1	This article was originally published in The Proceedings of the Nutritional Society						
2	2009;68(3):269-73. doi:10.1017/S0029665109001384 and is avialable from URL:						
3	http://journals.cambridge.org/						
4							
5	A review of the use of glutamine supplementation in the nutritional support of bone						
6	marrow transplant and cancer patients						
7							
8	Mark Crowther						
9	Department of Haematology						
10	Aberdeen Royal Infirmary						
11	Foresterhill						
12	Aberdeen						
13	AB25 2ZD						
14	Tel 01224-553789						
15	Email <u>mark.crowther@nhs.net</u>						
16							
17	Keywords						

18 Glutamine, cancer, malignancy, chemotherapy, complications

19 Abstract

20 The relationship between glutamine and malignancy can be traced back to the 1950s and the 21 requirement for glutamine for malignant cell growth in culture. Later studies demonstrated a 22 relationship between rate of proliferation of the malignant cells and glutamine usage. The 23 excessive use of glutamine by malignant cells was seen as an opportunity for the 24 development of a treatment using glutamine analogues but unfortunately excessive toxicity 25 was seen during clinical trials. In animal models glutamine supplementation, initially 26 thought to increase tumour growth, actually caused tumour regression due to improved 27 immune clearance of the tumour and appeared to reduce the severity of the side-effects of 28 chemo- and radiotherapy. This led to human studies in both traditional cancer therapy and 29 bone marrow transplantation which we review here. Unfortunately the majority of the 30 studies performed were small and had poor methodological reporting. There is clinical 31 heterogeneity in terms of routes of administration, dosing schedules, chemotherapy 32 regimens and diseases. Studies of glutamine studies in non-bone marrow transplantation 33 chemo- and/or radiotherapy suggest a possible trend towards reductions in objective 34 mucositis but no effect on subjective symptoms. There is no evidence for its effect on other 35 clinical outcomes. For bone marrow transplantation there appears to be some benefit from 36 oral glutamine in reducing mucositis and graft-versus-host-disease while intravenous 37 glutamine may reduce infections but at the expense of an increased relapse rate. Good 38 quality trials are required in this area.

- 39
- 40
- 41
- 42
- 43
- 44

45 Starting in the test tube...

The 1950's brought great advances in cell culture techniques such that mammalian cells could be continuously grown outside the body. The first immortal cell line used cervical cancer cells (HeLa cells) (Scherer *et al*, 1953). Much work was done in finding the best culture mediums that allowed maximal cell growth. One nutrient that was found to be important and used avidly by the tumour cells was glutamine (Eagle, 1976). Scientists, now aware of a relationship between cancer and glutamine, investigated matters further.

52

It became apparent that the more rapidly growing, hence more aggressive, the tumour the more glutamine it metabolised (Knox *et al*, 1969). Animal studies raised the possibility of a 'glutamine trap' where the tumour consumes glutamine at a higher rate than other tissues and deficiency occurs (Carrascosa *et al*, 1984). This deficiency, it was thought, may lead to the cahexia and weight loss of malignancy. However many of these studies used mouse and rat models of cancer where the tumour was between 10-20% of the body weight of the animal, a much greater proportion than in human malignancies.

60

61 **Glutamine supplementation - good or bad?**

In animal models with cancer many thought that glutamine supplementation would cause
increased tumour growth as the amino acid appeared to be an important fuel for the tumour.
Supplementation with glutamine actually caused tumour regression in some cases because
of glutamine being the preferred fuel of the body's tumour killing cells the Natural Killer
(NK) cells (Klimberg *et al*, 1996).

67

Glutamine was given to rats and mice after they had received chemo- and/or radiotherapy
and it was found to reduce damage to the gut (Fox *et al*, 1988 and Klimberg *et al*, 1989) and

70	improve immune function hence reducing infections which are a major cause of morbidity
71	and mortality in cancer patients.
72	
73	Glutamine analogues were then investigated with the hypothesis that as tumour cells utilise
74	glutamine at a higher rate than normal tissues then toxic glutamine analogues would be
75	preferentially taken up by the cancer (Souba, 1993).
76	
77	Human studies
78	With the encouraging evidence from animal studies of decreased side-effects of chemo- and
79	radiotherapy and the suggestion that glutamine does not increase tumour size several
80	studies of glutamine supplementation in humans were conducted.
81	
82	The studies either gave oral or intravenous glutamine and the intravenous glutamine was
83	either given with total parenteral nutrition or alone. The studies can be further divided into
84	those patients receiving bone marrow transplantation and those receiving traditional
85	chemotherapy.
86	
87	Chemotherapy and radiotherapy
88	Traditional chemotherapy involves the administration of cytotoxic drugs which kill rapidly
89	dividing cells, which include malignant cells. After administration there is a rest period
90	where the body recovers from the chemotherapy before more is given. Chemotherapy also
91	damages rapidly dividing normal cells e.g. cells lining the gut, hair follicles and the bone
92	marrow. It is the damage to the normal cells which lead to the side-effects (mucositis from
93	gut damage and increased infections from bone marrow damage). Radiotherapy is the
94	administration of radiation, usually in the form of ionising radiation which as in
95	chemotherapy damages rapidly dividing cells.

97	A brief search of PubMed revealed nine randomised controlled trials which administer
98	glutamine to patients receiving chemotherapy and/or radiotherapy (Anderson, 1998;
99	Cerchietti, 2006; Daniele, 2001; Decker-Baumann, 1999; Huang, 2000; Okuno, 1999; Peterson,
100	2006; van Zaanen, 1994) . These trials are summarised in table 1.
101	
102	The three
103	
104	Bone marrow transplantation
105	The dose limiting factor in giving chemotherapy is bone marrow toxicity. The harvesting of a
106	patient's bone marrow, storing it while chemotherapy is administered and then re-infusing
107	the marrow after the chemotherapy allows higher doses of chemotherapy to be given
108	(autologous transplantation) as the bone marrow is spared from the effects of the
109	chemotherapy. Using a donor's marrow (allogeneic transplantation) has the added
110	advantage that the transplanted cells attack malignant cells (graft versus leukaemia effect)
111	but this can also be detrimental if the graft attacks normal tissues (graft versus host disease).
112	Bone marrow transplantation results in prolonged hospitalisation, infections and mucositis,
113	to a greater extent than traditional chemotherapy regimens.
114	
115	A detailed search for articles on glutamine and bone marrow transplantation was performed
116	as part of a systematic review (submitted to Bone Marrow Transplantation for consideration of
117	publication) a summary of which is detailed here.
118	
119	
120	
121	

Conclusions Acknowledgements and conflict of interest No conflicts of interest to declare. Thanks to Alison Avenell, Xueli Jia, Tania Lourenco and Romana Kucerova for help with data extraction and quality assessment. Mark Crowther was employed as a Clinical Research Fellow by the Chief Scientists Office of the Scottish Government when this work was carried out.

132 Figures and Tables

- 134 Table 1 Summary of randomised controlled trials of the administration of glutamine to
- 135 patients receiving chemo- and/or radio-therapy.

139	References
140	Eagle (1976) Media for animal cell culture. <i>Methods in Cell Science</i> 3 , 517-520.
141	
142	Scherer WF, Syverton JT & Gey GO (1953) Studies in the propagation of in vitro poliomyelitis
143	viruses. Journal of Experimental Medicine 97, 695-720.
144	
145	Knox WE, Horowitz ML & Friedell GH (1969) The proportionality of glutaminase content to
146	growth rate and morphology of rat neoplasms. <i>Cancer Research</i> 29 , 669-680.
147	
148	Souba WW (1993) Glutamine and Cancer. Annals of Surgery 218, 715-728.
149	
150	Klimberg VS & McClellan JL (1996) Glutamine, Cancer, and Its Therapy. The American Journal
151	of Surgery 172 , 418-424.
152	
153	Carrascosa JM, Martinez P & Nunez de Castro I (1984) Nitrogen Movement between Host
154	and Tumour in Mice Inoculated with Ehrlich Ascitic Tumour Cells. Cancer Research 44, 3831-
155	3835.
156	
157	Fox AD, Kripke SA, De Paula J, Berman JM, Settle RG & Rombeau JL (1988) Effect of a
158	glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN. Journal of
159	Parenteral and Enteral Nutrition 12 325-331.

161	Klimberg VS, Salloum RM, Kasper M, Plumley DA, Dolson DJ, Hautamaki RD, Mendenhall
162	WR, Bova FC, Bland KI & Copeland EM (1990) Oral glutamine accelerates healing of the
163	small intestine and improves outcome after whole abdominal radiation. Archives of Surgery
164	125 1040-1045.
165	
166	Anderson PM, Schroeder G & Skubitz KM (1998) Oral Glutamine Reduces the Duration and
167	Severity of Stomatitis after Cytotoxic Cancer Chemotherapy. Cancer 83 1433-1439.
168	
169	Cerchietti LCA, Navigante AH, Lutteral MA, Castro AM, Kirchuk R, Bonomi M, Cabalar ME,
170	Roth B, Negretti G, Sheinker B & Uchima P (2006) Double-blinded placebo-controlled trial on
171	intravenous L-alanyl-L-glutamine in the incidence of oral mucositis following
172	chemoradiotherpy in patients with head-and-neck cancer. International Journal of Radiation
173	Oncology Biology and Physics 65 1330-1337.
174	
175	Daniele B, Perrone F, Gallo C, Pignata S, De Martino S, De Vivo R, Barletta E, Tambaro R,
176	Abbiata R and D'Agostino L (2001) Oral glutamine in the prevention of flurouracil induced
177	intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut 48 28-33.
178	
179	Decker-Baumann C, Buhl K, Frohmüller S, Herbay AV, Dueck M & Schlag PM (1999)
180	Reduction of Chemotherapy-induced Side-effects by Parenteral Glutamine Supplementation
181	in Patients with Metastatic Colorectal Cancer. European Journal of Cancer 35 202-207.
182	
183	Huang EY, Leung SW, Wang CJ, Chen HC, Sun LM, Fang FM, Yeh SA, Hsu HC & Hsiung
184	CY (2000) Oral glutamine to alleviate radiation-induced oral mucositis: a pilot randomized
185	trial. International Journal of Radiation Oncology Biology and Physics 48 535-539.
186	

- 187 Okuno SH, Woodhouse CO, Loprinzi CL, Sloan JA, LaVasseur BI, Clemans-Schutjer D, Swan
- 188 D, Axvig RB, Ebbert LP, Tirona MRB, Michalak JC & Pierson N (1999) Phase III Controlled
- 189 Evaluation of Glutamine for Decreasing Stomatitis in Patients Receiving Flurouracil (5-FU) -
- 190 Based Chemotherapy. *American Journal of Clinical Oncology* **22** 258-261.
- 191
- 192 Peterson DE, Jones JB & Petit RG (2006) Randomized, Placebo-Controlled Trial of Saforis for
- 193 Prevention and Treatment of Oral Mucositis in Breast Cancer Patients Receiving
- 194 Anthracycline-Based Chemotherapy. *Cancer* **109** 322-331.
- 195
- 196 van Zaanen HCT, van der Lelie H, Timmer JG, Fürst P & Sauerwein HP (1994) Parenteral
- 197 Glutamine Dipeptide Supplementation Does Not Ameliorate Chemotherapy-Induced
- 198 Toxicity. Cancer 74 2879-2884.
- 199

Table 1

Trial	Glutamine	Disease	Chemotherapy	Outcomes
Anderson 1998	Oral	Soft tissue tumours	Various	Mucositis
Cerchietta 2006	Intravenous	Head/Neck	Chemoradiotherapy	Mucositis and
				infections
Danielle 2001	Oral	Bowel	5-FU	Mucositis
Decker-Bauman 1999	Intravenous	Bowel	5-FU	Mucositis
Huang 2000	Oral	Head/Neck	Radiotherapy	Mucositis
Jebb 1994	Oral	Bowel	5-FU	Mucositis
Onkuno 1999	Oral	Bowel	5-FU	Mucositis
Peterson 2006	Oral	Breast	Anthracyclines	Mucositis
van Zaanen 1994	Intravenous	Haematological	Various	Infections and
				Toxicities