove Theorem 1 of the COMMA submission.
Theorem 8(Theorem 1 of the COMMA submission)et (Ar, att) be an argumentation framework

and Args C Ar. Args is a strongly admissible set iff eache Args is strongly defended hytrgs.
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Proof. We prove this using strongly admissible labellings.

“=" Let.Args be a strongly admissible set. Then (Theorenf&) = Args2Lab(.Arygs) is a strongly

admissible labelling. Therefore (Theorem.&)ys’ = Lab2Args(Lab) strongly defends each
of its arguments. Also, from the definitions fgs2Lab andLab2Args it follows that Args’ =
Args.

Let.Args strongly defend each of its arguments. Then (Theoreffub)= Args2Lab(Args) is

a strongly admissible labelling. Therefore (Theorenmd4ys’ = Lab2Args(Lab) is a strongly
admissible set. Also, from the definitions bfgs2Lab andLab2Args it follows that Args’ =

Args.

O
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