WREATH PRODUCTS AND REPRESENTATIONS OF p-LOCAL
FINITE GROUPS

NATALIA CASTELLANA AND ASSAF LIBMAN

ABSTRACT. Given two finite p-local finite groups and a fusion preserving mor-
phism between their Sylow subgroups, we study the question of extending it
to a continuous map between their classifying spaces. The results depend on
the construction of the wreath product of p-local finite groups which is also
used to study p-local permutation representations.

1. INTRODUCTION

A fusion system F on a finite p-group P is a small category whose objects are the
subgroups of P and whose morphisms are group monomorphisms which include all
those homomorphisms obtained from conjugation by the elements of P. The idea
of saturated fusion systems was formulated in the early 1980’s by Puig [20] who
studied representations of finite groups. Every block b of the group algebra kG,
where k is an algebraically closed field of characteristic p, gives rise to a saturated
fusion system on its defect group P < G. The principal block of kG gives rise to
the fusion system Fg(G) whose objects are the subgroups of a Sylow p-subgroup
S of G and its morphisms are induced by conjugation in G. Not all fusion systems
have the form Fg(G), see e.g. [6, Examples 9.3-4] or [11].

The significance of Fg(G) in topology was recognized by Martino and Priddy
in [15]. In [17, 18], Oliver shows that Fs(G) determines the homotopy type of the
p-completion (in the sense of Bousfield and Kan [2]) of BG = K(G,1).

In order to understand self-homotopy equivalences of BG;,\7 Broto, Levi and
Oliver considered in [5] a category Lg(G) closely related to Fg(G). This category
was studied earlier by Puig. Abstraction of this construction led them in [6] to
the notion of a centric linking system L associated to a saturated fusion system
(S, F). The triple (S, F, L) is called a p-local finite group. Its classifying space is
by definition the space \£|2, a terminology justified by the fact that |£S(G)|;\ ~

BG) ([5, Lemma 1.2]). The spaces |£|$ have many properties in common with p-
completed classifying spaces of finite groups. Thus, p-local finite groups provide an
important connection between group theory and topology via their linking systems.

This paper focuses on the following fundamental problem. In what way, if any,
a fusion preserving map (S, F) — (S, F’), see details below, gives rise to a map
\£|2 — L |;,\ between the classifying spaces? A step forward is given in Theorem B
below. It is related to the yet open problem of defining the concept of morphisms
between p-local finite groups in a way which is compatible with maps between
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their classifying spaces. It also gives a new insight to the study of maps between
p-completed classifying spaces.

We will define a permutation representation of (S, F, £) as a homotopy class of
amap |[L| — (BZn);\ where X, is a symmetric-group. In Theorem C below we will
prove a p-local form of Cayley’s theorem, namely the existence of p-local regular
representations. We will then approach the notion of the homotopy-index of the
Sylow subgroup S in (S, F, £) through the regular representation. The index of a
subgroup S in a finite group G is the number of the orbits of S in its action by
translation on G. In other words, restriction of the regular representation of G to
S results in |G : S| copies of the regular representation of S. From the homotopy
point of view, one could define the homotopy-index of S in £ as the minimal n for
which there is a map |£| — (BEn_‘S|); whose restriction to BS is homotopic to

the map BS Lros, (BX,,| S|)2 induced by n copies of the regular representation

of S. But this number is very difficult to compute, even for a p-local finite group
associated to a finite group. Instead, we will define the lower homotopy-index of .S
in £ as the smallest number p* such that the map BS — (szk‘lsl);\ induced by
p* - regg can be extended up to homotopy to a map |£| — (BZpk.|S|):. This is a
new invariant of p-local finite groups.

Let us now describe our results in greater detail. Suppose that (S,F, L) and
(S',F', L") are p-local finite groups. Given a group homomorphism p: S — S5’
it is natural to ask if Bp: BS — BS’ can be extended, up to homotopy, to a
map f: |£|;\ — |£’|;\ whose restriction to BS, namely f o ©, is homotopic to the

composite BS e, ps &L |/.3’|; where © and ©' are the maps described in .

Recall that p is called fusion preserving if for every ¢ € F(P,Q) there exists
some ¢’ € F'(p(P), p(Q)) such that po ¢ = ¢’ o p. Ragnarsson shows in [22] that
stably, namely in the homotopy category of spectra, the morphism f above exists
if and only if p is fusion preserving. Unstably this is unknown.

The content of Theorem B below is that f exists provided the target £’ is replaced
with its wreath product with 3, for some n, a construction which we now describe.

The wreath product of a space X with a subgroup G < ¥, denoted X ! G,
is the homotopy orbit space (X"),e where G acts by permuting the factors (see
Definition 3.4). This construction is equipped with a map A: X — X ! G which
factors through the diagonal map X — X™. We prove in 3.6 below that if H is a
discrete groups then there is a homotopy equivalence (BH)!G ~ B(H 1 G) such
that A: BH — (BH)G is induced by the diagonal inclusion H < H!G. The next
result should be compared with [3, Theorems D and EJ.

Theorem A. Fiz a p-local finite group (S, F, L) where S # 1. Let K be a subgroup
of ¥y, and let S’ be a Sylow p-subgroup of S K. Then there exists a p-local finite
group (S', F', L") which is equipped with a homotopy equivalence |L| 1K ~ |L'| such
that the composite

BS' Pl B(S1K) ~ (BS) 1 K 25 |1 K ~ | ]
is homotopic to the natural map ©': BS" — |L'|. Moreover, (8", F', L") satisfying
these properties is unique up to an isomorphism of p-local finite groups.

In Remark 5.3 we show that when Theorem A is applied to a p-local finite group
(S, F, L) of a finite group G then (S’, F',L’) is the p-local finite group of G K.
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If S =1 then |£| = * and we choose (S’,F’,L’) to be the p-local finite group
associated to K and the map A: |£]| — |£'] is any map * — |L’].

We prove Theorem A in §5 which is a technical section, however the remainder
of the paper is completely independent of its proof.

1.1. Definition. We call the p-local finite group (S’, ', L) in the theorem above
the wreath product of (S,F,L) with K and denote its fusion system and linking
system by F ! K and £ K respectively. Let A: |£| — |£| 1K ~ |£'| denote the
diagonal inclusion followed by the homotopy equivalence in Theorem A.

Theorem B. Let (S, F, L) and (S", F', L") be p-local finite groups and suppose that
p: S — 8 is a fusion preserving homomorphism. Then there exists some m > 0
and a map f: \[,|2 — |£’22pm|2 such that the diagram below commutes up to
homotopy

BS % ||

T

N\ / A
BS —r 1€ — €5y

In Theorem 7.3 below we prove a more elaborate result.

A permutation representation of a finite group G is a homomorphism p: G — %,,.
The rank of p is n. Throughout, we will call p simply a “representation”. Clearly
G acts on itself by left (or right) translations giving rise to Cayley’s embedding
regs: G — Xg| which is called the regular permutation representation of G.

Two representations p1, p2: G — X, are equivalent if they are conjugate in %,,,
that is, if they differ by an inner automorphism of ¥,,. The set of equivalence classes
of representations of G of rank n is denoted Rep,,(G). There are obvious inclusions
Y X B < Ypgm and X, X X, < X, obtained by taking the disjoint union
and the product of sets of cardinality n and m. They give rise to commutative,
associative and unital binary operations + and x on the set [[, -, Rep, (G). We
shall write k - p for the k-fold sum p+ --- + p. -

Let F be a fusion system on S. A representation p: S — X, is called F-invariant
if for every P < S and every ¢ € F(P,S) the representations p|p and po ¢ of P
are equivalent. Let Rep,,(F) denote the subset of Rep,, (S) of all the equivalence
classes of the F-invariant representations of S of rank n. It is easy to see that
I1,,>o Rep,, (F) is closed under the operations + and x on [] ., Rep,(5).

We define the set of representations at p of rank n of a space X as the set
Rep,, ,(X) = [X, (BZn);] of unpointed homotopy classes of unpointed maps. Since

A A A .
(BXm), x (BX,), = (B(E, x £,)),, (see [2, Theorem 1.7.2]), the following maps

(B(Sm % 20));, = (BEmyn), and (B(Sm X £,))) — (BEma), induced by the
inclusions equip ano Rep,, ,(X) with commutative and associative binary opera-
tions + and x such that + is distributive over x.

If P is a finite p-group then there are bijections
Rep,,(P) 222 [BP, BS,] L4 [BP, (BY,)))

where n: BY,, — (BZn);\ is the completion map. The first bijection is a classical

result going back to Hurewicz and the second was first shown by Mislin in [16, Proof

of the main theorem]. In light of these bijections we make the following definition.
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1.2. Definition. Fix a p-local finite group (S,F,L). We say that a permutation
representation f: |£| — (BZn);\ is S-regular if n = m - |S| for some m > 0 and the

moregs))

. (S] f A . . B( A
composite BS — [£| = (BX,), is homotopic to BS (BX,), -

We will deduce from Theorem B the following p-local form of Cayley’s theorem.
Theorem C. Every p-local finite group (S, F, L) admits an S-regular permutation
representation f: |L| — (BZPm);\.

Recall from [5, Def. 2.2] that a continuous map f: X — Y is a homotopy
monomorphism at p if H*(X;F)) is a finitely generated module over H*(Y;F,) via
f*. In Proposition 7.9 we show that every S-regular permutation representation is
a homotopy monomorphism at p.

The reason we didn’t define permutation representations as maps |£| — BX,
(without p-completing the target) is that Theorem C would fail completely. For
example, the nerve of the linking system of the Solomon p-local finite group, con-
structed by Levi and Oliver in [11], was shown to be simply connected in [8] and
therefore [25, Theorem 8.1.11] implies that [|Lgol|, BE,] = #. In particular, the
restriction of any f: |Lsol| — BX, to BS via © is induced by the trivial represen-
tation p: S — X,.

1.3. Definition. The ring Rep(|L]|) of the virtual permutation representations of a
p-local finite group (S, F, L) is the Grothendieck group completion of the commu-
tative monoid (][~ Rep,, ,(I£]), +).

The ring Rep(F) of the virtual F-invariant representations of S of a saturated
fusion system F on S is the Grothendieck group completion of the commutative
monoid ([],,~, Rep, (F), +).

Clearly Rep(F) is a subring of Rep(S). In §8 we will construct a ring homo-
morphism ®: Rep(£) — Rep(F) which sends a map f: |[£] — (BZn);\ to the
representation p: S — X, such that f o© ~no Bp where f and © are as in Defi-
nition 1.2. We shall also see that regg: S — X5 generates an ideal Rep™®(F) in
Rep(F) whose underlying group is isomorphic to Z.

The idea behind the next definition is that if H is a subgroup of index n in a
finite group G then reg. |g ~ n - regy. Therefore the image of the restriction map
Rep(G) — Rep(H) intersects Rep™®(H) := {k - regy }rez in a subgroup of index
divisible by n.

1.4. Definition. The lower p-local index of S in £, denoted Lind,(L: S), is the
index of Im(®) N Rep'®®(F) in Rep & (F).

We will prove in Lemma 8.5 that Lind,(£: S) is always a p-power. We conjecture
that it is always equal to 1. A partial result is the theorem below.

Theorem D. Let (S,F,L) be a p-local finite group. Then Lind,(L: S) = 1 if
either
(1) (S,F,L) is associated with a finite group.
(2) (S,F,L) is one of the exotic examples in [6, Examples 9.3 and 9.4] or in
[23] or in [9] or in [7, Example 5.3].
Notation. The following notation will be used through the paper:

e n: X — Xzf is the Bousfield-Kan p-completion.
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o If X is a G-space, k: X — (X)ng = EG x¢g X is the map s(z) = [e, z] for
any x € X and e is the basepoint of EG.

e Given a map f: X — Y of spaces, let map/(X,Y) denote the path com-
ponent of f in map(X,Y’). By convention f is the basepoint of this space.

o If f: X xY — Z, the adjoint map is denoted by f*: X — map(Y, Z).

e O: BS — |L]| is the map from the Sylow subgroup introduced in 2.9.

We would like to thank Bob Oliver for pointing out an error in the proof of
Theorem A which originated as an error in [3]. At the time this paper was revised
he proved a result which generalises our theorem, see [19].

2. PRELIMINARIES ON p-LOCAL FINITE GROUPS

We start with the notion of a saturated fusion system which is due to Puig [20]
(see also [6]).

2.1. Definition. A fusion system F on a finite p-group S is a category whose
objects are the subgroups of S and the set of morphisms F(P,Q) between two
subgroups P, @, satisfies the following conditions:

(a) F(P,Q) consists of group monomorphisms and contains the set Homg (P, Q)
of all the homomorphisms ¢,: P — @ which are induced by conjugation by
elements s € S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclu-
sion.

In a fusion system F over a p-group S, we say that two subgroups P,@Q < S are
F-conjugate if there is an isomorphism between them in F. Let Syl,(G) be the set
of the Sylow p-subgroups of a group G. Given P < G and g € G, ¢, € Hom(P, G)
is the monomorphism c,(x) = grg~'. We write Outz(P) = Autz(P)/ Inn(P).

2.2. Definition. Let F be a fusion system on a p-group S. A subgroup P < S is
fully centralized in F if |Cs(P)| > |Cs(P")| for all P’ < S which is F-conjugate to
P. A subgroup P < S is fully normalized in F if [Ng(P)| > |Ng(P’)| for all P’ < S
which is F-conjugate to P.

A fusion system F on S is saturated if:

(I) Each fully normalized subgroup P < § is fully centralized and Autg(P) €
Syl, (Autz(P)).
(IT) For P < S and ¢ € F(P,S) set

N, ={g € Ns(P)lpcyp™" € Auts(p(P))}.
If p(P) is fully centralized then there is @ € F(N,, S) such that ¢|p = ¢.

2.3. Definition. Let F be a fusion system on a p-group S. A subgroup P < S
is F-centric if P and all its F-conjugates contain their S-centralizers. A subgroup
P < §is F-radical if Outz(P) has no non-trivial normal p-subgroup.

2.4. Definition. [6] Let F be a fusion system on a p-group S. A centric linking
system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor 7: £ — F*¢ and monomorphisms P 2r, Aut £ (P) for
each F-centric subgroup P < S, which satisfy the following conditions:
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(A) 7 is the identity on objects. For each pair of objects P,Q € L, the action
of Z(P) on L(P,Q) via precomposition and dp: P — Autz(P) is free and
7 induces a bijection £(P,Q)/Z(P) — F(P,Q).

(B) If P < S is F-centric then 7(dp(g)) = ¢4 € Autz(P) for all g € P.

(C) For each f € L(P,Q) and each g € P, the following square commutes in £:

P———Q

6p(g)l l%(ﬂ(f)(g))

P——Q

f

A p-local finite group (S,F,L) consists of a saturated fusion systems F on S
together with an associated linking system.

2.5. Definition. Let (S,F, L) be a p-local finite group. A system of lifts in L
consists of functions dpg: Ng(P,Q) — L(P,Q), one for each pair P,Q < S of
F-centric subgroups, such that:

(a) m(dpo(g)) =cq € F(P,Q) for all g € Ng(P, Q).

(b) dpp(g) = dp(g) for all g € P, namely 0p p extends the structure map dp.

(c) If g € Ns(P,Q) and h € Ns(Q, R) then 6p r(hg) = dq,r(h) 0 6p,q(9)-

For any P < @ set Lg = 0p,o(e) where e is the identity of S.
2.6. Remark. Any p-local finite group admits a system of lifts by [6, Prop. 1.11].

We will write § for 6pg(g). In this notation conditions (a) and (c¢) become

7(§) = cg and hg = ho g. Also Lg o Lg =B

2.7. Remark. Every morphism in £ is both a monomorphism and an epimorphism
(but not necessarily an isomorphism). This is shown in [6, remarks after Lemma
1.10] and [3, Corollary 3.10]. We shall use this fact repeatedly throughout.

The orbit category of a p-local finite group (S, F, L) is denoted by O(F). This
is the category whose objects are the subgroups of S and whose morphisms are

O(F)(P,Q) = Rep(P,Q) Y 1unia) \ F(P,Q).

Also, O(F¢) is the full subcategory of O(F) whose objects are the F-centric sub-
groups of S.

2.8. Proposition. [6, Proposition 2.2] Let (S,F, L) be a p-local finite group. There
exists a functor B: O(F°¢) — Top which is isomorphic in the homotopy category
of spaces to the functor P — BP, and such that there is a homotopy equivalence

hocolim B = |£|.
O(Fe°)

2.9. Notation. For a finite group G, let BG denote the category with one object
o; and G as its set of automorphisms. For an F-centric P < S the monomorphism
dp gives rise to a functor BP — L which, by abuse of notation, we denote by dp.
For P = S, upon taking nerves of categories, we obtain a map

O: BS — |L]

and we write ©|pg for © o Binclg.



If @ is F-centric, then the natural isomorphism of functors in Proposition 2.8
shows that ©|pg is homotopic to BQ ~ B(Q) — hocolim@(]:c)é = |L|. Therefore,
for any F-centric @ < S and any morphism p: Q — S in F we have ©oBp ~ O|pq.
In particular, ©|gg 0B ~ O|pg for any ¢ € Isor(Q, Q’). It follows from Alperin’s
fusion theorem for saturated fusion systems [6, Theorem A.10] that:

2.10. Proposition. For any Q,Q" < S and any p € F(Q,Q’) the maps O|pg and
O|pg’ o Bp are homotopic.

The following proposition on mapping spaces will be needed in §7. Here and
elsewhere in this paper we use the letter n for the p-completion map X — XI/)\.

2.11. Proposition. Fiz a p-local finite group (S, F, L) and let P be a finite p-group.
Given a homomorphism p: P — S, set Q = p(P) < S. Then:
(a) There is a homotopy equivalence
map”®®°PP(BP, [L]}) ~ map™®17e (BQ, |L[}),
and this space is the p-completed classifying space of a p-local finite group.
(b) After p-completion, the map
map®!72 (BQ, |£]) > map™°©172(BQ, |L]).
induces a split surjection on homotopy groups.
Proof. (a) First of all, we can choose a fully centralized subgroup @’ < S in F
and an isomorphism ¥: Q@ — Q' in F. Let p': P — S denote the composite
PLQ Y, Q' < 8. By Proposition 2.10 observe that
(1) @lBQ :@|BQ’ OBiﬁ
Hence, © 0 Bp ~ © o Bp'. Tt follows from [6, Theorem 6.3] that there are homotopy
equivalences

map™©°B(BP,|L])) ~ map™©°P* (BP,|L|)) ~
map"*5e’ (BQ', |L]}) ~ map"®17e (BQ, | L[})
where the first equivalence is implied by equation (1) and the third one follows since
Bvy: BQ — BQ' is a homotopy equivalence. Also by [6, Theorem 6.3], this space
is homotopy equivalent to the classifying space of a p-local finite group |Cr(Q’ )|;\
(b) We can assume from (1), by replacing @ with @’ if necessary, that @ is fully
centralised in F. In [6, pp. 822] a functor

I:Cr(Q) x BQ — L

is constructed where Cr(Q) is the centraliser linking system [6, Definition 2.4] of @
in F. By p-completing the geometric realisation of I' and taking adjoints we obtain
a commutative square in which the bottom row is a homotopy equivalence by [6,
Theorem 6.3]

Ce(@) N maplse(BQ,|£))

) a [

A (TI* 00| A
CL(QI) —2 mapmlse(BQ, |£[)).
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Since |Cz(Q)| is p-good by [6, Proposition 1.12], upon p-completion of the diagram
(2), we see that the vertical arrow on the left becomes an equivalence and therefore
the composite (17*) (|1"|#) is a homotopy equivalence. In particular (17*) is split
surjective on homotopy groups. O

We end this section with a description of the product of p-local finite groups.

2.12. Let F; be a saturated fusion system on a finite p-group S; for i = 1,...,n
Define S =[]}, S; and consider the product category [[;—, F;. Its objects are the
subgroups of S of the form [], P; where P; < S;, and morphisms have the form

Hip H<pl Hszhere%E}'(P“Q)

2.13. Notation. For P < S =[], S;, we denote by P the image of P under
the projection p(: S — S;. Clearly P <[]}, P®

Let F be the fusion system on S generated by [[, F;. Thus, every morphism

¢ € F(P,Q) is given by the restriction of a morphism [], pl) 227 IL o — II; QW
[L; Fi. The ¢;’s are unique in the sense that they are completely determined by %)
because p()|p: P — P are by definition surjective and p(|g o ¢ = ¢; 0 p¥|p.
We see that ¢ — (p;)"; induces an inclusion F(P,Q) C [[, F(P®,Q®). In
particular, [], 7 is a full subcategory of F.

We shall write x}_;F; for the fusion system F just defined and we call it the
product fusion system of the F;’s.

2.14. Lemma. With the notation above, (S F) is a saturated fusion system If
P < S is F-centric then all the groups P( are F;-centric for i =1,.

The assignment P+ [], P%) and the inclusions F(P,Q) C []; f( ’) Q @) give
rise to a functor r: F¢ — [[, Ff which is a retraction of the inclusion ]_[Z FiCFe.

K3

Proof. Tt is shown in [6, Lemma 1.5] that F = x;F; is a saturated fusion system
on S.

The assignments P — [, P® and ¢+ [] ¢; give rise to a functor r: F — [, F;
which by inspection is a retraction to the inclusion j: [], /3 — F. It remains to
show that j and r restrict to [, ¥ and F°.

Observe that Cs(P) = [[, Cs,(PW) for any P < S. If P is F-centric then

(1) HCs =Cs(P)< P SH

Therefore Cg, (P®) < P(Z) for all i. Now, if Q; are F;-conjugate to P via
isomorphisms ¢; € Fi(P®,Q;) then (¢1 X ... X ©,)|p is an F-isomorphism onto
some @ < S such that Q) = Q,. By definition Q is also F-centric and applying
(1) to Q we obtain that Cs, (Q;) < Q; for all i. We deduce that P(*) are F;-centric.

Assume now that P; < S; are F;-centric for all i =1,...,n. Then P =[], P; is
F-centric because if @ is F-conjugate to P then it has the form [], @Q; where Q;
are Fi-conjugate to P; and therefore Cs(Q) =[], Cs, (Q:) < Q. O

The construction of the product of saturated fusion systems appears in [6], but
we were unable to find a reference for the product of p-local finite groups.

2.15. Definition. Let (S;,F;, L;) be p-local finite groups for ¢ = 1,...,n. Their
product x!,(S;, F;, £;) is the p-local finite group (S, F, £) where S =[], S; and
8



F = xj_1F;. The centric linking system £ = x}_,L; is defined as the following
pullback of small categories where r is defined in Lemma 2.14

n . rc n .
X Ly Hi:l Li

wl ln;;l m

(X7 Fi)e - [Ti=, 7

The functor 7: £ — F is defined by the pullback and the monomorphisms §p: P —
Aut,(P) are defined by the composites

o TL S e .
P <[P JRLECR T Aute, (PO).

We need to prove that axioms (A)-(C) of Definition 2.4 hold.
Proof. For any F-centric subgroups P, @ < S the set £(P, Q) is the pullback
(1) ‘C(Pa Q)C—) H:L:I ‘Ci(P(i)’ Q(i))

X?:1-7:i(Pv Q)CT—> H?:l fi(P(i)v Q(i))~

We start by proving that the monomorphisms dp are well-defined. That is, given
g = (9;) € P < S where P is F-centric, [[, 0pw) (g;) € Autz(P). The pullback
diagram (1) shows that it is enough to check that [[m;(dpe) (9:)) € r((xP,F)).
It follows from the fact that m;(dpe) (g:)) = ¢, € Auty,(PW) and r(c,) = [ -
This also shows that axiom (B) holds since 7(6p(g9)) = [[ m:(dpw (g:))|p = ¢4l p.

We continue to prove that (S, F, £) satisfies axioms (A) and (C). It follows from
the definition that 7 is the identity on objects. Observe that [], Cs, (P(®) acts
transitively and freely on the fibre of the right-hand arrow in (1) because axiom
(A) holds in (S;, F;, L£;). Now, axiom (A) for (S, F, L) follows from the fact that
Cs(P) = [[; Cs,(P%) and that diagram (1) is a pullback square so the fibres of
the vertical arrows are isomorphic.

Finally, axiom (C) for (S, F, £) follows by applying axiom (C) to each component
of a morphism f € £(P,Q) and each g € P < [, P®. O

2.16. Remark. Using the notation of Definition 2.15, if {0} 5} are systems of lifts
in £;, there results a system of lifts in [[, £; as follows. If P,Q < S are F-centric,

then 5P,Q is Hz 5P(i)7Q(i) : H'L NSi (P(z), Q(l)) — Hz’ ,CZ(P(z), Q(z))

2.17. Proposition. Given p-local finite groups (S;, Fi, L;) for i = 1,...,n, the
category 1], Li is a full subcategory of x;L; and the inclusion j: [, L; — X;L;
induces a homotopy equivalence on nerves. In particular, [[;—, |Li] = | X"y L;].

Proof. Set L = x}_,L;. The category [[, £; is a full subcategory of £ by Defini-
tion 2.15 and the fact that [[, F; is a full subcategory of x;F;. The assignment
P[], P% and the inclusion £(P,Q) C [, L;(P®,Q®) give rise to a functor
re: £ — [, L£; (see the pullback diagram in Definition 2.15) which is a retract
to the inclusion j by Lemma 2.14. Also there is a natural transformation Id — jor
which is defined on an object P € L by L;(P) : P —r(P) =], PY (see Rmk. 2.16
and Def. 2.5). This shows that |r| is a homotopy inverse to |j|: [, |£:| — |£]. O
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2.18. Remark. Given a p-local finite group (S, F, £), Definition 2.15 allows us to
consider its n-fold product with itself denoted (S*™, F*™ L*™). By construction,
the action of the symmetric group ¥, on S*™ extends to an action on the fusion sys-
tem F*™ and the linking system £*™ by permuting the factors. Moreover, the func-
tor m: L*™ — F*™ and the distinguished monomorphisms dp: P — Autzx«(P)
for every F*"-centric P < S*™ are ¥,-equivariant from the construction in Def-

inition 2.15. Therefore, also the inclusion BS*™ P5xn BAut,xn(S*™) — LX™ is
Y n-equivariant and so is the induced map ©: BS*™ — |LX™] ~ |L]|*™.

The choice of §pg in L*™ made in Remark 2.16 is easily seen to be equivariant
with respect to the action of ¥, as well.

Finally, the functor j and the homotopy equivalence in Proposition 2.17 are also
equivariant with respect to the action of ¥,, by permuting coordinates.

3. THE WREATH PRODUCT OF SPACES

Let G be a finite group and X a G-space. The Borel construction Xjg is the
orbit space of EG x X where EG is a contractible space on which G acts freely on
the right. Recall from 2.9 that BG is the small category with one object and G as
a morphism set. Then X can be viewed as a functor X : BG — Top and the Borel
construction is a model for hocolimps X . There is a natural map Xpe — X/G to
the orbit space of X induced by the map FG — .

A standard model for EG is the geometric realisation of the simplicial set £G
whose set of n-simplices is the n + 1-fold product G x - -- x G with face and degen-
eracy maps defined using deletion and duplication and where G acts diagonally via
right translations. The identity element of G equips EG with a natural choice of a
basepoint (which is not invariant under G.) This basepoint provides an augmenta-
tion map k(X): X — X which is an inclusion map and it fits into the fibration
sequence

(3.1) x ", x4 — BG.

We will tend to simply write x instead of £(X) whenever X is understood from the
context. A fixed point z € X corresponds to a G-map * — X and gives rise to a
section s: BG — X for this fibration.

Now assume that G is a semidirect product H x N. Consider spaces, namely,
simplicial sets X,Y and Z such that X has a left action of G and Z has a right
action of H. Assume further that Y has a left action of H and a right action of
N such that h-(y-n) = (h-y) - (hnh™') forally € Y, h € H and n € N. Note
that the actions of N and H on Y do not commute. Then Z x Y admits a right
G-action defined by (z,y) - (h,n) = (z- h,(h-y) - n) where g = hn € H x N and
(z,y) € Z x Y. Moreover, by inspection, there is a homeomorphism

(ZxY)xgX=2Zxg (Y xyX).

Taking Z = EH and Y = EN where the left H-action on EN is via conjugation,
we obtain a homeomorphism

(3.2) (EH x EN) xg X == EH xy (EN xy X).
Moreover there is an obvious isomorphism of simplicial sets

EH x EN == £G
10



which in turn induces a homeomorphism FH x EN =~ EG of G-spaces. It now
becomes clear that

(33) x5 XuN 5 (XhN)hH — Xna is equal to X5 Xna.

3.4. Definition. The wreath product of a space X with a subgroup G of ¥, is the
space

XZG = (XXk)hG
where G acts by permuting the factors of X **. The diagonal map Ax: X — X*k
and k: X** — X @ give rise to a natural map

AX): X - X1 G.

We shall use a left normed notation for iteration of the wreath product construc-
tion. That is, by convention, X 1G11G2!- - -1Gy, denotes (- - - (X 1G1)1G2)U- - )Gy,
Applying (3.2) and (3.3) iteratively it is left as an easy exercise to prove

3.5. Proposition. Given permutation groups G; < ¥, where i =1,...,n, there is
a homeomorphism

s X UGGl 1Gy == X (G1 UG- Gy)

which is natural in X. Moreover, the composite
X 5 X6 5 (X1GNGs 2 - B XiGnGat - G, 2 X(GGat - 1Gy)
is equal to A: X — X 1 (G11G2---1G,,) via the above homeomorphism.

3.6. Remark. Clearly ¥ fixes all the points in the image of the diagonal map
X — X*. If X # (), then the fibre sequence (3.1) X* — X G — BG splits for any
G < XY and the long exact sequence in homotopy groups gives rise to isomorphisms

Wl(XZG)g(ﬂ'lX)ZG and

(X 1G) = (m X)* for all i > 2.
Moreover, x: X* — X { G induces inclusions Hk X < (X 1 G) on which G <
m1(X 1 G) acts on higher homotopy groups by permuting the factors.

In particular, if X = BH for a discrete group H, there is a homotopy equivalence
(BH)!G ~ B(H1G) and A: BH — (BH)1G ~ B(HG) is homotopic to the map
induced by the diagonal inclusion H < H G.

Let Y be a G-space. For any space X, map(X,Y) becomes a G-space, and the
evaluation map X x map(X,Y) 2L Y is clearly G-equivariant. Therefore it gives
rise to a map evyg: X x map(X,Y)ne — Yre whose adjoint is denoted

(evig) : map(X,Y)ng — map(X, Vig).
If the component map’(X,Y) of some f: X — Y is invariant under the G-action
then inspection of the adjunction shows that (ev,g)? restricts to
(evha)? : map’ (X,Y)hg — map”‘(y)of(X, Yia).
Moreover, the composite

(thG)#
—_—

(3.7) mapf (X,Y) £ mapf(X, Y)na map"‘of(X, Yia)

coincides with the natural map induced by Y =, Yia.

11



3.8. Proposition. Fiz a map f: A — X and G < Xi. Denote the adjoint of
A x (map’ (4, X)1G) = A x map™*°/ (4, XM)q =25 (XF)e = X206

by v: mapf (A, X) 1 G — map?(X)°f (A X1 G). Then:

(a) The triangle below is commutative.

map’ (4, X)

l\wf
A

map/ (4, X) 1 G —— map?X)°/ (4, X1 G)

(b) If A is a non-empty path connected CW-complex then ~ is a homotopy
equivalence.

Proof. (a) Note that [], map/ (4, X) = map®x°/ (A4, X*) and that this component
is invariant under the action of G < ¥j. The commutativity of the triangle follows
from (3.7) and Definition 3.4.

(b) First, we check that the evaluation ev: map®(A, BG) — BG at some a €
A is a homotopy equivalence where the domain is the path component of the
null-homotopic maps. Since this map between connected spaces has a section
const: BG — map®(A, BG), its homotopy fibre map¢ (A4, BG) is connected. But it
is in fact contractible because Qmap, (A, BG) ~ map, (4, G) ~ *. Then the section
is also a homotopy equivalence.

Now consider the following ladder in which the rows are fibre sequences and 7,
is induced by X — .

map’/ (4, X)¥ ——  map/(4,X)1G —— BG
(1) incll ’Yl :lconst
F ——— map?(X)°f (A, X 1G) —— map®(4, BG).

T x

It commutes because the right hand square commutes as a consequence of the
commutativity of the following square and adjunction

A x map®x°f (A, X¥),e —— A x map(A, *)ne

thGl lproj:cvhc

(XXk)hG E— L Yel = BG.

T

Now, F is a union of path components of map(A, X*) because it is the fibre of the
fibration map(A, X ! G) — map(A4, BG) over the component of the constant map.
Moreover, F clearly contains the component map®x°f(A, X*) and inspection of
~ shows that the map between the fibres is simply the inclusion. Comparison of
the long exact sequences in homotopy of the fibre sequences in (1) shows that F is
connected, whence F' = map/ (A, X)**. Application of the five lemma to the exact
sequences in homotopy now yields the result. (I
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4. KILLING HOMOTOPY GROUPS

The aim of this section is to study the effect on homotopy groups of the map

x 2%, x 12k L (X Ek) where A(X) was defined in the last section and 7 is
the p-completion map.

4.1. Proposition. Let X be a pointed space. Then the kernel of m, X — 7T*(X1/7\)
contains all the elements whose order is prime to p.

Proof. Let [O] € m«(X) be an element of order k prime to p. Then the map
©: 5" — X factors through the Moore space M(Z/k,n), which is a nilpotent
space with the mod p homology of a point. It follows that no ©®: S™ — XIf factors

through M (Z/k, n);\ ~ % (see [2, Ch. VL5]), and therefore is null-homotopic. O

An element of exponent n in a group G is an element whose order divides n. For
the proof of the next result, recall that for any space, m1(X) acts on the groups
X, see e.g. [25, Corollary 7.3.4] or [27, Ch. III]. We write o* for the image of
the action of w € mX on o € 7, X.

4.2. Lemma. Fizx an integer n > 3 and a pointed space X. Then the kernel of

X S (X018 T m (X 18,)0)

contains all the elements of exponent n in . X.
Proof. We recall from Remark 3.6 that

7T1(X i Zn) = (7T1X) 1Y,
Furthermore, x: [[,, X — X 1%, induces the inclusion [[, m.X < m (X 1%,).
The section s: BY,, — X X%, defined by the fixed point (x,...,%) € X™ induces
the inclusion ¥,, < m(X 1 3,) which acts by permuting the factors of m.(X™) <
T (X1 5,).

We can choose elements wy, € %,, whose order is prime to p and wy(1) = k for all
k=1,...,n. Indeed, if p > 2 we can choose the involutions wy = (1, k). If p = 2 we
can choose wy, to be 3-cycles (note that n > 3.) In both cases we choose wy = id.

Forevery k =1,...,nlet ji: X — [],, X denote the inclusion into the kth factor
with respect to the basepoint of X. Note that Ax: X — X™ induces (Ax)«(0) =
0,...,0) € I], mX. By inspection of the action of wy € m(X1%,,), it follows that
for any 0 € m; X, (ko ji)«(0) = ((koj1)«(0))*“* € m;(X1X,). Now fix some 6 € m; X
of exponent n. Since A(X) is defined as the composite X 2x, [, X = X 1%,

we have
n n

AX)u(0) = [ (50 51)s(8) = [ (5 0 1) (6))*

k=1 k=1

Now consider the p-completion map X 1 %, - (X1 ) and note that it maps wy
to the trivial element by Proposition 4.1. By applying 7, and using the naturality
of the action of the fundamental group we see that

(o AX H (ko j1)«(0))**) = H n*((nojl)*(ﬁ))n*(wk)
k=1 k=1
= (12 ((£ 0 §1)x(0)))™ = 0 (1 0 j1)£(07)) = 0.
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4.3. Lemma. Fiz some k > 3 and consider a map f: X — Y. Assume that every
element of mymap’ (X,Y) has exponent k and that map"®>()°f (X (Y Ek)g) is
p-complete. Then the homomorphism

map(X,noA(Y)).
AP U

mmap’ (X,Y) mmap”2 00 (X, (Y1 54);)

is trivial.
Proof. According to Proposition 3.8(a) the triangle in the diagram below commutes
up to homotopy.

A(Y ) -
map! (X,Y) —inapBf (X, ¥ 1 55) — % map™2e/ (X, (Y 1 54)))

map? (X,Y) 1 5), ———> (map/ (X,Y) 15),

Since map”°2(M)ef (X (Y Zk)g) is p-complete, the map (1, o)’ gives rise to a
choice of a map for the dotted arrow so that the square is homotopy commutative.
We can now apply Lemma 4.2 to the diagonal arrow A and the bottom arrow n. [

N
p

5. THE WREATH PRODUCT OF p-LOCAL FINITE GROUPS

Given a finite group G, the space (BG) %y is the classifying space of the group
G113k (see 3.6). In this section we prove an analogous result for p-local finite groups.

Recall that a p-local finite group (S, F, L) admits an S-system of lifts {dp g},
see Definition 2.5 and the remarks below it. Thus, an eler/ngnt s €S permutes
the set of all morphisms L, by either pre-composition with s=1 (i.e. ¢ — pos™1)
or by post-composition with § (i.e ¢ — 50 ¢) where s € Ng(Q,sQs™!). These
assignments form a left and right action of S on £ and we obtain an action of S
on L by conjugation of the subgroups P < S and by conjugation of morphisms
pr—8opo s/*\l

5.1. Definition. The action of a group G on S is called fusion preserving if the
image of G = Aut(S ) consists of fusion preserving automorphisms, that is, for every
¢ € F(P,Q) and every g € G the composite 7g0po7, ! belongs to F(74(P), 74(Q)).

In this section we prove Theorem 5.2 which is a variant of [3, Theorem 4.6]. While
condition (2) of Theorem 5.2 offers some simplifications, we relax the assumption
imposed in [3] that G is a finite p-group. The main idea of the proof remains the
same but some new arguments were needed. We also felt that some details are
missing in [3] and we therefore decided to present a complete proof of Theorem 5.2.

5.2. Theorem. Let G be a finite group which acts on the centric linking system
Lo of a p-local finite group (So,Fo,Lo). The action of g € G on ¢ € Mor(Ly) is
denoted by ¢ +— g-©-g~ 1. Assume that Sy <G and let S be a Sylow p-subgroup of
G. Assume further that:
(1) Each g € G acts on Ob(L) by sending P to gPg~'. For each g € G and
each ¢ € Lo(P,Q), mo(gpg™") = cgom(p) 0 cg-1 € Fo(gPg™ 1, 9Qg ™).
(2) If Py < So is Fo-centric and if a homomorphism c,: Py — Sy for some
g € G belongs to Fy, then g € Sy.
14



(3) The action of G on Ly extends the conjugation action of Sy on Lg.

(4) There is a G-equivariant system of lifts in Lo, that is, g-8-g~* = gsg~!
for any g € G and any s € N5, (P, Q).

(5) If Q < So is not Fo-centric but Q = Ng,(Q) is Fo-centric, then there
exists ¢ € Lo(Q,So) such that mo(P)(Q) does not contain its So-centraliser
and moreover, for any x € Ng(Q) there exists some s € Sy such that
xgrl=580p.

Then, there exists a p-local finite group (S, F, L) with the following properties:

(a) There are inclusions Fo C F, F§ C F¢ and Ly C L in such a way that
the distinguished monomorphisms dp in L extend the ones in Ly. The map
i: |Lo| — |L] induced by the inclusion fits in a homotopy fibre sequence

[Co| = 1£] — B(G/S0).
Moreover, if Sy has a complement K in G, that is G = Sy x K, then:
(b) There is a homotopy equivalence |Lolnx — |L| such that the composite
Lol = |Lolnk = |£| is homotopic to |Lo| < |L| and such that ©: BS — |L|
s homotopic to the composite

BS 2L BG ~ (BSo)ni 2 | Lolnx =~ |L].
(¢) Up to isomorphism (S, F, L) is the unique p-local finite group with the prop-
erties in (b).

As a corollary we obtain the proof of Theorem A in the Introduction.

Proof of Theorem A. By Remark 2.18 there is an action of 3,, on the n-fold product
(So, Fo, Lo) = (S*™ F*™, L*™) by permuting the factors.

The action of Sy on Ly by conjugation clearly extends to an action of Sy x X,
because Sy = S*™ acts on every coordinate of Lo = L*™ and X,, acts by permuting
the factors of £y and the factors of Sp = S*". Set G = SV K = Sy x K. We shall
now show that the action of G on L satisfies hypotheses (1)—(1) of Theorem 5.2.

Hypothesis (1) is clearly satisfied because K acts on Sy by permuting the factors
which is an automorphism of Fy = F*™. Note that w: Lo — Fy is X,,-equivariant
and it is also Sp-equivariant since w(§) = ¢, for any s € S. Hypothesis (3) holds
by the definition of the action of G = Sy x K on Lj. For Hypothesis (4) choose a
system of lifts {dp o} in £ (see Remark 2.6) and use Remarks 2.16 and 2.18 together
with the obvious fact that the system {0p g} is Sp-equivariant.

We now check hypothesis (2). Fix an Fp-centric subgroup Py < Sy and let Pél)
be defined as in 2.13. Since Péz) are F-centric for i = 1,...,n by Lemma 2.14 and
S # 1, it follows that Pol) # 1 whence Z(Péz)) # 1foralli=1,...,n. Also note
that [T, Z(Po(l)) =11 CS(PéZ)) = Cs,(Py) < Py because Py is Fy-centric. Fix some
g=1(81,...,80;0) € G =S 1VK and assume that g ¢ Sy, namely o # 1. Without
loss of generality we can assume that o(1) = 2. Choose 1 # z; € CS(Pél)) and
consider (z1,1,...,1;id) € [T, Z(P{) < Py. Then

cg((z1,1,...,1;id)) = (51,...,sn;a)(z1,1,...,1;id)(s;i1(1),...,s;il(n);a‘l)
= (1,8221851,1,...,1;id).

Therefore ¢, ¢ Fo(Po, So) because it cannot be a restriction of a morphism in [ ], F.
15



Finally we prove that hypothesis (5) is satisfied. Assume that @ < Sy is not
Fo-centric but Q := Ng, (Q) is Fo-centric. Observe that Ng(Q*)) are all F-centric
because Ng,(Q)® are all F-centric by Lemma 2.14 and Ng, (Q)® < Ng(Q®).

For every i we choose a morphism ¢; € L(Ng(Q®), S) such that 7(¢)(Q®)
is fully F-centralised (see [6, A.2(b)]), and define a morphism (p1,...,p,) €
Lo(TT; Ns(QW), Sp). Let ¢ € Lo(Q,So) be its restriction to Q. Then 7(¢)(Q)
is fully centralised since 7o (3)(Q)® = 7(¢;)(Q®) are fully centralised for all i. By
assumption @) is not Fy-centric, hence mo($)(Q) does not contain its Sp-centralizer.

It remains to show that for any g € Ng(Q) there exists some s € Sy such that
gpg "t = 80 @. Set W = Ng(Q)/Ns,(Q) < %,. Choose uoc € Ng(Q) where
u € [, Ns(Q)® and ¢ € W and assume that o(i) = j. Given z € Q¥, choose
ze@ <l Q" with z; = . Note that

1,,—-1

uo-z-otuT = ue (2,) uT

Thus, ujxu;1 € Q(j). It follows then that ujQ(i)u;1 C Q(j), that is, Q(i) is S-
conjugate to a subgroup of Q). By symmetry QY and Q) are S-conjugate. Thus,
after conjugating by an apropriate element in Sy we may assume that Q¥ = Q)
whenever o (i) = j for some o € W. Note that this does not change W. Moreover, in
the definition of @, we can take ¢; = ¢, if 0(i) = j for some o € W. Finally, for any
g € N(Q) we can write g = yo for some o € W and y € Ng,(Q) C [[; Ns(Q®).
By the choice of the morphisms ¢;, it is clear that c@o~! = @, hence

—_—

! =jogoyl=gody)og=50¢

999~ =yogo Yyt = ygy~!
where s € 5.
Now we apply Theorem 5.2(b) to conclude that there exists a p-local finite group

(S',F', L") with (|Lo|)nr =~ |L'| such that

M BS' 2 BG = (BSo)ax <25 |Lolnxc = ||
is homotopic to ®": BS" — |L£'|. Also observe that the horizontal arrows in
(BS)*™ ——— BS)
ol s
1L ——— Lol

form a ,-equivariant map of the vertical arrows. It follows that the composite in
(1) is homotopic to the map

BS' 2L e~ (BS) 1 K 25 1L K ~ (2.
which is therefore homotopic to ®': BS’ — |L£'|. The uniqueness of (S’, F', L)
with this property is guaranteed by part (c¢) of Theorem 5.2. O

5.3. Remark. If the p-local finite group in Theorem A is associated with a finite
group G then (S, ', £') satisfies [£'|)) ~ (||} 2K)2 ~ (BG) 1K) ~ B(GIK)).
Those equivalences follow from the Serre spectral sequence associated to | L] x x EK
and [2, Lemma 1.5.5] since the spaces involved are p-good ([6, Proposition 1.12]).
Thus, £’ is the linking system associated to G K.
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In the remainder of this section we will prove Theorem 5.2. From now on, the
hypotheses and notation set up in Theorem 5.2 are in force. Its proof,
namely the construction of (S, F, L), is obtained in a sequence of definitions and
claims 5.4-5.16. Their proofs are given after 5.16.

5.4. Definition. Let H; denote the set of all the Fy-centric subgroups of Sy. Fix
once and for all a Sylow p-subgroup S of G and for every P < S let Py denote
PNS,.

The action of G on the set of all subgroups of Sy by conjugation restricts to an
action on the set Hj of all the Fy-centric subgroups of Sy because G acts via fusion
preserving automorphisms of Sy by hypothesis (1).

5.5. Definition. Let F; be the fusion system on Sy generated by Fy and Autg(Sp).
Define a category £1 whose object set is Hg and

Mor(£1) = (G x Mor(£o)) [ (gs,¢) ~ (9,50%) (s € So).

The morphism set £1(Py, Qo) where Py, Qo € Hj consists of the equivalence classes
[g : ¢] such that g € G and ¢ € Lo(Po, Q). Composition is given by the formula

[9:¢lo[h:ip]=][gh: (h~ ph)o],

and identities are the elements of the form [1 : idp,]. We check later that composi-
tion is well-defined.
Define a functor w1 : £1 — F; which is the identity on the set of objects and

m1([g 1 ¢]) = ¢g 0 mo ().

We also define functions dp, g, : Na(Po, Qo) — L1(Po, Qo) by g — [g : LIQDE’] and
denote the image of g by g.

We will prove the following properties relating £, and Ly.

5.6. Lemma. The category L1 satisfies the following properties:

(a) There is an inclusion functor j: Lo — L1 which is the identity on objects
and ¢ — [1 : @] on morphisms.

(b) Every morphism in L1 has the form gop where ¢ is a morphism in Lo C L4.
If p € Lo(Py, Qo) and x € Ng(Py), then ¢ o =T o (x " px).

(c) There is a homotopy fibre sequence

Lo 25 12y | — B(G/S).

If Sy admits a complement K in G then there is a homotopy equivalence
|Lolnix = |L1] such that the composite |Lo| — |Lolnx = |L1]| is homotopic
to the map induced by the inclusion j. Moreover, the composite

O0)nK
BG ~ (BSO)hK L’ |£O|hK ~ |£1|

is homotopic to the map BG — |L1| induced by the functor k: BG — L4
with k(eg) = So and k(g) = [g: 1s,]-

The next step in our construction is to define the following category.
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5.7. Definition. Define a category L5 whose object set is
H={P<S: Ph=PnNSy € Ho}
and whose morphism sets are defined by

Lo(P,Q) ={v € L1(Po, Qo) : Vo€ PIy e Qst. (Yod=gou)}

By construction Lo(P, Q) C L1(Py, Qo) and composition of morphisms is obtained
by composing them in £;. Identities idp have the form [1 : idp,]. Also define maps

SP,Q: Ng(P,Q) — L2(P,Q) by g — [g: Lgf] and denote the image of g by g.

The main properties of the category Lo and its relation to the previously defined
L, are contained in next two lemmas.

5.8. Lemma. The category L1 is the full subcategory of Lo on the objects Hy and
the inclusion j: L1 — Lo induces a homotopy equivalence on nerves.

5.9. Lemma. Let P,Q < S. The category Lo satisfies the following properties:
(a) For every morphism ¢ € Lo(P, Q) there exists a unique group monomor-

phism ma(¥): P — @ which satisfies ¢ o & = W@x) o in Lo for all
x € P. Moreover, ma(¥)|p, = m1(¢)).

(b) ma(idp,) = idp and ma(X\) o ma(¥p) = ma(A o @) for every P 2, Q% Rin
Lo.

(c) For every g € Lo(P,Q) with g € Ng(P,Q), we have m2(§) = cq4.

(d) Given v € Lo(P,Q), if ma(y)) is an isomorphism of groups then 1 is an
isomorphism in Ls.

Lemma 5.9 justifies the following definition.

5.10. Definition. Let F» be the category whose object set is H, see Definition
5.7, and whose morphism sets F2(P, Q) are the set of group monomorphisms
ma(L2(P,Q)) defined by Lemma 5.9. By the properties shown in this lemma, there
results a projection functor my: Lo — Fo which is the identity on objects.

5.11. Lemma. The category F2 satisfies the following properties:

(a) For every P,Q € H, Homg (P, Q) C Fo(P,Q). In particular, Fa contains
all the inclusions P < @ of groups in H.

(b) Every morphism in Fo factors as an isomorphism in Fo followed by an
inclusion. In particular, every isomorphism of groups f: P — Q in Fy is
an isomorphism in Fs.

Thus, F» falls short of being a fusion system on .S only because its set of objects
‘H need not contain all the subgroups of S.

5.12. Definition. Let F denote the fusion system on S generated by Fo.

5.13. Lemma. The fusion system F satisfies the following properties:

(a) Fo is the full subcategory of F generated by the objects in H.
(b) Every P € H is F-centric. In particular, Hy C F°.
(¢c) Ewvery morphism f € F(P,Q) restricts to a morphism f|p, € F(Py, Qo).

5.14. Lemma. The functor mo: Lo — F satisfies all the azioms of a centric linking
system on the object set H.
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Finally, the last step in the proof is to show that the fusion system (S, F) defined
in 5.12 is saturated and that £, can be extended to a unique centric linking system
L associated to F.

5.15. Lemma. F is a saturated fusion system on S.

5.16. Lemma. There exists a p-local finite group (S,F,L) such that Lo is a full
subcategory of L and my: Lo — F is the restriction of m: L — F. Moreover,
dp: P — Auty, (P) are the distinguished monomorphisms of (S, F, L) for all P €
H, and the inclusion Lo C L induces a homotopy equivalence on nerves.

Assuming definitions and lemmas 5.4-5.16, we can now prove Theorem 5.2.

Proof of Theorem 5.2. The p-local finite group (S, F, L) is constructed in Lemma
5.16. Together with Lemma 5.8 we obtain inclusions of full subcategories £ C
Lo C £ which induce homotopy equivalences on nerves. By Lemma 5.6(c), there
results the homotopy fibre sequence of part (a).

Now assume that Sp has a complement K in G and we prove points (b) and (c).
Lemma 5.6(c) shows that there are homotopy equivalences |Lo|px =~ |£1] =~ |L]
such that |Lo| — |Lo|nx =~ |£| is homotopic to the map induced by the inclusion
Loy C; L1 € L. Moreover the map

BS P2 BG ~ (BSo)n 25 | Lolnk ~ |L)

is induced by the functor Ag: BS — L which sends eg to Sy and defined on mor-
phisms by s+ [s:1g,] = § € Aut,(Sp) (see Lemmas 5.16, 5.6 and Definition 5.7).
The map O: BS — |L] is the realisation of the functor A;: BS — BAutz(S) — L
where s — § € Aut,(S), then the lift of the inclusion Lgo € L(Sp, S) provides a
natural transformation Ay — A; because § o Lgo = Lgo o 8, see Def. 2.5. Therefore
|Ao| and |A1| are homotopic and the proof of point (b) is complete.

Now assume that (S, F’,L’) is another p-local finite group which satisfies the
properties in point (b). Let A denote the composite BS — BG = (BSy)nx —
|Lo|nk - By assumption there is a homotopy commutative diagram

BS
S
A
L] ~= |Lolnx = L]
The isomorphism of (S, F, L) and (S, F', L’) follows from [6, Theorem 7.7] O

In the rest of the section we fill in the details needed for the construction in
5.5-5.16.

Proof that Def. 5.5 makes L1 a small category and makes my: L1 — F1 a functor.
The verification that composition of morphisms is well defined is similar to the one
in [3, Theorem 4.6]. Specifically, for any go, ho € So

l990 : ] o [hho : ¥] = [ggohho : (hgth ™ phhg) o )] = by hypothesis (3)
lggoh : (h™*ph) o hg o] = [gh: h-*goho (h™*¢h)ohgo] = by hypothesis (4)

[gh = h™"(do o @)hohg o] =[g: Goo @] o[h:hgo).
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Associativity is straightforward as well as checking that [1 : 1p,] are identity mor-
phisms Py — Pj.

It is evident from the definition that m; maps identity morphisms in £; to iden-
tities in F7. It also respects compositions by the following calculation which uses
hypothesis (1) in the third equality

m1([g : ¢]) o mi([h: ¢]) = ¢g 0 To () 0 e 0 Mo (¥)
= cgn o (cp-1 0 mo(p) 0 cn) 0 (1Y) = cgn o mo(h ™ ph) o (1)
= cgn o mo(h™'ph o)) = mi([gh : h"phot]) = m1([g : ¢] o [h: ¢P]).

Proof of Lemma 5.6. (a) By Definition 5.5 we have [1: ¢]o[l: ¢'] =[1:po¢']s
is clearly associative and unital. It is an inclusion functor because [1: ¢] = |
if and only if ¢ = ¢’ by the definition of morphisms in £;.

(b) Clearly, every morphism ¢ in £1 has the form [g: ¢] = [g: 1]o[1: ¢] = Gop.
Given ¢ and z as in the statement, by Definition 5.5

poi=[l:plofz:1]=[rv:apz] =[r:1gz]o[l: 27 px] =Fox "px.

(c) Set G = G/Sp and denote its elements by § = ¢gSp. There is a functor
II: £; — B(G) which sends every object of £; to 5 and maps [g : ¢] — g.

Now, consider the comma category (es | II). Its objects are pairs (g, Py) and
morphisms (g, Py) — (h, Qo) are morphisms [z : A\] € £1(Py, Qo) such that z =
hg=*. We can easily check that §: PY — P, provides an isomorphism (e, P§) —
(g, Py) in (eg | II). Therefore, the set of objects of the form (e, Py) form a skeletal
full subcategory of (e | II), that is, it contains an element from every isomorphism
class of objects. This subcategory is clearly isomorphic to £y and moreover the
composite Lo C (e | II) — L4 is the inclusion j in part (a).

Moreover, any morphism g € BG clearly induces an automorphism of the cat-
egory (es | II). Therefore, Quillen’s theorem B [21] applies in this situation to
show that |(eg | II)] — [L£1] — |B(G/Sp)| is a homotopy fibre sequence. Fi-
nally, using the homotopy equivalence |j| we obtain the homotopy fibre sequence

2o 2 12, 2L Bay s,

Now suppose that Sy has a complement K in G. Recall that G acts on the
category Ly and we view the restriction of this action to K as a functor BK — Cat.
Let Trx(Lo) denote the transporter category (or Grothendieck construction) of
this functor; See e.g. [26]. The object set of Trx (Ly) is Ho, and the morphisms
Py — Qq are pairs (k,¢) where ¢ € Lo(¥Py, Qo). Composition is given by the
following formula: (ke,p2) o (k1,01) = (k2k1, 2 o kap1k;'). Define a functor
®: Tri(Ly) — L1 which is the identity on objects and

¢: Tri(Lo)(FPo, Qo) — L1(Po, Qo) is defined by (k, @) = [k : k™" pk].

It is clear that ®(1,id) = [1 : id] and for any pair of composable morphisms (ks, ©2)
and (kQa 902) in TrK(‘CO)a
D(k2, p2) 0 R(k1, 1) = [k2 : ky"poka] o [ky : ki @1k
= [kak1 : by 'ky 'pakoki o kytpiki] = @(k2ki, 2 0 kaprky ).
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By definition ® is bijective on the object set. It is also bijective on morphism sets
because K N Sy = 1 so every morphism in £1(Py, Qo) has a unique representative
of the form [k: ] where k € K and ¢ € L.

Thomason [26] constructed a homotopy equivalence |Lo|px s, | Tri (Lo)] such
that [Lo| — |Lo|nr =~ | Trx(Lo)] is homotopic to the map induced by the inclusion
Lo C Trg(Ly) via ¢ +— [€ : ¢]. Furthermore, by inspection ® carries the subcate-
gory of Ly in Trx(Ly) onto Lo C Ly via the identity map. We deduce that |®|o 3
is a homotopy equivalence |Lo|px — |£1] whose composition with |Lo| — [Lo|nk
is homotopic to the map induced by the inclusion j: Ly — L;.

To complete the proof we now consider the subcategory BSy of BAut,,(So) € Lo
via the monomorphism Jg, : Sy — Autz,(So) and observe that it is invariant under
the action of K by hypothesis (4). Thus, there is an inclusion of subcategories
Trx BSy C Tri Lo induced by Trg (ds,). By inspection there is an isomorphism of
categories Trx BSy = BG via the functor (k, s) — sk such that the composite

BG = Try (BSo) € Tri(Lo) = L4
is the functor which sends eg to Sy and g — [g : 1] € Autz, (So). O

Here are more properties of £; that we will need later in order to study the
properties of the category Ls.

5.17. Lemma. Let Py, Qq, Ry € Ho. Then

(a) For every g € Ng(Po, Qo) and h € Ng(Qo, Ro) the equality hog = hg holds
m £1 .

(b) Fiz ¢ € L1(Py, Qo) of the form [g: ¢]. Then, for every x € Ng(Py) there
exists at most one y € Ng(Qo) such that ¥ o & = g orp. In this case
Yy = gxg 'sg for a unique sg € So. Moreover, if x € Py then y = m1(¢)(x)
satisfies Y o & = g op.

(¢c) Ewvery morphism in L1(Po, Qo) is both a monomorphism and an epimor-
phism.

(d) Fiz ¢ € L1(Po, Qo) such that m () (Py) < Ry for some Ry < Qo. Then
there exists A € L1(Po, Ro) such that 1) = 1o X where 1 = é € L1(Ry, Qo).

(e) If m () = m (W) where 1,4’ € L1(Po, Qo) then ¥ = 1 o 2 for a unique
PSS Z(P())

(f) Fiz Py € Ho and set H := {g € G | gPog™" is Fo-conjugate to Po}. Then
H is a subgroup of G which contains Sy and |Aute, (Py) : Autz, (Po)| =
|H : S0|

Proof. (a) hog=[h:élo[g:é]=[hg:eé]= hg by Defn. 5.5 and hypothesis (4).

(c¢) Every morphsm [g: ¢] factors as [g: 1]o[1: Lg("PO)
¢t Py — ¢(Pp) in Ly. Since [¢g: 1] and [1: ¢'] are isomorphisms it is enough to
show that morphisms of the form [1: L%)] € L1(Py, Qo), which we denote by ¢, are
monomorphisms and epimorphisms.

Consider morphisms [h : ¢], [h' : ¢'] € L1(Ry, Py) and assume that o [h: ¢] =
volh':¢']. Then [h,éo0¢] =[h': éo¢'] and therefore h' = hs for some s € Sy and
éop==¢osop where é e Lo(p(Py),hQoh—1). Since é is a monomorphism in £
it follows that ¢ = § o ¢’ and therefore [h: ¢] = [h': ¢']. This shows that ¢ is a
monomorphism.

Jo[1: ¢] for some isomorphism
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If [h : ]or = [h' : ¢']oc then a direct claculation shows that [h: poé] = [h': ¢ og].
A similar argument to the one above using the fact that é is an epimorphism in Lg
shows that b’ = hs and p = 0 ¢’, whence [h: ¢] = [h': ¢].
(b) If y exists then it is unique becuase by part (c), ¢ is an epimorphism. Since
Yoi=|[gr: x  px] and §o ) = [yg: p] we see that there is a unique s € Sy such

that gx = ygs~', whence y = gxg~"' - gsg~'.
If z € Py then axiom (C) satisfied by Lo, see Definition 2.4, implies that
Yod=lg:¢lofe:1]=[gr:aTopod]=[g:pod]=[g:m(p)(@)oy] =

—

= [eg(mo(@)(@)) - 9 2 ] = cg(mo(p) (@) - g 09 = m(P)(2) 0.

(d) Write ¢ = [g : ¢] for some ¢ € Lo(P,Qf). Then ¢ = éo ¢ for some ¢ €
Lo(Po, gRog™") and e € Ng,(Po, gRog™"). By inspection ¢ = [1: é] o [g: ¢@].

(e) Write ¢ = [g : ¢] and ¢' = [¢' : ¢'] in L1(Py, Qo). By assumption and Definition
5.5, cgomo(p) = cgr 0mo(¢’), whence mo(p) = cg-14 0 mo(¢"). Since mo(¢), To(¢") €
Fo, we obtain that c,-1, € Fo(Po, Po) so hypothesis (2) implies that g='¢’ € So,
namely ¢ = gs for some s € Sy. Then my(p) = ¢somp(¢’) implies that §o0¢’ = po2
for some z € Z(P,). Therefore, o2 =[g: po 2] =[g: §o0¢ | =[g: ¢ ="

(f) By hypothesis (1) in Theorem 5.2, if Qg is Fo-conjugate to Qf then gQog™" is
Fo-conjugate to gQpg~* for any g € G. This implies that H is a subgroup of G and
it contains Sy because Fg,(So) C Fo.

Let g1, - ,gn be representatives for the cosets of Sy in H. By Definition 5.5
every element ¢ € Autg, (Py) can be written uniquely as ) = [g; : ¢] for some
i=1,...,n where ¢ € Lo(FPo,% FPy). Also note that |Lo(FPo, % Py)| = |Autz, (Po)|
because 9 Py is Fo-conjugate to Py. This shows that |Autz, (Py)| = n-|Autz, (FPo)| =
‘H : Sol . Autﬁo(P0)|. O

We now turn to the study of the properties of the category Lo.

Proof that Defn. 5.7 makes Lo a small category. Given morphisms ¢ € Lao(P, Q)
and p € L2(Q, R), we leave it as an easy exercise to check that po v € L£1(Fy, Ro)
belongs to Lo(P, R). Thus, composition of morphisms in £y is well defined. Tt is
easily seen to be unital and associative because this is the case in L;.

Since Sy <G it follows that Ng(P, Q) € Ng(Po, Qo). Now fix some g € Ng(P, Q)
and z € P and set y = gxg™' € Q. It follows from Lemma 5.17(a) that §o & =
9T =yg = g o g. Therefore § € La(P,Q). O

We are now ready to prove the lemmas 5.8 and 5.9.

Proof of Lemma 5.8. By construction Lo2(Py, Qo) C L1(Py, Q) for any Py, Qo €
Ho. For every x € Py and every ¢ = [g : ¢| € L1(FPo, Qo), it follows from Lemma
5.17(b) that ¢po& = jot) in L1 where y = m1(¢)(z) € Qo. Therefore ¢ € Lo( Py, Qo)
and we conclude that £4(Py, Qo) = L2(FPo, Qo).

The inclusion functor j: £1 — Lo has a left inverse r: Lo — L1 which maps
an object P to Py and maps morphisms via the inclusions L£o(P, Q) C £1(Fy, Qo).
Observe that r o j = Idz, because La(Fy, Qo) = L1(Fo, Qo).

By Lemma 5.17(b) we see that L2(Pp, P) contains [e : 1p,] = é. These morphisms
define a natural transformation jor — Id. This is because we recall that [e : 1p,] and
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[e : 1g,] are the identities of Py and Qg in £ and for any ¢ € Lo(P, Q) C L1(Po, Qo)

pole:1lp,]=le:1lg,] 0.
Then it follows that j and r yield homotopy equivalences on nerves. ([l

Proof of Lemma 5.9. (a) By Definition 5.7, for every « € P there exists some y € Q
such that ¥ o & = §op. Since P < Ng(Fp) and @ < Ng(Qo), Lemma 5.17(b)
implies that y is unique. There results a well defined function mo(¢)): P — Q

defined by m2(¢)(z) = y. In addition, since & and § = m2(1)(z) are morphisms in
L5 (see Definition 5.7) and L2(P, Q) € L1(Py, Qo), we deduce that the equation
Yo = me) o1 holds in L5. Moreover, ma(¢): P — @ is the unique function
that satisfies this equality for all © € P. The fact that m2(¢)|p, = m1(¢) follows
from the last assertion in Lemma 5.17(b).

Given x, 2’ € P, set y = ma(¢)(x) and ¢’ = m2(¢0)(2’). Then, by Lemma 5.17(a)

77[;033/5’:woio:g’:yowof’:goyA’oq/J:y/\y’oz/}.
This shows that (1)) is a homomorphism. If z € ker (1)) then o2 = 1ot = 1.

Since v is a monomorphism by Lemma 5.17(c), we deduce that & = id, hence = = 1.
Therefor mo(1)) is a monomorphism.

(b) Clearly ma([e : 1p,]) = Idp,. Now given P Y, Q3 Rin Lo, set y = w2 () (x)
and z = m2(A)(y). Then ¢od = Jop and Ao = 2o so Aothod = ZoAot) whence,
by the uniqueness statement in Lemma 5.17(b), we conclude that z = ma(Ao)(z).

—

(c) This follows from Lemma 5.17(a) because for any € P we have jo & = gz =
cq(2)g = cg(z) 0 g in Lq so m2(§) = cg.

(d) Write v = [g : ]. Observe that m(¢0)(Py) = m1(¢)(Po) < Qo by statement (a).
Since ma()): P — @ is an isomorphism, for every yp € Qo < @ there exists some
x € P such that 72 (¥)(z) = yo, namely ¥ o & = jp01p. By Lemma 5.17(b) we know
that yo = gxrg~'sg for some sg € Sg. We deduce then that x € SoN P = Py because
So < G. This shows that w3 (v0)(Py) = Qo and therefore 7 (1)) is an isomorphism of
groups.

Since 71 (¢)) is an isomorphism, ¢ is an isomorphism in £y and therefore v is an
isomorphism in £;. Given any y € @ there is a unique z € P with @/}0;\1 = Fow
because (1)) is an isomorphism. By taking inverses one sees that ¢¥~* belongs to
Lo s0 1 is an isomorphism in Ls. O

For later use we also need the following technical lemma.

5.18. Lemma. Fiz P € H and consider Ng(Py) as a subgroup of Autz, (Py) via the
monomorphism Spo,poz Ns(Py) — Autg, (Py). Let Q < Ng(Py) and assume that
Q =Y Py for some ¢ € Auty, (Py). Then Py = Qo and v is an isomorphism in
Lo from P to Q.

Proof. Recall from Lemma 5.8 that Autg, (Py) = Autg,(Py). For x € Py set
g =iy~ € Q. Thus ¥ o & = § o and by Definition 5.10, y = m(¢))(x) € F.
This shows that Py = ¥ FPyy~" and, in particular, Py < Qy. Moreover .

Since Py < Qo, we may consider ¢ := é € L1(Py, Qo) where e € G is the identity
element, and define A = 1ot € £1(FPy, Qo). For every © € P, set § = 3. By
definition y € Q. Note that Py <1 Q because Py <t P. So Lemma 5.17(a) implies

Ao =topoT =100y =yoéoh =go.
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We conclude from Definition 5.7 that A € Lo(P, Q). Furthermore, mo(A) is an iso-
morphism because it is a monomorphism by Lemma 5.9(a) and |P| = |@|. Lemma
5.9(d) now shows that A is an isomorphism in £, and, in particular, it is an iso-
morphism of the objects Py and Qg in £1. In particular |Py| = |Qo| and therefore
A= O

We now check the main properties of the category F.

Proof of Lemma 5.11. (a) This is immediate from Lemma 5.9(c). By taking e €
N¢ (P, Q) for any inclusion P < @ in H we obtain incl% € F(P,Q).

(b) Fix a homomorphism f: P — @ in F3 and set R = f(P). By definition,
f = ma(¥) for some ¢ € Lo(P,Q). Also note that every y € R must normalise
f(Po) because f is an isomorphism and that by Lemma 5.9(a), f(FPy) = m1(¥)(P).

Write ¢ = [g: ¢]. Then there is an isomorphism @ in Ly such that ¢ =
[1: L}(‘?(OPO)] o[g: @]. Since ¥ € Ly, for every x € P there exists y € R such that

[ 5py ] o lg: @lod =gol:f 1olg: @] =[1: 155 Togolg: @]

By Lemma 5.17(c), [1: L?(OPO)} is a monomorphism and we deduce that [g: @] is an

isomorphism P — R in L£o. Also f = inclgﬂ'g([g: @]) This completes the proof. [

5.19. Lemma. Consider P < S such that Py € Hy. Then Cg(P) = Cg,(P) =
Z(Py) where P acts on Z(Py) by conjugation.

Proof. It g € Cq(P) then ¢,4|p, = idp, € Autr,(Fy). By hypothesis (2), g € So,
and it follows that Cq(P) = Cs,(P). Now, Cs,(P) < Cs,(Py) = Z(Py) because
Py is Fo-centric. Therefore, Cq(P) = Cz(p,(P) = Z(Py)F. O

Lemmas 5.13 and 5.14 state the main properties of the fusion system F.

Proof of Lemma 5.13. (a) Clearly H is closed to taking supergroups because Hy
is closed to taking supergroups in Sy. Since F is generated by inclusions and
restriction of homomorphisms in F3, Lemma 5.11 shows that for any P,Q € H the
inclusion Fo(P, Q) C F(P,Q) is an equality.

(b) By definition Py € Hy. By Lemma 5.19, Cs(P) = Z(Py)Y < P. Assume that
Q is F-conjugated to P. By part (a) there exists some ¢ € Lo(P,Q) such that
m2()(P) = Q. Parts (a) and (d) of Lemma 5.9 imply that ¢ is an isomorphism
in Lo. From Definition 5.7 it is clear that ¢ is an isomorphism in £1(Py, Qo) and

in particular Q¢ € Ho, namely Qg is Fo-centric. It follows from Lemma 5.19 that
Cs(Q) = Z(Qo)? = Z(Py)", whence P is F-centric.

(¢c) For any f € F(P,Q) where P,Q € H, part (a) implies that f = m(¢)) for some
P € Lo(P,Q) C Lo(FPo, Qo). The result follows from Lemma 5.9(a) which shows
that f|p, = m1(¢)) whose image is contained in Qo by Definition 5.5. O

Proof of Lemma 5.14. The monomorphisms ép: P — Aut., (P) are the restrictions
of the maps dpg: Na(P,Q) — L2(P,Q), i.e. dp(g) =[g:1p,].

To verify axiom (A) in [6, Definition 1.7], see also 2.4, we need to show that
for any P,Q € H the set m, *(f) where f € F(P,Q) admit a transitive free action
of Cg(P) via ép: Ng(P) — Autr,(P). Note that F(P, Q) = F2(P,Q) by Lemma
5.13. Consider ¥, 9" € Lo(P,Q) C L1(Py, Qo) such that ma(v) = ma(¢'). By
restriction to Py, Lemma 5.9(a) shows that m1(¢) = m1(¢)"). Lemma 5.17(f) shows
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that there exists z € Z(Py) such that ¢/ =1 o Z in £y. Note that 2 € Aut,(P)
by Definition 5.5 so the equality 1’ = 1 o 2 also holds in £5. Furthermore, Lemma
5.17(c) implies that

ma(¥) = m(¥') = ma(h 0 2) = m(¥) o c..
As a consequence z € Cg(P) and we conclude that Cg(P) acts transitively on
the fibres of ma: Lo(P, Q) — F(P,Q). The action is free by Lemma 5.19 and the
uniqueness assertion in Lemma 5.17(e).

Axiom (B) holds by Lemma 5.9(c). To verify axiom (C) we fix a morphism
¥ € Lo(P,Q) and an element g € P. Set f = ma(¢) € (P, Q). By the definition
of the morphisms in Lo, see Lemma 5.9(a) we have o § = f(g) 1, which is what
we need. |

Notation. We shall write P ~5 @ for the statement that P,Q < S are F-
conjugate.

The next step is to prove Lemma 5.15 which shows that F is a saturated fusion
system.

Clearly Sp acts on Hg by conjugation and [Pyls, denotes the orbit of Py, i.e. the
conjugacy class of Py in Sy. Since G acts via fusion preserving automorphisms, it
acts on the set Ho/Fo of the Fy-conjugacy classes of the subgroups Py € Hy which
we denote [Py]z,. The stabiliser of [Py]z, under this action of G is denoted, as
usual, by G[p,], - Now, G[p,], acts on the set [Po]#, C Hp. Clearly, Sy < GR#,
because Fg,(Sg) C Fo. Moreover, since Sy <1 G, this action induces an action of
Gpy 7, O1 the set P of all the Sy-conjugacy classes of the subgroups of Sy that are
Fo-conjugate to Py.

5.20. Lemma. For every P € H there exist P, P' € H such that:
(a) P=2P for somea € G and P ~x P', whence P~z P', and
(b) P} is fully Fo-normalised and Py ~x, P.
In addition, S := Ng(P})So is a Sylow p-subgroup of Gipy)y, and S/Sy fizes the
So-conjugacy class [P§ls, -
Proof. The argument follows the one in the proof of step 3 in [3, Theorem 4.6].

Clearly Sy - P < G[po]fo because P < Ng(FPy) and Fg,(So) € Fo. Choose
S’ e Sylp(G[po]}_o) which contains Sy - P. By Sylow’s theorems, there exists some
a € G such that S’ = G[PO]}_O NS Set P = *P and observe that

P=°p < a(G[PO]]:O n Sa) < S.
Also Py = “Py € Ho, so P € H. In addition, G|p,j,, = “(G[p]», ). It follows that
5 =5N G[po]}_o = a(S/) S SyIP(G[PO]}‘O)'

Consider now the set Py, of all the Sp-conjugacy classes of the fully Fo-normalised
subgroups R < Sy which are Fy-conjugate to Py. Since G normalises Sy and it
is fusion preserving, it carries fully Fy-normalised subgroups of Sy to ones, and

therefore G p,), ~acts on Pyy.

We now restrict the action of Gip,, on P, to S. By [3, Proposition 1.16]
we know that |Ps,| # 0 mod p. Therefore S/Sy must have some fixed point
[Ro]s,- Thus, Ry is fully Fp-normalised and is Fyp-conjugate to Fy. For every

g € S < S we have gRog™' ~s, Ro so S < Ns(Ro)So. On the other hand
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SoNs(Ro) < GlRrr, = Gy, and S is a Sylow p-subgroup of the latter group,
hence
S =Sy Ns(Ro).
It remains to find some P’ € H such that P’ ~z P and such that P} = Ry.
Now, since P < S, it must stabilise [Ro]s,. We conclude that P/P, acts on

X :={[f] € Rep]_-o(Po, So) : Im f is Sp-conjugate to Ro}

via [fo] + [cg0fooc,-1]. Clearly X is not empty because by construction Py ~z, Ro.
Choose some f € Fo(Py, Ro). Then every element of X has the form [a o f] for
some « € Autg, (Rp). Moreover [ao f] = [Bo f] if and only if a~'3 € Autg,(Ry).

Therefore
_ Autg, (Ro)

1= Rt (o)
because Ry is fully Fy-normalised. Since P is a finite p-group, there is some [fo] €
XP where fo € Fo(Po,So) and Im fo = Ry. Let thg € Lo(Py, So) be a lift of fo.

Recall from Lemma 5.6(a) that we may consider ¢ as a morphism in £ (Py, Sp)

via an inclusion £y C £;. Fix some z € P. Since P fixes [fy], there exists some
s € Sy such that

#0 modp

¢;' o foocy =cs0 fo.
Lifting to Lo and using hypothesis (1), we see that there exists a unique z €
Cs,(Py) = Z(Py) such that

(1) e Mo = Gogp ol =sfo(z) oty in Lo.
Set y := xsfo(z) and note that y € P- Sy - Z(Rp) < S. Lemma 5.6(c), equation (1)
and the properties of S-systems of lifts (see Def. 2.5) imply that

Yool =2 o (7 ox) =12 0sfo(2) oo = g o o.
Therefore, by definition, 1y € Lo(P,S). Consider f = ma(1ho) € F(P,S) and set
P’ = f(P). By Lemmas 5.13(a) and 5.11(b), f restricts to an isomorphism f: P —
P"in F. By Lemma 5.9(a) and Lemma 5.6(a) we see that f|s = mo(¢0) = fo €
Fo(Py, Ro). Since f € F(P,P’) is an isomorphism we deduce from Lemma 5.13(c)
that P} = f(Py) = Ro. This completes the proof since f is an F-isomorphism
between P and P’ which restricts to an Fy-isomorphism fy between Py and Ry =
. O

5.21. Lemma. If P < S is F-centric but P ¢ H, then there exists P’ < S which is
F-conjugate to P such that

Outs(P') N O, (Out(P')) # 1.

Proof. The argument is almost repeated from step 4 in the proof of [3, Theorem
4.6] if we find a subgroup P < S which is F-conjugate to P and such that Py does
not contain its Sp-centraliser.

Assume to the contrary that there is some P which is F-centric, Py is not Fy-
centric, and for which there does not exist P as above. Choose P < S so that P, has
the maximal possible order. If Ng, (Pp) is Fo-centric we choose ¢ € Lo(Ng, (Fy), So)
as in hypothesis (5) of Theorem 5.2. Then ¢ represents a morphism Ng(Py) — S
in L5 because for any x € Ng(Pp)

o =[l:@lofz: 1] =[r: 27 px] =[z: 50¢] =[zs: §] = [zs: 1]o[l: @] =250
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Thus, 72(@) is a morphism f: Ng(Py) — S in F whose restriction to P gives rise to
an F-conjugate P and by Lemmas 5.13(c) and 5.9(a), Py = f(P,) does not contain
its Sp-centraliser. This is a contradiction, hence Ng,(Py) cannot be Fy-centric.
Now, P must normalise Ng,(Py) and we consider QQ := PNg,(P,). Clearly
Qo = Ng,(Py). By the maximality of |Py| we deduce that @ is F-conjugate to
some Q such that Qo does not contain its Sy-centraliser. By restriction to P < @
we see that P is F-conjugate to some P< Q and Py cannot contain its Sy-centraliser
because QO > 150 does not contain its Sy-centraliser. This is again a contradiction.
Finally, our notation was chosen in such a way that the argument in Step 4 in
[3, proof of Theorem 4.6] can be now read verbatim to complete the proof. O

Proof of 5.15. By [4, Theorem 2.2] and Lemma 5.21, F is saturated if the saturation
axioms of Definition 2.2 hold for all subgroups in H. To show this, we slightly
modify the argument in [3, Thm 4.6].

Condition I. Fix P € H which is fully F-normalised. We have to show that it
is fully F-centralised and that Autg(P) is a Sylow p-subgroup of Autz(P). By
Lemma 5.13(b) we know that P is F-centric and in particular fully F-centralised.

Consider P and P’ as in Lemma 5.20. Recall that S = Ng(P))S, is a Sylow
p-subgroup of Gp,), . Lemma 5.6(a) shows that Aut, (Py) < Autz, (Py) and by
Lemma 5.17(f) and Lemmas 5.11 and 5.13

(5.22) [Autz, (Pg) : Aute, (Fg)| = |Gipy,, ¢ Sol-

By definition Ng,(P§) = So N Ng(FP§) so

(5.23) |Ns(Pg)/Ns, (Fy)l = [Ns(Pg)So/So| = 15/So.

Now, P} is fully Fo-normalised and is Fy-centric so

(5.24) |Autz, (Py) : N, (P))| #0 mod p.

Since |Gpy,, S| # 0 mod p, we deduce from (5.22), (5.23) and (5.24) that

_ [Aute, (R)] | [Aute, (Fo)| | [Nso (Fo)l
[Autz, (Fo)l [N, (Fo)l [Ns(Fp)l

namely Ng(F) € Syl,(Autg, (Fy))-
Fix ¢ € Autg, (P}) such that

(5.25) ' Ns(P)v 2 R € Syl (Nawe,, () (P'))

and set

|[Autz, (P)) : Ng(F}) #0 mod p,

P" =Py < Ns(Pp).

Lemma 5.18 shows that Pj = P} and that ¢ € Lo(P’, P”) is an isomorphism. In
particular, P” is F-conjugate to P’, hence also to P because P’ = P for some
a € G and G € Lo(P, P') is an isomorphism. We now claim that

(i) Autg,(P”) = Nauee, (pp)(P”)  and (i) Ns(P") = Nyg(p,)(P").
Clearly (i) follows from the definition of the morphisms in Lo because

A€ Autg,(P") < VoeeP'IyeP'Noiol'=4)

<— A€ NAutgl(Pé)(PN)~
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For (ii), note that P” C Ng(P}) C Autg, (P}) so by the choice of 1 in equation
(5.25),

Nng(py)(P") = Ns(Py) N Nau,, (pg)(P”) € Syl,(Naut, (pp) (P"))-
On the other hand
Nng(py)(P") < Ns(P") < Naui,, (pp (P,

hence Ng(P") = Nygpy(P"). We deduce that Ns(P"”) € Syl,(Autg,(P"). Fi-
nally, Autz,(P) = Autz,(P"”) because P” and P are isomorphic in Lo (via 9 o a).
Also, |[Ng(P)| > |Ns(P")| because P is fully F-normalised. Therefore Ng(P) €
Syl,(Autz,(P)) and Lemma 5.14 implies that Auts(P) is a Sylow p-subgroup of
Aut}-(P).

Condition II. Fix P € H and f € F(P,S). Parts (a) and (b) of Lemma 5.13 show
that f(P) € H and that f(P) is F-centric and in particular it is fully F-centralised.
We have to prove that f extends to some morphism Ny — S in F where

Ny ={g€ Ng(P) : focg=cso f for some s € S}.

Note that s in the defintion of Ny belongs to Ng(Im f). Set Q = Ny. We observe
that

(5.26) Q < Ns(Qo) and Q < Ns(P) < Ns(FPo).

By construction of Fa, there exists ¢ € Lo(P,S) such that f = m2(p). Now ¢ in
a morphism in £4 (P, Sp) and we write ¢ = [g: ¢o]. By definition of Q = Ny, for
any ¢ € () there exists t € S such that foc, = ¢, 0 f. Lemma 5.13(c) and (5.26)
imply that fo o cq = ¢, o fo where fo: Py — Sy is the restriction of f. By Lemma
5.17(b), fo = m1(p) so part (e) of that lemma implies that @ o§ = fogo 2 for some
z € Z(P). Part (b) of that Lemma applies again to show that ¢ o § = §; 0 ¢ for
some sq € S.

Now, if ¢ € Qo then o § = [gq: ¢ poq] and 550 ¢ = [sqg: @o]. Therefore there
is s € Sy such that

9qs = Sq9 and §0300:q/\*10(poo§.
In particular s, € Sp and 7mo(po) 0 ¢q = c45 0 Mo (w0). This shows that Qo € Ny (40)
and we may extend g to some g € Lo(Qo,So) because Qp O Py which is Fy-

centric. Define ¢ = [g: 1] and note that ¢ = 1) o [1: ¢p’]. From (5.26), for any
q€@

Yogo[l:iup’l=vo[l:up’log=poj=50p=25 0ol ip’]

Since [1: L%’] is an epimorphism in £; by Lemma 5.17(c), we deduce that 1) €
L5(Q,S). Finally, f = ma(p) = m2(¢)) o inclg. This completes the proof. O

Proof of Lemma 5.16. Our notation was chosen in such a way that the argument

in [3, Theorem 4.6, Step 7] can be read verbatim and we shall therefore avoid

reproducing it. (I
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6. MAPS FROM A HOMOTOPY COLIMIT

Let C be a small category, and X: C — Top be a diagram of spaces over C.
The values taken by the functor will be denoted by X (c¢) and X (¢) where ¢ € C,
¢ € More (e, ). The homotopy colimit of the diagram X is the space

hocolime X = (H H X(co) x An)/ ~

n>0 co—-—cCn

where we divide by the usual face and degeneracy identifications [2, Ch. XII].
There is a filtration of hocolime X by spaces F,, X where F, X is the image of the
union of X (¢) x A™ in hocolime X for all m < n. Notice that Fy X is just [] .., X(c)
and F; X is the union of the mapping cylinders of all ¢ € Mor(C). Observe that
amap fi1: F1X — Y is the same as a set of maps fi(c): X(c) — Y together with
homotopies f1(¢') o X(¢) =~ fi(c) for every ¢ € C(c,c’). Equivalently, these are

paths f(c) ~ fi(c') o X(¢) in mapf(?(X(c),Y). A set of maps X(—) EAN 7
which admits such homotopies is called a system of homotopy compatible maps and
it gives rise to an element in the set lim,[X (c), Y].

Fix a system of homotopy compatible maps X (—) EAN Y. By the remark

above it gives rise to a map f1: F1.X — Y where fi|x() = f(c). Wojtkowiak [28]
addressed the question whether f; can be extended, up to homotopy, to a map
f: hocolime¢ X — Y. The method is to extend f; by induction on the spaces F;, X.
Given a map f,: F,X — Y whose restriction to X (e) is homotopic to f(c),
Wojtkowiak developed an obstruction theory for extending it to F, 11X without
changing it on Fj,,_1X. The existence of such an extension depends on the van-
ishing of a certain obstruction class in @ZH 7 (mapf () (X (c),Y)). The exten-
sion from F} X to F5X involves in general a functor into the category of groups
and representations, whose @2 term is described in Wojtkowiak’s work. Fortu-
nately, if these groups are abelian then Wojtkowiak’s definition of @2 coincides
with the usual one from homological algebra. Once the map has been extended
to F»X, there are homotopies between the paths fi(c ) ~ fi( ”) X (¢ o) and
f(e) ~ fi(d)oX(@) ~ fi(c") o X (1)) o X (p) for all ¢ L ¢/ ¥, ¢”. Thanks to these
homotopies there are functors ¢ — 7, (map’(9(X(c),Y)) into Ab for all n > 1.
Given two maps fi, f2: hocolimeX — Y whose restrictions to X (c) are homo-
topic to f(c) for all ¢ € C, Wojtkowiak also studies an obstruction theory for the
constructlon of a homotopy f1 ~ f2 Clearly, f1 and fg give rise to a homotopy

fl\FOX : f2|F0X The idea 1 1s to extend the homotopy Hy inductively to I x F, X.

Given a homotopy filr F,_, X, the possibility of extending it to a ho-

Fo_ 1X " folr,

motopy f1 X f2 r, x without changing it on F,,_5X, depends on the vanishing
of an obstruction class in lim" 7, (mapf (9 (X (c), Y)).

6.1. Definition ([6, Definition 3.3]). Fix a prime p. A small category C has p-height
d if for every functor F': C — Z,)-mod the groups linzc F vanish for all ¢ > d. The
p-height of C is infinite if no such d exists and it is finite otherwise.

6.2. Theorem. Let C be a finite category of p-height d < oco. Consider a sequence of

maps Yo 25 V1 25 o 2L Y and let y; = gio- - -0go: Yo — Yip1. Given a functor

X: C — Top and a system of homotopy compatible maps f(—): X(—) — Yo, define
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new systems of homotopy compatible maps fi(—) = y; 0 f(—): X (=) — Yiy1 for all
1=0,...,d. Assume that
(i) For every c € C and every i =1,...,d the induced map

mmap’i-1) (X (¢),Y;) LCOLR mmap’i(® (X (¢), Yiy1)
is the trivial homomorphism between abelian groups.
(i) The groups m.>omap’(® (X (c),Y;) are Z(,)-modules for all ¢ € C and all i.
Then
(a) There exists a map f: hocglimX — Yy which renders the following square
homotopy commutative for all ¢ € C,

x@) L9 v

L(C)J/ J/yd—l

hocolimX —— Y.
¢ f

(b) If f1, f2: hocolime X — Yy satisfy fl'X(c) ~ fg\x(c) ~ f(c) for allc € C
then the composites hocolime X Juh, Y, 24 Ya+1 are homotopic.

Proof. (a) We will define by induction maps fi: F;X =Y foralli=1,...,d such
that leX(c fi—1(c) for all ¢ € C.

Note that, by definition of a system of homotopy compatible maps, we can
construct a map fo: X — Yo Let fi = go o fo Assume by induction that
fz. F; X — Y, with fl|X(c) ~ f;_1 has been constructed for some 1 < 7 < d.
The obstruction class ©;,, for the extension of f; to F;11X is mapped by the
homomorphism

. (¢ (9i)« 1. 4 (¢
lim rmap’i-19 (X (), Y;) ~22 lim rmap’@ (X (¢), Yig1)
cop Cop
to the obstruction class ©;,1 for the extension of g; o fz to F;4+1X. When ¢ > 1,
by hypothesis (i) the groups are abelian and this homomorphism is trivial, whence
041 = 0. Wojtkowiak’s obstruction theory guarantees the existence of a map
le F; 11X — Y;y1 which agrees with g; o fl on F;_; X and such that fl+1|X(C) ~
gi o fi—1(¢) = fi(c). This completes the induction step.
Hypothesis (ii) and the assumption on C imply that the groups
lilﬂzﬂi—lmapfd_l(X(C),Yd)
cop
are trivial for all ¢ > d + 1. Thus, the obstructions to the extension of fd to F; X
where i > d must all vanish. We can therefore construct by induction on ¢ > d + 1
maps f;: F; X — Yy such that filx) ~ fa-1(c ) for all ¢ € C and such that f1+1
agrees with f; on F;_1X. We can finally define f hocoth U; FiX — Yy with

the required properties. In fact, f\FnX = fn+1|FnX for all n > d.

(b) First, we construct by induction homotopies y; o fl ; 0 f2| r,x for all
i =0,...,d. Recall that FoX =[], X(c) and we define Hy as the sum of the

homotopies yg o f1|X(c) ~ yo © fa|x(c)-
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Assume by induction that H;: y;0 fl |, x>y;0 f2| r,x has been constructed where
0< i~< d. The obstruction Y7 for the extension of H; to a homotopy y;o fi|r,,, x =~
Yi © fa| ., x is mapped by the homomorphism

liLHiHWiH map’ () (X (c), Viz1) RGN @Hlmﬂmapﬁﬂ (X (c), Yiga)
cop cor

to the obstruction class T; for the extension of g;11 0 H;: [ X F;X — Y12 to

I x F;11X. This homomorphism is trivial by hypothesis (i). Therefore T; = 0, and
- H; -

by Wojtkowiak’s theory there is a homotopy y;y1 © fi|r . x = Yir1 0 f2

This completes the induction step.

Now, the hypothesis on C together with (ii) imply that the groups

lim‘r;map* (X (c), Yar1)
cop

F—,;+1X'

are trivial for all # > d + 1. We can therefore construct by induction on ¢ > d + 1

~ H; ~
homotopies yq © fi|r,x =~ ya4 o fa|F,x such that H;11 and H; agree on I x F;_1X.
There results a homotopy y4 © f1 =~ yq © fo. (I

7. MAPS BETWEEN p-LOCAL FINITE GROUPS

7.1. Definition. Let (S, F) be a fusion system. A map f: BS — X is called F-
invariant, if for every ¢ € F(P,S) the composite BP B2 s L xis homotopic
to f|gp = f o Bincl}p.

7.2. Example. Let (S,F, L) be a p-local finite group. The map ©: BS — |L| of
2.9 is F-invariant by Proposition 2.10.

Given a p-local finite group (S, F, L), the question we address in this section is
when an F-invariant map f: BS — X can be extended to a map |£]| — X. Here
is the main result of this section which uses the constructions in §3.

7.3. Theorem. Let (S, F,L) and (S',F', L") be p-local finite groups and consider
an F-invariant map f: BS — |£'|IA,, Then:
(a) There exists m > 0 and a map f: |£] — (£ me);\ which renders the
following square homotopy commutative

Bs —1— |

d I+

L] i (1[0 Epm),

(b) There exists e > 0 such that for any two maps fi, fo: |L] — |E’\;\ with

~ ~ ra: A/\
fioO ~ f,00 ~ f, the composites |L| Juh, |£’|£ - (|E'|22pe)2 are
homotopic.

7.4. Example. If f = ©: BS — |£| then f can be chosen as the identity on |£\;\.

The main tool for proving Theorem 7.3 is Theorem 6.2 but we will need some
preliminary facts about the homotopy groups of mapping spaces and p-completion
of wreath products of spaces.
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Consider a group G. Its abelianisation is denoted by G,p,. Its maximal p-perfect
subgroup [2, Ch. VIL3] is denoted by OP(G). This is the maximal subgroup of
K such that Hi(K;F,) = 0. It is clearly characteristic in G. It is also clear that
OP(G) contains every element of G with finite order prime to p. In particular,
if G is finite then G/OP(G) is a finite p-group. For a finite abelian group A, set
Ay = A® Zp); this is the set of p-power order elements in A.

7.5. Proposition. Set H = G Xy for some group G. If either p > 2 and k > 2
orif p=2 and k > 3 then H/OP(H) is an abelian p-group. In particular, if G is
finite then H/OP(H) is a finite abelian p-group.

Proof. Note that H contains G** as a normal subgroup and we will write g for
the element (1,...,1,g,1,...,1) € H with g € G in the ith position. To prove the
result it suffices to show that OP(H) contains all the elements of the form 91y g(;)l
for all ¢ > 1, all the elements of the form 91y where g € [G, G] is a commutator in
G and that it contains Ay < 3. Indeed, the quotient of H by the normal subgroup
generated by the elements of the first and second type is G, X ¥, so throwing in
Ay, would guarantee that the quotient H/OP(H) is abelian.

If p > 2 then clearly the involutions 7 = (1,4) € Xy belong to OP(H). Therefore,
for any g € G also g(l)Tg(% belongs to OP(H). As a consequence we also have
g(l)Tga§7_1 = g(l)g(;)1 € OP(H). These are the elements of the first type.

Now, given a,b € G we observe that

{alag} - kb } - {(ab) oy (@b)Gl} = (a~b~"ab) ),
so OP(H) contains all the elements of the form g(;y with g € [G, G]. Finally, since
Yk is generated by involutions, Xy, is also contained in OP(H). This completes the
proof in this case.

If p =2 and k > 3, consider some g € G and a 3-cycle (1,4,5). By inspection
[9(1)’ T] = 9(1)9(_1')1 so OP(H) contains all the elements of the first type. Also OP(H)
contains all the elements of the second type, namely 9oy € H where g € [G,G] by

the same argument we used for odd p. Finally, OP(H) contains all the 3-cycles in
Yk, whence it contains Ayg. O

7.6. Corollary. Let X be a p-good space, then 71 ((X Ek)g) is abelian if k > 3. It
is a finite abelian p-group if m (XZ/,\) is finite.

Proof. We may replace X with X;\ by next Lemma 7.7. Set Y = X ¥j and
m = mY. By Remark 3.6 and Proposition 7.5 we see that 7/OP(w) is an abelian
group and that it is a finite abelian p-group if m X is finite. Let E — Y be the
principal fibration obtained by pulling back the covering map B(OP(w)) — Bn
along the first Postnikov section Y — Bw. Clearly, m E = OP(7) and we obtain
a fibre sequence E — Y — B(w/OP(w)). By [2, Ch. VIL3.2], E is p-good and
E{)\ is simply connected. By fibrewise p-completion [2, Ch. 1.8.3], there is a fibre

sequence £} — Yp/\ — B(w/OP(r)) where Y — Yp/\ is a mod-p equivalence because
E is p-good. We deduce that 71 (Y,") = 7/OP(m) which is abelian. The description
in [1, Prop 5.5, 5.6] of the fundamental group of the p-completion of a space implies
that 71 (Y,) = Fl((YPA);\) is the p-adic completion of 7/OP(xw) which is also an
abelian group. It is an abelian finite p-group if 71 (X) is finite (see [1, 5.7 (vi)]). O
t
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7.7. Lemma. Let X be a p-good space. Then, for any G < X, the diagram

AXD)
X XNG

A(X)Ql ln

xXQ) —= XM G
(X1 G), —— (X;G))

is homotopy commutative where (11 G); is a homotopy equivalence.

Proof. The first statement follows from the naturality of n and of — ! G. The map
1nG is a mod p homology equivalence by a Serre spectral sequence argument, hence
(m G);\ is a homotopy equivalence by [2, Lemma 1.5.5]. O

7.8. Proposition. Let (S, F,L) be a p-local finite group, let P be a finite p-group
and consider a map f: BP — |£|;\. Then

(a) m(\£|z/)\) are finite p-groups for all i > 1.
(b) 7;(map”°2°f (BP, (|,C|$ 2 Zk):)) are finite p-groups for alli > 1 and k > 0.
Moreover, if k > 3, m (map"°?°/ (BP, (|E|£ 2 Ek):)) is abelian.

Proof. (a) The fundamental group 7r1(|£|;\) is a finite p-group by [3, Theorem B].
Using a Serre class argument (see [25, Ch 9.6, Theorem 15]), we only need to show
that the integral homology is finite at each degree. In [22], it is proven that the
suspension spectrum E°°|£\;\ is a retract of X*°BS, hence its integral homology
groups are finite abelian p-groups.

(b) If S = 1 then |£] = * hence (|£|;\ZE;€);\ o~ (BEk)g and o Ao f is null-
homotopic. Dwyer-Zabrodsky’s result [10] shows that the space under study is
homotopy equivalent to (BEk)Q and the result follows from Proposition 7.5 together
with [5, Proposition A.2] and part (a).

We now assume that S # 1. By [6, Theorem 4.4(a)] f is homotopic to

BP 2% BS O || L o))

for some p: P — S. Denote f' = © o Bp. We may, and will, assume that f = no f’.
By Theorem A there exists a p-local finite group (S’, F’, L’) together with a homo-
topy equivalence w: |£| ¥, = |£/|. Since |£| is p-good by [6, Proposition 1.12],
Lemma 7.7 now implies that (|£]? Ek)g o (|£\IA, 2 Ek):. The following diagram

mapAof’ (BP,|L] 1 %) (77*)0(—771219)*> map”OAof(BP, (|£|;\ l Ek);\)

w*lg :l(‘“?)*

map“°2°f (BP,| L)) R map”°“°2°/" (BP, \/3/|;\)

is homotopy commutative. By Proposition 2.11(b) both horizontal maps induce,
after p-completion, split surjections on all homotopy groups. Moreover note that
the spaces at the right hand side of the diagram are p-complete by Proposition
2.11(a). Therefore it suffices to prove that the homotopy groups of

° A\
(7.9) (map®°f (BP,|£|) %),
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are finite p-groups. It follows from Proposition 3.8(b) and Remark 3.6 that
mimap~°/ (BP, |£|;\ ! 25 & mp (map’ (BP, |£\;\)) I and
m;map~°/ (BP, |E|2 1 35) & @ m;(map’ (BP, |£\;\)) for i > 1.

Since map’ (BP, |E|$) is the p-completed classifying space of a p-local finite group
by Proposition 2.11(a), its homotopy groups are finite p-groups by (a). Now [2,
Proposition VII.4.3] shows that the homotopy groups of (7.9) are finite p-groups.
Finally, if £ > 3, Proposition 3.8(b) and Corollary 7.6 show that the fundamental
group is abelian. O

Proof of Theorem 7.3. First, we assume that S # 1, or else the result is a triviality.
We begin by constructing a sequence of spaces and maps Yj 2y, &5 ... where
Yo =|L \;\ with the following properties:

(i) For every i > 0 there exists some m;1 > 2 such that Y1 = (Y5 0 X,min )2

and such that g; is the composite Y; A, Yl Xpms NN i
(ii) m,somap?i-1°°90°fIBP (BP,Y;) are finite abelian p-groups for all i > 1.
(iii) The homomorphism

Tl'imapgi_lo'"OgOOﬂBP (BP, Yz) (gi)« ﬂ_imapgio...ogooﬂBp (BP, }/i-‘rl)

is trivial for all 7 > 1 and all P < S in F¢.

Property (i) states explicitly how to construct the sequence from Y, and the
m;’s. Since Yy = |£’|;\, property (i) with Lemma 7.7 and Theorem A shows that
for every ¢ > 0 there is a homotopy equivalence Y; ~ |£i|2 for some p-local finite
group (S;, Fi, L£;) with S; # 1. We assume this fact from now on.

To begin with, set Lo = £ and Yy = |£0|;\ and m; = 2. Let go: Yo — Y7 be

the composite Yj o, (Y0122 );\ Proposition 7.8 guarantees that (ii) holds for

Y] since p™ = p? > 3.
Assume by induction that we have constructed Yj ELNE =R Y, where k > 1,
for which conditions (i)—(iii) hold. By hypothesis (ii) on Y}, we can choose my11 > 2

such that p™*+! annihilates every element in the abelian group

@ rn—kmapgk—lo'”ogooleP (BP’ Yk)
PeFe

Define Y11 = (Vi me’k+1);\ and gr = 1o A(Yy). Thus, condition (i) holds for

Y, 25 Yi41. Proposition 7.8 implies that condition (ii) holds for ¢ = k + 1 since
p™+1 > p? > 3. It now follows from Proposition 2.11 that the mapping space
map9k° 9o flsr (BP,Yy41) is p-complete and we are in position to apply Lemma
4.3 (with Y = Y}, and X = BP) to deduce that condition (iii) holds for gg. This
completes the inductive step of the construction.

We now prove inductively that for every k& > 0 there is a homotopy equivalence
Yie ~ (£ ZGk);\, where G < ¥,mi++m,,, such that

(1) |£/|;\ I Ve ~ (1) 0 Gk);\ is homotopic to

A(Iﬁ’l)ﬁ
£ —— (11 G)
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This is a triviality when & = 0. We assume inductively for k& > 1 that the left
triangle in the following diagram is homotopy commutative.

A(Yk)

Y. Y Ep"”k+1 " Yk+1

AT :

A A A A A
115 s LGy~ (L1 Gy 1y — ((£10GR), e,

P

The composite at the top is g, o---0gg. By Theorem A and [6, Prop. 1.12], |L'[1 Gk
is p-good. The induction step now follows from Lemma 7.7 and Proposition 3.5.

Now consider the category C = O(F€)°P and the functor B: C — Top recalled
in 2.8. Clearly f: BS — \E’|;\ gives rise to a system of homotopy compatible maps
fo: B(—=) — |£’|2 in the sense described in Section §6. Recall from [6, Corollary
3.4] that C is a finite category with p-height d < oo (see Defn. 6.1). Theorem 6.2
applied to fo and Yy 2% v; 2% ... shows that there is a map fo: |[£] — Yy such
that fo0o© ~ gg_10---0ggo f. Part (a) of the Theorem now follows because the
following diagram is homotopy commutative by (1).

BS — L1

. AL
o AL

] = Ya = (1L Ga)py — (LUt tma))

Part (b) of the Theorem follows similarly: Given fi, fo: |£] — Yp such that f100 ~
f200 ~ f. we have ggo---gpo f1 =~ gq---0gpo fo which implies that the composites

- A
]| EESELN \£’|;\ — Y1 ~ (|£] ?Epm1+-~+m,d+1);\ are homotopic. O
Proof of Theorem B. The induced map BS Le, pgr 19, |£’|$ is clearly F-

invariant because BS’" — |’ |; is F'-invariant by 7.2 and p is fusion preserving.
The result is now a direct consequence of Theorem 7.3 and Theorem A. [

We say that p: S — %, is F-invariant if p|p and p o ¢ are equivalent represen-
tations for every P < S and ¢ € F(P,S).

7.6. Proposition. Let (S,F,L) be a p-local finite group and let p: S — X, be a
homomorphism. Then the following statements are equivalent:

(1) p is F-invariant.

(2) Bp: BS — BY,, is an F-invariant map.

(3) no Bp: BS — (BEn);\ is an F-invariant map.
Proof. Tt follows immediately from a result of Mislin [16, Proof of the main theorem]
which gives rise to bijections Rep(P,%,) =~ [BP, BL,] %‘» [BP, (BEn);\] for all
P<S. O

7.7. Proposition. The regular permutation representation of a finite p-group S
induces an F-invariant map Bregg: BS — BY, g for any fusion system F on S.
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Proof. By Proposition 7.6, it is enough to check that regg: S — 3| is F-invariant.
Note that S acts freely on S viaregg: S — ¥g|, that is all the isotropy subgroups
are trivial. In particular, any group monomorphism ¢: P — S where P < S renders
S a free P-set via reggop. Since any two free P-sets of the same cardinality are
equivalent, it follows that rege |p and regg op are conjugate in %,,. |

By Example 7.2 and Proposition 7.6, every map f: |L] — (BZn)Q gives rise
to an F-invariant representation p of S of rank n where Bp ~ f|gs. Not every
F-invariant representation of S arises necessarily in this way. However, the next
proposition gives a partial answer to that question.

7.8. Proposition. Let (S, F, L) be a p-local finite group.
(a) Given p € Rep, (F), there exists some k > 0 and an element f € Rep,,, (L)

~ k.
such that f|gs is homotopic to BS Bwme), BYkp, NN (szkn);\ .
(b) Consider fi1,fo € Rep, (L) such that fi|ps ~ fals. Then there exists
some e > 0 such that p® - fi = p®- fa in Rep,e,, (L).

Proof. Let (S,F,L) be the p-local finite group associated with 3,. Since |L] is
p-good by [6, Prop. 1.12], a standard Serre spectral sequence argument shows that
;)\ A Bincl;\

A
(1) (BEa), = |Lly = (1L, 150 = (BEa), 15)) — (BSu),  and

(BA)
(Bn), — (BYak),
where A: %, < X, is the diagonal inclusion, are homotopic. Both (a) and (b)
follow directly from Proposition 7.6, Theorem 7.3 and (1) taking into account the
definition of the operation + in [], 5, Rep, (¥) and [[,,, Rep,(£). O

7.9. Proposition. Fvery S-regular permutation representation |L| EN (an);,\ is a
homotopy monomorphism at p.

Proof. By [5, Lemma 2.3], H*(S;F,) is a finitely generated module over the Noe-
therian Fj-algebra H*(BX,,. g;Fp) via the homomorphism (m - regg)*. Finally,
H*(|L|;F,) is a submodule of H*(S;F,) by [6, Theorem B], whence it is finitely
generated. O

Proof of Theorem C. Apply Propositions 7.7 and 7.8(a) to obtain f € Rep,. g(£)
such that f|gs is homotopic to n o B(p* - regg), that is, ®(f) = p* - regg. By
Proposition 7.9, f is a homotopy monomorphism at p . (]

8. THE p-LOCAL INDEX OF THE SYLOW SUBGROUP
Let (S,F, L) be a p-local finite group and let f: |£] — (BEn)Q be a map. The
restriction f|gg = f o © is F-invariant by Example 7.2 and is homotopic to (Bp);\
for a unique p € Rep(S, ;) which is F-invariant by Proposition 7.6 and [10]. There
results maps Rep,,(£) — Rep,,(F) which are compatible with the operations + and
x defined in the introduction. They give rise to a ring homomorphism

®: Rep(L) — Rep(F).

8.1. Proposition. Additively, ker(®) and coker(®) are p-torsion.
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Proof. An element in ker(®) has the form f; — fo where f1, fo € Rep,,(£) for some
n and fi|ps =~ fa|gs. Proposition 7.8 implies that p¢- (f1 — f2) = 0 in Rep(L) and
it follows that ker(®) is p-torsion.

An element of Rep(F) has the form p; — pp for some p; € Rep,, (F) and
p2 € Rep,,,(F). By Proposition 7.8, the definition of ® and the definition of the
operations + in Rep(F) and Rep(L), we see that there exist integers k1, ke > 0 and
representations fi € Repyr,, (£) and fo € Repps,, (£) such that ®(f1) = p** - p1
and ®(fy) = p*2 - py. Then w = p*2 - f; — pF* - f5 is an element of Rep(£) such that
®(w) = p*M1Tr2(p; — py). Tt follows that coker(®) is p-torsion. 0O

By Proposition 7.7 the ring Rep(F) contains regg: S — X|g which generates
an (additive) infinite cyclic group Rep™®(F) := {n-regg}tnez in Rep(F). Similarly
let Rep™® (L) denote the additive subgroup of the ring Rep(L) generated by all the
S-regular representations of (S, F, L) ( see Definition 1.2).

It follows directly from the definitions that ® restricts to a group homomorphism

$™8 : Rep"*®(L) — Rep'®(F).

8.2. Corollary. The cokernel of ®*°8 is a cyclic p-group. The kernel of ®*°8 is an
abelian torsion p-group and Rep'®(L) is isomorphic to the direct sum of Z with an
abelian p-torsion group.

Proof. This follows from Proposition 8.1 which in particular implies that the image
of ®™8 is isomorphic to Z, whence it splits off from Rep®®(L). O

Given a finite group G there is a natural one-to-one correspondence between
equivalence classes of permutation representations G — 3,, and equivalence classes
of G-sets of cardinality n. Sum and products of representations (as described in the
introduction) correspond to disjoint unions and products of the associated G-sets.
Note that reg. corresponds to a free G-set with one orbit.

Let us return to discuss Rep(F). Since the product of a free S-set with any other
S-set is again a free set, it follows that Rep'®(F) and Rep'®(L) are in fact ideals
in Rep(F) and Rep(L) and that '8 is a ring homomorphism.

8.3. Example. Let (S,F, L) be the p-local finite group of a finite group G. The
restriction of (B regG);\: |£|z/o\ — (B2|G‘);\ to BS is homotopic to n - (B regs);\
where n = |G: S| because regg |s = n-regg. In particular (B regc)g is an element

in Rep™® (L) which is mapped by ® to n - regg. It follows that |G: S| € Im(P8),
whence | coker(®*°®)| divides |G: S]|.

8.4. Definition. Let (S, F, L) be a p-local finite group. Define the upper and lower
p-local index of S in L by

Uind, (£: S) = | coker(®™#)|

Lind,(L: S) = |Rep™®(F) : Rep™®(F) N Im(P)|.

Clearly Lind,(£: S) divides Uind, (L: S) because Im(®'8) < Im(®)NRep & (F).
8.5. Lemma. Let (S,F,L) be a p-local finite group. Then Uind,(L: S) is a p-
power. If there exists a permutation representation p: |L| — (BEn)I/)\ such that
plps =~ B(n-regg) with n > 1 prime to p, then Uind,(L: S) = 1, and in particular
also Lind,(L£: S) = 1.
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Proof. The first statement follows from Corollary 8.2. The existence of p shows
that n € Im(®"°®) hence, Uind,(L: S) = 1. O

The depth of a fusion system F on S is the largest number of elements in a
chain of proper inclusions of F-centric F-radical subgroups of S. This includes
chains ending in S. Following [23] we call these subgroups “F-Alperin”. Thus, if
the depth of F is n then there exists no chain P; < --- < P41 of proper inclusions
of F-Alperin subgroups.

8.6. Proposition. If the depth of a p-local finite group (S,F, L) is equal to 2 then
Uind,(L£: S) = 1.

Proof. Let R denote the collection of the F-Alperin subgroups of S. Fix representa-
tives S, Py, ..., P, for the F-conjugacy classes in R where P; are fully F-normalised.
Consider the poset sdR defined in [14, Defn. 1.3]. Its objects are the F-conjugacy
classes [P] of elements P € R and the F-conjugacy classes [P < S] of proper inclu-
sion P < S in R. Here we use the fact that F has depth 2. The only relations in
5dR are [P < S] < [P] and [P < S] < [S]. By Alperin’s fusion theorem [6, Theorem
A10], if [Q] = [P] then [Q < S] = [P; < S]. It follows that §dR is isomorphic to
the poset C,, whose objects are {cg,ct,ch|i = 1,...,n} and whose only relations
are ¢ < co and ¢} < ¢} for all i = 1,...,n. Specifically, ¢y = [S],ch = [P;] and
¢t =[P; £ S]. We view C,, as a small category with an arrow z — y if x < y.

In [14, Theorem A] a functor F': C,, — Top with the following properties is
constructed. The values of F' are the classifying spaces of finite groups Go, G¢ and
GY for i = 1,...,n and the maps F(c}) — F(co) and F(c¢}) — F(c}) are induced
by inclusion of groups G} < Gy and G¢ < G%. In addition S is a subgroup of
Go = Aut,(S) of index prime to p. Also, k; = |Gh: G| are prime to p by [14,
Theorem A] and the fact that P; is fully F-normalised, whence Ng(P;) is a Sylow
p-subgroup of Gi = Aut,(P < S) which is a subgroup of Gi = Aut,(P;) by
[14, Prop. 1.5]. Finally, the map ©: BS — |L£]| factors up to homotopy through
BGy ~ F(c¢p) — hocolime, F' ~ |L].

Set k =[]} k; and ko = |Go|- k. Note that ky is divisible by |G| and |G3| for all
i because ko = k- |Go| = k - |GY| - |Go: Gi| and k; divides k. Set ¢; = ko/|G%| and
m; = ko/|G%]. Consider the following permutation representations for i = 1,...,n

k-regg,: Go — Xy, Ui -reggi: G — X, mi - reggy: G — Ty

Note that (k-regg,)|gi and (m; reges )
them give the set {1,...,ko} the structure of a free Gi-set with ¢; orbits. By taking
classifying spaces there results a system of homotopy compatible maps F' — BXj, .
It can be replaced by a system of compatible maps F' — BXy, as follows. First,
set the maps F(c}) — BYy, to be the composite F(c}) — F(cg) — BXj,. Next,
replace the maps F(ci) — F(c?) by cofibrations and change the maps F(c}) — BY,,
up to homotopy to obtain a system of compatible maps F' — B, .

There results a map f: |£] =~ hocolim F — BY, such that f|ps = f o Bi§° ~
k-|Gy: S| - Bregg where k - |Go: S| is prime to p. Now Lemma 8.5 applies. O

@i are equivalent to {; -regg: because all of

We shall now prove Theorem D. In fact we prove the following stronger result.

8.7. Theorem. Let (S,F,L) be a p-local finite group. Then Uind,(L: S) =1 if

(1) (S,F,L) is associated with a finite group, or
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(2) (S,F,L) is one of the exotic examples in [6, Examples 9.3 and 9.4] or in
[23] or in [9] or in [7, Example 5.3].

Proof. (1) This follows from Lemma 8.5 and Example 8.3.

(2) We will apply Proposition 8.6. The p-local finite groups in [6, Examples 9.3-4]
as well as the ones in [23] and in [9] were shown to have depth 2 in Examples 7.6,
7.7, 7.3 and 7.4 of [13] respectively. The information on the structure of the exotic
p-local finite groups in [7, Example 5.3] implies quite directly that these fusion
systems have depth 2. We leave the straightforward details to the reader. O

8.8. Conjecture. For all p-local finite groups Uind,(L: S) = 1.
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