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Abstract. The spaces BG2 and BDI.4/ have the property that their mod 2 cohomology is
given by the rank 3 and 4 Dickson invariants respectively. Associated with these spaces,
one has the classifying spaces of the finite groups BG2.q/, for an odd prime power q, and
the exotic family of classifying spaces of 2-local finite groups BSol.q/. In this article we
compute the loop space homology of BG2.q/^2 and BSol.q/ for all odd primes q, as Hopf
algebras over the Steenrod algebra, and the associated Bockstein spectral sequences.
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It is well known [5, 18, 12] that the mod 2 Dickson invariants of rank n,

H�.BZ=2/n;F2/
GLn.F2/ D P Œd1; d2 : : : ; dn�; jdi j D 2

n
�2n�i ; i D 1; : : : ; n;

where invariants are taken with respect to the natural action of the general linear
group, are realisable as the mod 2 cohomology of a space if and only if n � 4.
For n D 2; 3 the corresponding spaces are the classifying spaces of the Lie groups
SO.3/ and G2 respectively. The rank 4 Dickson invariants are realisable by a space
BDI.4/, which was constructed by Dwyer and Wilkerson [5] and is exotic in the
sense that it is not homotopy equivalent to the classifying space of any compact
Lie group.

In 1994 Benson [2] introduced a family of spaces BSol.q/, one for each odd
prime power q, closely related to BDI.4/, which he claimed realise the exotic
fusion patterns studied by Solomon [19] twenty years earlier. He obtained this
family of spaces by considering the pullback of the diagram

BDI.4/
 q>1
����! BDI.4/ � BDI.4/

�
 ���� BDI.4/;

where  q is the degree q unstable Adams operation constructed by Notbohm [15].
In [11] the first named author and Oliver showed that the patterns studied by
Solomon form saturated fusion systems. They also showed that these fusion sys-
tems admit associated centric linking systems and thus give rise to a family of
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1162 R. Levi and N. Seeliger

2-local finite groups (see [4]). The “classifying spaces” of these 2-local finite
groups are also named BSol.q/ and are shown to coincide with Benson’s family
[11, Theorem 4.5]. The family BSol.q/ provides one of the most interesting col-
lections of p-local finite groups, in that they are all exotic and to date the only
exotic systems known at the prime 2. The module structure of H�.BSol.q/;F2/
was calculated by Benson in [2], and the algebra and A2-module structure were
determined by Grbic [7], who also computed the Bockstein spectral sequence for
these spaces.

In this article we consider the spaces BG2.q/^2 and BSol.q/ for all odd prime
powers q and present a calculation of their mod 2 loop space homology. There
are strong results known on the homotopy type of �BG^p when G is a finite
group [10], but not much is known on loop spaces of exotic classifying spaces.
Furthermore, as we shall see these two families exhibit very systematic behaviour
(see Remark 1 at the end of the introduction) which might be worth exploring
further. This motivates our calculations.

Throughout this paper H�.�/ and H�.�/ will mean mod 2 homology and co-
homology respectively. Different coefficients will always be explicitly specified.
Subscripts on homology or cohomology classes will always denote their degrees.
The letters P , E, T and � will be used to denote polynomial, exterior, tensor
and divided power algebras respectively. By convention, we will always use the
notation T Œx� to denote the tensor algebra on a single odd-dimensional genera-
tor, although over F2 the tensor algebra on a single generator in any dimension is
graded commutative and thus isomorphic to the polynomial algebra on the same
generator. The spectral sequences of Serre, Bockstein and Eilenberg–Moore will
be used in our calculations and will be abbreviated as SSS, BSS and EMSS re-
spectively.

For any integer n let �2.n/ denote the highest power of 2 dividing n. Our first
result determines the mod 2 loop space homology of BG2.q/^2 , for any odd prime
power q.

Theorem A. Fix an odd prime power q. Then

H�.�BG2.q/^2 / Š P Œa2�=.a
2
2/˝ P Œa4; b10�˝EŒx3; x5�˝ P Œz6�=.z

2
6/;

as modules over H�.�G2/ Š P Œa2�=.a22/˝ P Œa4; b10�. Furthermore:

� The relations which determine the algebra extension are given by x23 D x25 D

z26 D 0, Œa2; z6� D a24, Œa4; z6� D b10 C a2a
2
4, and Œb10; z6� D a44. All other

commutators of generators are trivial.

� The reduced coproduct is given by �.a4/ D a2 ˝ a2 and �.z6/ D x3 ˝ x3,
while all other generators are primitive.
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Loop space homology associated with the mod 2 Dickson invariants 1163

� The action of the dual Steenrod algebra is determined by

a2 x3 a4 x5 z6 b10

Sq1� 0 0 0 0 x5 0

Sq2� 0 0 a2 x3 0 a24

and the Steenrod axioms.

� The homology Bockstein spectral sequences are determined by

q � 1.4/ a2 x3 a4 x5 a2x3 z6 b10 x5z6

Sq1� 0 0 0 0 0 x5 0 0

ˇ
r2
� 0 a2 0 � 0 � 0 b10

ˇ
r2C1
� � � 0 � a4 � � �

where r2 D �2.q2 � 1/. The rubrics marked “�” mean that the corresponding
element vanishes in the respective page of the BSS.

Next we have the analogous result for BSol.q/.

Theorem B. Fix an odd prime power q. Then

H�.�BSol.q// Š P Œa6�=.a26/˝ P Œb10; c12; e26�

˝EŒy7; y11; y13�˝ P Œy14�=.y
2
14/;

as a module over H�.�DI.4// Š P Œa6�=.a26/˝ P Œb10; c12; e26�. Furthermore:

� The relations which determine the algebra extension are given by y27 D y211 D

y213 D y214 D 0, Œa6; y14� D b210, Œb10; y14� D c212, Œc12; y14� D e26 C a6b
2
10

and Œe26; y14� D b410. All other commutators of generators are trivial.

� The reduced coproduct is given by �.c12/ D a6 ˝ a6 and �.y14/ D y7 ˝ y7.
All other generators are primitive.

� The action of the dual Steenrod algebra is determined by

a6 y7 b10 y11 c12 y13 y14 e26

Sq1� 0 0 0 0 0 0 y13 0

Sq2� 0 0 0 0 b10 y11 0 c212

Sq4� 0 0 a6 y7 0 0 0 0

and the Steenrod axioms.

Brought to you by | University of Aberdeen
Authenticated | r.levi@abdn.ac.uk author's copy

Download Date | 11/6/12 2:17 AM



1164 R. Levi and N. Seeliger

� The homology Bockstein spectral sequence is determined by the table

a6 y7 b10 y11 c12 y13 y14 a6y7 y13y14

Sq1� 0 0 0 0 0 0 y13 0 0

ˇ
r4�1
� 0 0 0 b10 0 � � 0 e26

ˇ
r4
� 0 a6 � � 0 � � 0 �

ˇ
r4C1
� � � � � 0 � � c12 �

where r4 D �2.q4 � 1/. The rubrics marked “�” mean that the corresponding
element vanishes in the respective page of the BSS.

Remark 1. For each n � 3 consider the Hopf algebra �n over F2, given as fol-
lows:

�n
def
D P Œa�=a2 ˝ P Œb2; : : : ; bn�1; c�˝EŒx1; : : : ; xn�1�˝ P Œy�=y

2;

as a module overP Œa�=a2˝P Œb2; : : : ; bn�1; c�, where jaj D 2n�1�2, jbkj D 2n�
2n�k�2 for 2 � k � n�1, jcj D 2nC1�6, jxj j D 2n�2n�j�1 for 1 � j � n � 1
and jyj D 2n � 2. The relations which determine the algebra structure are x2j D 0
for all j , y2 D 0, Œa; y� D b22 , Œbk; y� D b2

kC1
, 2 � k � n � 2, Œbn�1; y� D

c2Cab22 and Œc; y� D b42 . All other commutators of generators are trivial. The re-
duced coproduct is given by �.b2/ D a˝ a and �.y/ D x1˝ x1, while all other
generators are primitive.

Furnish the Hopf algebra�n with a coaction of the dual Steenrod algebra as fol-
lows: Sq2

n�2
� .b2/ D a, Sq2

n�k

� .bk/ D bk�1, 3 � k � n�1, Sq2
n�k

� .xj / D xj�1,
2 � j � n � 1, Sq1�.y/ D xn�1, and Sq2�.c/ D b

2
n�1.

Then, with the exception of the BSS structure, which we do not attempt to write
in this generality, Theorems A and B are given as particular cases of�n for n D 3
and 4 respectively.

The paper is organised as follows. In Section 1 we record some basic facts
which form a basis for our calculation. The loop space homology of BG2.q/^2 and
BSol.q/ are calculated in Sections 2 and 3 respectively.

Some of the calculations presented here may be possible to carry out more
easily using the general methods developed recently by Daisuke Kishimoto and
Akira Kono in [8]. In this paper the authors develop a clever method of calculat-
ing the cohomology of the twisted loop space of a space X with respect to a self
map f . The pullback space in the Quillen–Friedlander fibre square (1.1) below is
an example of such a twisted loop space. The authors are very grateful to Kono for
the interest he showed in our results, and for pointing out an error in the calculation
of the algebra structures in an earlier version of this paper.
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Loop space homology associated with the mod 2 Dickson invariants 1165

1 Preliminaries

Recall the Quillen–Friedlander fibre square [6] for groups of Lie type. If G is a
complex reductive Lie group and G.q/ is the corresponding algebraic group over
the field of q elements, then after completion at a prime p not dividing q there is a
homotopy fibre square

BG.q/^p
//

�q

��

BG^p

�

��
BG^p

1> q

// BG^p � BG
^
p

(1.1)

where  q is the q-th unstable Adams operation and� is the diagonal map. In par-
ticular, since for any self map f WX ! X , hofib.X 1>f

���! X �X/ ' �X , one has
a fibration sequence of loop spaces and loop maps:

�BG.q/^p ��! G^p
f q

��! G^p ; (1.2)

obtained by backing up the fibration in the left column of the pullback diagram
above twice. All p-compact groups, in particular DI.4/, admit unstable Adams
operations of degree q, where q is a p-adic unit. The pullback space arising from
the construction of a fibre square analogous to diagram (1.1) for the operation  q

on DI.4/ is defined by Benson [2] to be BSol.q/.
We next record three well-known cohomology algebras, which will be used in

our calculation. As a convention we will use Roman alphabet to denote classes in
mod 2 homology and cohomology and Greek letters to denote classes in integral
homology and cohomology. A good reference for the cohomology of Lie groups
and their classifying spaces is [14]. Throughout the paper we will assume the
reader is familiar with the basics of Hopf algebras. An excellent reference is [13].

The Spaces BSU.3/, SU.3/ and �SU.3/. Recall

H�.BSU.3// Š P Œu4; u6� and H�.BSU.3/;Z/ Š P Œ
4; 
6�; (1.3)

both as algebras, with Sq2.u4/ D u6. Recall also that

H�.SU.3/;Z/ Š EŒ�3; �5�; (1.4)

as a Hopf algebra. An elementary calculation, using the EMSS, yields

H�.�SU.3/;Z/ Š P Œ˛2; ˛4� (1.5)
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1166 R. Levi and N. Seeliger

as an algebra, with the Hopf algebra structure determined by �.˛4/ D ˛2 ˝ ˛2,
where � denotes the reduced diagonal. Since these algebras are torsion free,

H�.SU.3// Š H�.SU.3/;Z/˝ F2 Š EŒx3; x5�

and
H�.�SU.3// Š H�.�SU.3/;Z/˝ F2 Š P Œa2; a4�;

as Hopf algebras, with Sq2�.x5/ D x3 and Sq2�.a4/ D a2.

The Spaces BG2, G2 and �G2. There is an algebra isomorphism

H�.BG2/ Š P Œu4; u6; t7�; (1.6)

with Sq2.u4/ D u6 and Sq1.u6/ D t7. These are the rank 3 mod 2 Dickson
invariants. The group SU.3/ is a subgroup of G2 and the inclusion induces the
obvious projection on mod 2 cohomology. Recall also that

H�.G2/ Š EŒx3; x5; x6� (1.7)

with Sq1�.x6/ D x5 and Sq2�.x5/ D x3. The Hopf algebra structure is determined
by �.x6/ D x3 ˝ x3.

Using the BSS for H�.G2/, we see that

Hi .G2;Z/ Š

´
Z; i D 0; 3; 11; 14;

Z=2; i D 5; 8;

while all other homology groups vanish.
The integral loop space homology of G2 as a Hopf algebra was computed by

Bott [3]. Reduction mod 2 is immediate and gives

H�.�G2/ Š P Œa2; a4�=.a22/˝ P Œb10�; (1.8)

as an algebra. (Notice also that in integral homology the square of the 2-dimen-
sional generator is twice the 4-dimensional generator.) The Hopf algebra structure
of H�.�G2/ is determined by N�.a4/ D a2 ˝ a2, while b10 can be chosen to
be primitive (if some choice of b10 is not primitive, then b010 D b10 C a

2
4a2 is).

It follows that in cohomology the dual of a4 is the square of the dual of a2, and so
one has Sq2�.a4/ D a2.

Dually, one has

H�.�G2/ Š P Œa2�=.a42/˝ �Œa8; b10�;

where a2 and b10 are the duals of a2 and b10 respectively, and a8 is dual to a24.
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Deciding the action of the homology Steenrod squares on b10 requires a calcula-
tion. The authors are grateful to Akira Kono for sketching for them the following
argument, which follows the lines of [8]. Let fG2 denote the 3-connected cover
of G2. Thus there is a principal fibration

K.Z; 2/ ��! fG2 ��! G2:

Using the mod-2 cohomology SSS for this fibration, an elementary computation
shows that

H�.fG2/ Š P Œu8�˝EŒy9; z11�;
where u8 restricts to �42 2 H

8.K.Z; 2//. The classes y9 and z11 correspond to the
infinite cycles in the spectral sequence given by �22b5 and �2a33, where a3 and b5
denote the generators of H�.G2/. By analysing the SSS for the fibrationfG2 ��! G2 ��! K.Z; 3/;

it is easy to see that Sq1.u8/ D y9 and Sq2.y9/ D z11. Finally, using the spectral
sequence for

�G2 ��! K.Z; 2/ ��! fG2;
one observes that �2 restricts to a2, and so �42 restricts trivially and is therefore
the image of u8 under the inflation map. The rest of the spectral sequence is
determined by letting y9 and z11 be the image of a8 and b10 under the transgres-
sion. In particular, it follows that Sq2.a8/ D b10. Dually, in homology we have
Sq2�.b10/ D a

2
4.

The Spaces BDI.4/ and DI.4/. Let BDI.4/ denote the classifying space of the
2-compact group DI.4/ (see [5]). Thus there is an algebra isomorphism

H�.BDI.4// Š P Œv8; v12; v14; s15� (1.9)

with Sq4.v8/ D v12, Sq2.v12/ D v14 and Sq1.v14/ D s15. One also has

H�.DI.4// Š EŒy7; y11; y13; y14� (1.10)

with Sq4.y7/ D y11, Sq2.y11/ D y13 and Sq1.y13/ D y14. The Hopf algebra
structure is determined by �.y14/ D y7 ˝ y7.

2 Loop space homology of BG2.q/^

2
.

In this section we calculate the mod 2 loop space homology of BG2.q/^2 . To avoid
an awkward notation, we use b.�/ to denote .�/^2 where it makes sense to do so.

To calculate the loop space homology of BG2.q/^2 , consider first the Friedlander
fibre square (1.1) for G2. Taking iterated fibres on the left column of the square,
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1168 R. Levi and N. Seeliger

we get a sequence of fibrations

�cG2 ��! �BG2.q/^2 ��! cG2 f q

��! cG2 ��! BG2.q/^2 ��! BcG2;
where cG2 denotes .G2/^2 . For the actual calculation, we use the SSS for the fibra-
tion

�cG2 ��! �BG2.q/^2 ��! cG2: (2.1)

Thus, we start by calculating the map induced by f q on homology.
Expanding the Friedlander fibre square, one sees that f q is the composite

cG2 1>� q

�����! cG2 �cG2 �1>1
�����! cG2 �cG2 �

�����! cG2:
There is an isomorphism of modules over P Œu4; u7; u26�,

H�.BG2/ Š P Œu4; u7; u26�˝EŒu6�;

with Sq1.u6/ D u7 and Sq2.u4/ D u6. Considering this as a differential graded
algebra with the differential given by Sq1 and taking cohomology, we get the
E2 term of the BSS for H�.BG2/,

E2 Š P Œu4; u
2
6�;

which is concentrated in even degrees, and so E2 D E1. Hence the integral co-
homology of BG2 is given by

H�.BG2;Z/ Š P Œu4; u7; v12�=.2u7/:

Notice that u4 and v12 are torsion free classes and . q/�.u4/ D q2u4, while
. q/�.v12/ D q6v12. On the other hand, since the class u7 is of order 2, every
element in the ideal it generates is of order 2, and since  q is a mod-2 equivalence
for q odd, the ideal generated by u7 is fixed under . q/�.

Let �i denote a generator forHi .G2;Z/ for those values of i where the respec-
tive homology group is nontrivial. Using the known algebra structure of H�.G2/,
it is easy to conclude that �3, �5 and �11 are indecomposable and that �3�5 D �8
and �3�11 D �14. Using the SSS for the path loop fibration over BG2 and nat-
urality, we conclude that � q� .�3/ D q2�3 and � q� .�11/ D q6�11, while
� 

q
� .�5/ D �5 and � q� .�8/ D �8. Reducing to mod-2 homology, both . q/�

and .� q/� clearly induce the identity map.
Using the Künneth formula, we see that for n � 11

Hn.G2 � G2;Z/ Š
M
iCjDn

Hi .G2;Z/˝Hj .G2;Z/:
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Loop space homology associated with the mod 2 Dickson invariants 1169

This and the information about � q� allows us to easily calculate the map f q�
on H�.G2;Z/. One has

f
q
� .�3/ D .q

2
� 1/�3; f

q
� .�5/ D 0 and f

q
� .�11/ D .q

6
� 1/�11:

Therefore, on mod-2 homology, f q� is trivial.
Now consider fibration (2.1), which is induced from the path-loop fibration over

G2 via the map fq . Since f q� is trivial on mod-2 homology, the SSS for (2.1) col-
lapses at E2, and it follows that for all odd q there is an isomorphism of modules
over H�.�G2/

H�.�BG2.q/^2 / Š
®
P Œa2�=.a

2
2/˝ P Œa4; b10�

¯
˝EŒx3; x5�˝P Œz6�=.z

2
6/: (2.2)

The structure of H�.�BG2.q/^2 / as a module over the dual Steenrod algebra
follows from the information we have about the two factors. Namely, one has
Sq2�.a4/D a2, Sq2�.x5/ D x3, Sq2�.b10/ D a

2
4 and Sq1�.z6/ D x5.

For dimension reasons, the classes a2 and x3 are primitive with respect to the
diagonal in H�.�BG2.q/^2 /. The class x5 can be chosen to be primitive since
for any choice, �.x5/ D A.a2 ˝ x3 C x3 ˝ a2/, for some A 2 F2, and so
x5CAa2x3 is primitive, has the same action of Sq2� as x5 and represents the same
class moduloH�.�G2/. One also has�.a4/ D a2˝a2 sinceH�.�G2/ is a Hopf
subalgebra. The class z6 can be chosen to have reduced diagonal x3˝x3 since for
any choice of representative one has�.z6/ D x3˝x3CB.a2˝a4Ca4˝a2/, and
so z06 D z6CBa2a4 is congruent to z6 moduloH�.�G2/, has the same action of
Sq1� as z6 and has the required diagonal. Finally, the class b10 is primitive since it
is the image of the corresponding class in H�.�G2/.

Next, we compute the algebra extension. To do that, fix the representatives
for x3; x5 and z6 as above. Notice first that x23 D 0 and z26 D 0 since there
are no primitives in the respective dimensions. Similarly, x5 is primitive, and so
x25 D Ab10 for some A 2 F2. Applying Sq2� to both sides, we see that A D 0, so
x25 D 0.

The following table lists all basic commutators involving x3, x5 and z6, which
we proceed by examining.

5 7 8 9 10 11 13 15 16

Œa2; x3� Œa2; x5� Œa2; z6� Œa4; x5� Œa4; z6� Œx5; z6� Œx3; b10� Œx5; b10� Œz6; b10�

Œx3; a4� Œx3; x5� Œx3; z6�

We will show that

Œa2; z6� D a
2
4; Œa4; z6� D b10 C a

2
4a2 and Œb10; z6� D a

4
4;

while all the other commutators in the table vanish.
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1170 R. Levi and N. Seeliger

Observe first that every nonprimitive class among the algebra generators of
H�.�BG2.q/^2 / has a reduced diagonal consisting of a single element. The com-
mutator of two primitives is always primitive, and if a is a primitive and �.b/ D
c ˝ c, then

�.Œa; b�/ D c ˝ Œa; c�C Œa; c�˝ c: (2.3)

Thus the commutators Œa2; x3�, Œa2; x5�, Œx3; x5�, Œx3; b10� and Œx5; b10� are auto-
matically primitive.

Since Œa2; x3� D Ax5, applying Sq2� to both sides, it follows that A D 0, so a2
and x3 commute. Next, one has�.a4/ D a2˝a2,�.z6/ D x3˝x3, Œa2; x3� D 0.
Applying (2.3) to Œx3; a4� and Œa2; z6�, one sees that these commutators are also
primitive. The only other primitive in dimension 7 is Œa2; x5�, and so Œx3; a4� D
AŒa2; x5�, for some A 2 F2. Similarly,

Œa2; z6� D BŒx3; x5�C Ca
2
4

as Œx3; x5� and a24 are the only other primitives in dimension 8. But Sq1� applied to
both sides yields 0 on the right hand side and Œa2; x5� on the left hand side. Hence
a2 commutes with x5, and consequently a4 commutes with x3.

By a similar method, we analyse Œa4; x5�, Œx3; z6�, Œx3; x5� and Œx5; z6�. First,
by direct calculation and the results already listed above,

�.Œa4; z6�/ D a2 ˝ Œa2; z6�C Œa2; z6�˝ a2:

Since we do not yet know whether a2 commutes with z6, we write the commuta-
tor Œa4; z6� in general form as Œa4; z6� D Ab10 C Ba

2
4a2, for some A;B 2 F2.

Applying Sq1� to both sides, we have Œa4; x5� D 0. Now, since x3 and x5 com-
mute, Œx5; z6� is primitive. Since x5 commutes with both a2 and a4, there are
no other nonzero primitives in dimension 11, and so Œx5; z6� D 0. Applying Sq2�
and then Sq1�, we conclude that both Œx3; z6� and Œx3; x5� vanish.

Next, notice that Œz6; b10� is a primitive class. Hence Œz6; b10� D Aa44 for some
A 2 F2. Applying Sq1� and then Sq2� to both sides, and using the fact that x5 and
a4 commute, we conclude that b10 commutes with x5 and x3.

It remains to analyse the commutators Œa2; z6�, Œa4; z6� and Œb10; z6�. To do that,
recall from [7] that

H�.BG2.q// D P Œu4; u6; t7; y3; y5�=.y25 C y3t7 C y
2
3u4; y

4
3 C y5t7 C y

2
3u6/:

Denote classes in H�.BG2.q// by adding a bar to the corresponding cohomology
class, and consider the cobar spectral sequence for H�.�BG2.q/^2 /. Thus

E2 Š CotorH�.BG2.q/
^
2 /.F2;F2/ Š H�.T .†

�1.H�.BG2.q/^2 //; dE //;
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Loop space homology associated with the mod 2 Dickson invariants 1171

where dE is the differential on T .†�1.H�.BG2.q/^2 /// induced by the reduced
diagonal [1]. If x; y 2 H�.BG2.q/^2 / are any classes, we denote the correspond-
ing elements of the tensor algebra by Œx�, Œy� etc. and their product in the tensor
algebra structure by standard bar notation Œxjy�.

Consider the homology classes y25 , y3t7 and y23u4. The corresponding reduced
diagonals are y5˝y5, y3˝ t7C t7˝y3 and y3˝y3u4Cy3u4˝y3Cy23˝u4C
u4 ˝ y

2
3 respectively. Hence

dE .Œy
2
5 �/ D Œy5�

2; dE .Œy3t7�/ D ŒŒy3�; Œt7��

dE .Œy
2
3u4�/ D ŒŒy3�; Œy3u4��C ŒŒy

2
3 �; Œu4��:

On the other hand, since y25 C y3t7 C y
2
3u4 D 0 in H�.BG2.q//, we have

Œy5�
2
C ŒŒy3�; Œt7�� D ŒŒy3�; Œy3u4��C ŒŒy

2
3 �; Œu4��:

Furthermore, Œy5� and Œy3� and Œt7� are all cycles, which are permanent for dimen-
sional reasons and hence represent a4, a2 and z6 respectively in loop space homol-
ogy. The equations above show that the expression Œy5�2 C ŒŒy3�; Œt7�� is a bound-
ary, and so we obtain the relation Œa2; z6� D a24. Next, notice that Sq2�.Œa4; z6�/ D
Œa2; z6� D a

2
4, while �.Œa4; z6�/ D a2 ˝ a24 C a

2
4 ˝ a2. Hence we conclude that

Œa4; z6� D b10 C a
2
4a2 D b10 C Œa2; z6�a2:

Finally, since b10 D Œa4; z6�C a24a2, we directly calculate

Œb10; z6� D ŒŒa4; z6�C a
2
4a2; z6� D ŒŒa4; z6�; z6�C Œa

2
4a2; z6�

D Œa4; z
2
6 �C ŒŒa2; z6�a2; z6�

D 0C Œa2; z6�
2
D a44:

This completes the computation of the Hopf algebra structure. To summarise, we
have shown that

H�.�BG2.q/^2 / Š P Œa2�=.a
2
2/˝ P Œa4; b10�˝EŒx3; x5�˝ P Œz6�=.z

2
6/;

as modules overH�.�BG2/. The relations which determine the algebra extension
are given by x23 D x25 D z26 D 0, Œa2; z6� D a24, Œa4; z6� D b10 C a2a

2
4 and

Œb10; z6� D a44. All other commutators of generators are trivial. The coproduct
is given by �.a4/ D a2 ˝ a2, �.z6/ D x3 ˝ x3, and all other generators are
primitive.
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1172 R. Levi and N. Seeliger

It remains to compute the Bockstein spectral sequence for H�.�BG2.q/^2 /.
This is done by calculating the integral SSS for the fibration in the top row of the
diagram

�cG2 // �BG2.q/^2

��

// cG2
f q

��

�cG2 // � // cG2 :
We use naturality and the action of f q� computed above. First, analyse the SSS
for the bottom row, using the same notation we have been using before. One has
d3.�3/ D a2, and since in integral homology a22 D 2a4, d3.a2�3/ D 2a4. Hence
d3.a

k
4�3/ D ak4a2 and d3.ak4a2�3/ D 2akC14 . Since �8 D �3�5, it follows

that d3.�8/ D a2�5, but d3.a2�8/ D 0. Similarly, d3.�14/ D a2�11. In ad-
dition, one must have d3.�11/ D a2�8 since otherwise a2�8 will be an infinite
cycle. This determines d3. The next nontrivial differential is d5, which takes
�5 isomorphically to a4, which in E5 is a class of order 2. Finally, d11 takes
�11 to b10, and E12 D E1. Now, using naturality of the spectral sequence and
our knowledge of f q� , it follows that in the SSS for the top row in the diagram,
d3.�3/ D .q2 � 1/a2, d5.�5/ D 0 and d11.�11/ D .q6 � 1/b10. This infor-
mation suffices for the computation of the BSS. The integral calculation yields in
particular the observation that a2 is a class of order .q2 � 1/, while b10 has order
.q6 � 1/.

Now, consider H�.�BG2.q/^2 / as a module over H�.�G2/ as in (2.2):

H�.�BG2.q/^2 / Š
®
P Œa2�=.a

2
2/˝ P Œa4; b10�

¯
˝EŒx3; x5�˝ P Œz6�=.z

2
6/:

Taking the Sq1� homology, one has

E2 Š P Œa2�=.a
2
2/˝ P Œa4; b10�˝EŒx3; h11�;

where the class h11 is represented by theSq1� cyclex5z6. Notice that for any odd q,
r6 D �2.q

6�1/ D �2.q
2�1/ D r2. Hence the next nontrivial Bockstein operator

is ˇr2
� .x3/ D a2, and ˇr2

� .h11/ D b10. It now follows that ˇr2C1
� .a2x3/ D a4 and

Er2C2 D E1.
The results are summarised in the following table.

q � 1.4/ a2 x3 a4 x5 a2x3 z6 b10 x5z6

Sq1� 0 0 0 0 0 x5 0 0

ˇ
r2
� 0 a2 0 � 0 � 0 b10

ˇ
r2C1
� � � 0 � a4 � � �

This completes the proof of Theorem A.
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3 Loop space homology of BSol.q/

For any odd prime power q the 2-local finite group Sol.q/ is defined in [11]. The
starting point is a family of saturated fusion systems FSol.q/ over the Sylow 2-sub-
group of Spin7.q/. These fusion systems were originally defined by Ron Solo-
mon [19] as a part of his contribution to the classification of finite simple groups.
He did not use the language of fusion systems but essentially presented the entire
family and studied its general behaviour. In [2] Benson gave a construction of a
family of spaces BSol.q/, which he claimed realise the fusion patterns defined by
Solomon. These spaces are given as the pullback spaces in the diagram

BSol.q/

��

// BDI.4/

�
��

BDI.4/
 q>1

// BDI.4/�2

(3.1)

where � is the diagonal and  q is the degree q unstable Adams operation on
BDI.4/ constructed by Notbohm [15]. The paper [11] unifies the two construc-
tions. On one hand it is shown that the fusion patterns defined by Solomon are
indeed saturated fusion systems, each of which admits an associated centric link-
ing system LSol.q/, and on the other hand that the classifying spaces of the cor-
responding 2-local finite groups BSol.q/ def

D jLSol.q/j
^
2 coincide with the spaces

constructed by Benson, whose approach allows a calculation of the mod 2 co-
homology of BSol.q/, as demonstrated in [7]. We shall also utilize Benson’s
pullback diagram in the current work.

In what follows we will denote �BDI.4/ by DI.4/ (not to be confused with the
notation DI.n/ which is sometimes used to denote the rank n algebra of Dickson
invariants).

As before, one has a fibration of loop spaces and loop maps

�DI.4/ ��! �BSol.q/ ��! DI.4/;

resulting from looping the left column in Benson’s pullback diagram (3.1). Thus
our first task is to compute the loop space homology of DI.4/.

Proposition 3.1. There is an isomorphism of Hopf algebras

H�.�DI.4// Š P Œa6�=.a26/˝ P Œb10; c12; e26�;

where a6, b10 and e26 are primitive, and �.c12/ D a6 ˝ a6. The action of the
dual Steenrod algebra is determined by Sq4�.b10/ D a6, Sq2�.c12/ D b10 and
Sq2�.e26/ D c

2
12.
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1174 R. Levi and N. Seeliger

Proof. Consider the homology EMSS for the path-loop fibration over DI.4/. The
E2 term is given by

CotorH�.DI.4//.F2;F2/ Š ExtH�.DI.4//.F2;F2/:

The isomorphism holds since H�.DI.4// is of finite type. To calculate the right
hand side, consider the differential graded Hopf algebra

P�
def
D .P Œx7�=.x

4
7/˝EŒy11; z13�/˝ .P Œ Oa6�=. Oa

4/˝ �Œ Ob10; Ot24; Oe26�/;

where the left factor (which is isomorphic to H�.DI.4//) is primitively generated
and the right factor is the dual of the Hopf algebra P Œa6�=.a2/˝P Œb10; c12; e26�,
where all generators but c12 are primitive and �.c12/ D a6 ˝ a6. We denote by

k. Ob/ the generator of �Œ Ob10� in dimension 10k. Thus, in particular, 
1. Ob/ D b10
and 
0. Ob/ D 1. We use similar notation for the generators corresponding to Oc12
and Oe26. Thus, as an F2-algebra, �Œ Ob10; Ot24; Oe26� can be written asO

n�0

EŒ
2n. Ob/; 
2n.Ot /; 
2n. Oe/�;

where we omit subscripts for short. The differential on P� is given on generators
by

� d.x/ D d.y/ D d.z/ D 0,

� d. Oa/ D x,

� d.
2n. Ob// D y
2n�1. Ob/,

� d. Oa2/ D z,

� d.
2n.Ot // D z Oa2
2n�1. Oc/ and

� d.
2n. Oe// D x3 Oa
2n�1. Oe/.

Extend the definition to the entire algebra by requiring that the differential satisfies
the Leibniz rule. Notice that the differential is, in particular, a map of graded al-
gebras over H�.DI.4// D P Œx7�=.x

4
7/ ˝ EŒy11; z13�. In particular, P� is a free

differential gradedH�.DI.4//-module. Furthermore, as a chain complex it is split
as the tensor product of the following acyclic subcomplexes:

¹P Œx7�=.x
4
7/˝ P Œ Oa6�=. Oa

4
6/˝EŒz13�˝ �ŒOt24; Oe26�º ˝ ¹EŒy11�˝ �Œ

Ob10�º:

Hence P� is a free H�.DI.4//-resolution of F2.
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Since P� is a free differential graded H�.DI.4//-module, it is immediate that

E2 D ExtH�.DI.4//.F2;F2/ D H
�.HomH�.DI.4//.P�;F2//

Š HomF2
.P Œ Oa6�=. Oa

4
6/˝ �Œ

Ob10; Ot24; Oe26�;F2/

Š P Œa6�=.a
2
6/˝ P Œb10; c12; e26�:

(3.2)

Since this module is concentrated in even degrees, there are no possible nontrivial
differentials, so E2 D E1. By inspection of the SSS for the path-loop fibration
over DI.4/, one easily obtains Sq4�.b10/ D a6 and Sq2�.c12/ D b10.

To calculate further Steenrod operations, we use a similar trick to the one used
to �G2. Let X denote the 7-connected cover of DI.4/. Thus there is a fibration

X ��! DI.4/
x7
��! K.Z; 7/:

To calculate H�.X/, we use Smith’s Big Collapse Theorem [17]. Notice that x�7
is onto and its kernel consists of the ideal generated by all the polynomial genera-
tors ofH�.K.Z; 7//, different from �7, Sq4�7 and Sq6�7, along with �47, .Sq6�7/2

and .Sq4�7/2. This collection of generators forms a regular sequence in the co-
homology algebra H�.K.Z; 7// and so the conditions of Smith’s theorem are sat-
isfied, and H�.X/ can be written additively as the exterior algebra on infinitely
many generators, corresponding in a one-to-one fashion to generators listed above,
but with a dimension shift one down. Let �27, �25, and �21 be the elements in
H�.X/ corresponding to �47, .Sq6�7/2 and .Sq4�7/2 respectively. Notice that
Sq2.�25/ D �27 and Sq4.�21/ D �25. Write

H�.X/ Š EŒ�21; �25; �27�˝EŒk
2; k3; : : : ; kI ; : : :�; (3.3)

where kI in dimension jSqI �7j�1 stands for the exterior generator corresponding
to SqI �7, for each I such that SqI �7 2 Ker.x�7 /.

Now, consider the cohomology SSS for the principal fibration

�DI.4/
j
��! K.Z; 6/

�
��! X:

Notice first that by naturality of the spectral sequence, the second factor in (3.3)
injects intoH�.K.Z; 6// via ��, while the classes �21; �25; �27 are all in Ker.��/.
Furthermore, one has j �.�6/ D a6, and so j �.Sq4�6/ D Ob10. The bottom dimen-
sional class in H�.�DI.4// which is not hit by j � is 
2. Ob10/, which is therefore
transgressive. Hence d.
2. Ob10// D �21, and it follows that d.Sq4
2. Ob10// D
Sq4.�21/ D �25, while d.Sq6
2. Ob10// D d.Sq2;4
2. Ob10// D Sq2�25 D �27.
Hence Sq4
2. Ob10/ D Ot24 and Sq2 Ot24 D Oe26. Dually, in homology one has
Sq2�.e26/ D c

2
12 and Sq4�.c

2
12/ D b

2
10.
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1176 R. Levi and N. Seeliger

Next, we work out the Pontryagin algebra structure. Since b10, c12 and e26 are
elements of infinite height in E1, they represent elements of infinite height in ho-
mology. Hence it remains only to check whether a26 D c12. But in cohomology
one has Oc12 D Sq2. Ob10/ D Sq2Sq4. Oa6/ D Oa

2
6. Hence in homology we obtain

�.c12/ D a6 ˝ a6. But since a6 is primitive, so is a26, and since H12.�DI.4//
is 1-dimensional, it follows that a26 D 0. This completes the calculation of the
algebra structure.

The classes a6 and b10 are primitive for dimension reasons, and we have already
computed the reduced diagonal of c12. Thus it remains to compute the reduced
diagonal of e26. Notice that H26.�DI.4// is 2-dimensional, generated additively
by e26 and a6b210, and that e26 can be modified by an additive summand of a6b210
without changing the algebra structure. For any choice of e26 one has

�.e26/ D A.a6b10 ˝ b10 C b10 ˝ a6b10/C B.a6 ˝ b
2
10 C b

2
10 ˝ a6/;

for some A;B 2 F2. But B is the coefficient of �.a6b210/, and so by modifying
the choice of e26 if necessary, we may assume that B D 0. Furthermore, if A ¤ 0,
then H26.�DI.4// contains no primitive class, and so dually every cohomol-
ogy class in H 26.�DI.4// is decomposable, which is clearly impossible. Hence
A D 0 and there is a choice for the class e26 which is primitive.

This completes the calculation ofH�.�DI.4// as a Hopf algebra and hence the
proof of the proposition.

Dually, the cohomology Hopf algebra is given by

H�.�DI.4// Š P Œ Oa6�=. Oa46/˝ �Œ Ob10; Ot24; Oe26�:

We are now ready to start the calculation of H�.�BSol.q//. Consider the fi-
bration

�DI.4/ ��! �BSol.q/ ��! DI.4/:

The homology SSS associated with this fibration is a spectral sequence of Hopf
algebras over H�.�DI.4//, whose E2-page has the form

E2�;� D H�.�DI.4//˝H�.DI.4//

Š
®
P Œa6�=.a

2
6/˝ P Œb10; c12; e26�

¯
˝

®
EŒy7; y11; y13�˝ P Œy14�=.y

2
14/

¯
:

Since BSol.q/ is 6-connected, �6.�BSol.q// Š H7.BSol.q/;Z/. Therefore one
concludes that H7.BSol.q/;Z/ is a finite 2-group, and so d7.y7/ D 0. Thus d7
vanishes on all the yi (y14 by considering the dual cohomology spectral sequence
and the other generators by dimension reasons). The next possible nonvanishing
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differential is d11. Considering the dual cohomology SSS, we have d11. Ob10/ D
d11.Sq

4 Oa6/ D Sq4d7. Oa6/ D 0. Hence in homology d11.y11/ D 0. Similarly,
d13.y13/ D 0. Hence the spectral sequence collapses at E2 and

H�.�BSol.q// Š P Œa6�=.a26/˝ P Œb10; c12; e26�

˝EŒy7; y11; y13�˝ P Œy14�=.y
2
14/;

(3.4)

as a module over H�.�DI.4//.
The loop space homology H�.�DI.4// is contained in H�.�BSol.q// as a

Hopf subalgebra. The classes y7 and y11 are primitive for dimension reason. For
y13 one has �.y13/ D A.a6 ˝ y7 C y7 ˝ a6/ D A�.a6y7/ for some A 2 F2.
Hence y13 can be chosen to be primitive. Finally �.y14/ D y7 ˝ y7. This
completes the description of the coalgebra structure on H�.�BSol.q//.

Since y7, y11 and y13 are primitive, so are their squares. As there are no non-
trivial primitives in the respective dimensions, except for e26, we conclude at once
that y27 D y211 D 0, while y213 D Ae26, for some A 2 F2. But Sq2�.e26/ D c212,
while Sq2�.y

2
13/ D 0, so A D 0 and therefore y213 D 0. Finally, y214 is primitive,

and since there are no nontrivial primitives in dimension 28, we get y214 D 0.
Next, we calculate all the commutators involving the classes yi . The results are

summarised in the following table, while the calculations are below. Each entry in
the table stands for the commutator ŒColumn;Row�.

a6 y7 b10 y11 c12 y13 y14 e26

y7 0 0 0 0 0 0 0 0

y11 0 0 0 0 0 0 0 0

y13 0 0 0 0 0 0 0 0

y14 b210 0 c212 0 e26 C a6b
2
10 0 0 b410

As a6 and y7 are both primitive, so is their commutator and so Œa6; y7� D Ay13,
for some A 2 F2. Applying Sq2 to both side, we see that A D 0, and so a6 and
y7 commute. Thus it follows that Œa6; y14� is primitive, and so must be a multiple
of b210. Applying successive dual Steenrod squares

Œa6; y14�
Sq1
�

7�! Œa6; y13�
Sq2
�

7�! Œa6; y11�
Sq4
�

7�! Œa6; y7� ;

we conclude that all these commutators, with the possible exception of Œa6; y14�
itself, vanish.

The class y7 clearly commutes with itself, and its commutators with all other
yi are primitive. This implies at once that Œy7; y11� and Œy7; y14� vanish and that
Œy7; y13� D Sq

1
�Œy7; y14� D 0 as well.
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The class b10 commutes with y7 for dimension reasons, and so Œb10; y14� is
primitive and is therefore a multiple of c212. Applying dual Steenrod squares, we
have

Œb10; y14�
Sq1
�

7�! Œb10; y13�
Sq2
�

7�! Œb10; y11� ;

which shows that Œb10; y13� and Œb10; y11� vanish.
Since y11 commutes with y7, the commutator Œy11; y14� is primitive and one

has Sq1�Œy11; y14� D Œy11; y13�. But there are no nontrivial primitives in dimen-
sion 25, and so both commutators vanish.

The classes c12 and y7 commute since there are no 19 dimensional nonzero
primitives, and so Œy14; c12� is primitive. Thus Œy14; c12� is a multiple of e26. As
before, we have

Œc12; y14�
Sq1
�

7�! Œc12; y13�
Sq2
�

7�! Œc12; y11� ;

which shows that all commutators involving c12, except possibly Œc12; y14�, van-
ish.

We already established that y13 commutes with y7 and y11, and it commutes
with y14 as well since the commutator Œy13; y14� is primitive. This also shows that
all commutators with y14 with other yi vanish.

Finally, Œe26; y7� vanishes for lack of primitives in dimension 33. Thus Œe26; y14�
is primitive and one has a chain of operations

Œe26; y14�
Sq1
�

7�! Œe26; y13�
Sq2
�

7�! Œe26; y11� :

The only nonzero primitive in dimension 40 is b410, and so Œe26; y14� D Ab410 for
some A 2 F2. Applying Sq1� and Sq2;1� to b410, we conclude that Œe26; y13� and
Œe26; y11� vanish.

It remains to evaluate the commutators of the class y14 with the algebra gen-
erators of H�.�DI.4//. To do that, we consider the cobar spectral sequence for
H�.�BSol.q//, with

E2 D CotorH�.BSol.q//.F2;F2/ Š H�.T .†
�1H�.BSol.q///; dE /;

where dE is the external differential on the cobar construction, induced by the
reduced diagonal in H�.BSol.q//.

Recall from [7] that

H�.BSol.q// Š P Œu8; u12; u14; u15; t7; t11; t13�=I;

where I is the ideal generated by the polynomials r1 D t211 C u8t
2
7 C u15t7,

r2 D t
2
13 C u12t

2
7 C u15t11 and r3 D t47 C u14t

2
7 C u15t13.
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As for BG2.q/, we denote classes in H�.BSol.q// by its dual cohomology
class decorated by a bar. If a 2 H�.BSol.q// is any class, then the corresponding
tensor algebra generator will be denoted by Œa�, while products of these generators
will be written using the usual bar notation Œa1ja2j � � � jan�. Thus the relation r1
translate to the following equation in the E1 page of the cobar spectral sequence:

0 D dE .Œt
2
11�C Œu8t

2
7 �C Œu15t7�/ D Œt11�

2
C dE .Œu8t

2
7 �/C ŒŒu15�; Œt7��:

The classes Œt11�, Œu15� and Œt7� are easily seen to be the permanent cycles in the
spectral sequence corresponding to b10, y14 and a6 respectively. Hence we obtain
the relation

Œa6; y14� D b
2
10:

Next, notice that one has

Œc12; y14�
Sq2
�

7�! Œb10; y14�
Sq4
�

7�! Œa6; y14� :

The commutator Œb10; y14� is primitive, while

�.Œc12; y14�/ D a6 ˝ Œa6; y14�C Œa6; y14�˝ a6 D a6 ˝ b
2
10 C b

2
10 ˝ a6:

Hence we conclude that

Œb10; y14� D c
2
12 and Œc12; y14� D e26 C a6b

2
10 D e26 C a6Œa6; y14�:

Finally, by the previous calculations,

Œe26; y14� D ŒŒc12; y14�; y14�C Œa6Œa6; y14�; y14� D Œa6; y14�
2
D b410:

This completes the calculation of H�.�BSol.q// as a Hopf algebra over the dual
Steenrod algebra.

Our final task is the calculation of the BSS for �BSol.q/. Using the known
structure ofH�.BDI.4// andH�.DI.4// and the corresponding BSS, we conclude
that

H�.BDI.4/;Z/ Š P Œ�8; �12; �15; �28�=.2�15/;

which allows us to conclude that . q/�.�2i / D qi�2i . Also, similarly to the
corresponding computation for G2,

Hi .DI.4/;Z/ Š

´
Z; i D 0; 7; 11; 18; 27; 34; 38; 45;

Z=2; i D 13; 20; 24; 31;

while all other homology groups vanish. Denote homology classes by �i , where i
corresponds to the dimension. By inspection of the mod 2 homology structure, it is

Brought to you by | University of Aberdeen
Authenticated | r.levi@abdn.ac.uk author's copy

Download Date | 11/6/12 2:17 AM



1180 R. Levi and N. Seeliger

easy to conclude that �7, �11 and �27 are the indecomposable among the torsion
free classes, while the only torsion indecomposable class is �13.

Consider the fibration

�DI.4/ ��! �BSol.q/ ��! DI.4/:

The integral homology SSS calculation of this fibration is similar to the one done
for G2. SinceH�.�DI.4/;Z/ is torsion free, theE2 page of the spectral sequence
is the tensor product of the homologies of base and fibre. One has a commutative
diagram of fibrations

�DI.4/ // �BSol.q/

��

// DI.4/

f q

��
�DI.4/ // � // DI.4/

where f q is any map in the homotopy class of the composite

DI.4/
�
��! DI.4/ � DI.4/

� q�.�1/
�������! DI.4/ � DI.4/

�
��! DI.4/:

It is easy to verify that

Hn.DI.4/ � DI.4/;Z/ Š
M
iCjDn

Hi .DI.4/;Z/˝Hj .DI.4/;Z/

for n � 32. Hence for i D 4; 6; 14 one has .f q/�.�2i�1/ D .qi �1/�2i�1. In the
SSS for the path-loop fibration over DI.4/ one has d7.�7/ D a6, d7.a6�7/ D
2c12, d11.�11/ D b10, d13.�13/ D Nc12 (the class of c12 modulo Im.d7/) and
d27.�27/ D e26. Thus by commutativity of the diagram above and naturality of
the SSS, one has in the integral homology SSS for the top row, d7.�7/ D .q4�1/,
d11.�11/ D .q

6 � 1/b10 and d27.�27/ D .q14 � 1/e26. Setting q D 4k ˙ 1 and
ri D �2.q

i �1/ and performing the necessary arithmetics, we see that r6 D r14 D
�2.k/C 3 D r4 � 1.

Finally, we compute the Bockstein spectral sequence forH�.�BSol.q//, which
is a spectral sequence of modules over H�.�DI.4//, and so we use the module
structure given by (3.4) in the calculation. The first page of the spectral sequence
is determined by Sq1�.y14/ D y13. Thus

E2 Š P Œa6�=.a
2
6/˝ P Œb10; c12; e26�˝EŒy7; y11; h27�;

where h27 corresponds to the infinite cycle inE1 given by y13y14. By the integral
homology calculation above, the next nontrivial differential is ˇr4�1

� , and one has
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ˇr4�1.y11/ D c10, while ˇr4�1.h27/ D e26. Next, we have ˇr4
� .y7/ D a6,

and since �.c12/ D a6 ˝ a6, it follows that ˇr4C1
� .a6y7/ is defined and is equal

to c12, provided that a6y7 ¤ 0 in Er4C1, which is obvious since already E2 does
not contain a nonzero class in dimension 14. This completes the calculation of the
BSS for �BSol.q/, which takes the form

a6 y7 b10 y11 c12 y13 y14 a6y7 y13y14

Sq1� 0 0 0 0 0 0 y13 0 0

ˇ
r4�1
� 0 0 0 b10 0 � � 0 e26

ˇ
r4
� 0 a6 � � 0 � � 0 �

ˇ
r4C1
� � � � � 0 � � c12 �

.
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