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Abstract 

 

 

Previous research confirms that many employees work in jobs not well matched to their skills 

and education, resulting in lower pay and job satisfaction.  While this literature typically uses 

cross-sectional data, we examine the evolution of mismatch and its consequences over a career, 

by using a panel dataset of scientists in the US.  The results show that both the incidence of 

mismatch and its negative consequences appear concentrated among those late in careers.  This 

suggests that past studies of mismatch may exaggerate the degree of inefficiency in labor market 

matching. 
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Educational Mismatch and the Careers of Scientists 

 

 

1.  Introduction 

Recent empirical research has shown that a mismatch between the skills that workers have and 

the skills required in jobs results in adverse economic outcomes.
1
  Mismatch has been shown to 

be negatively correlated with earnings (e.g. Bender and Heywood 2009; Robst 2007a and 2007b; 

Chevalier 2003; Borghans and de Grip 2000; Groot and Maasen van den Brink 2000), positively 

correlated with quits and job change (e.g. Bender and Heywood 2009; Wobers 2003; Allen and 

van der Velden 2001), and negatively correlated with job satisfaction (e.g. Baker et al. 2010; 

Bender and Heywood 2006; Moshavi and Terborg 2003; Belfield and Harris 2002).  Several 

theoretical conjectures have been offered to explain why these adverse outcomes persist in 

equilibrium.  First, government subsidies of higher education may lead to an oversupply of 

highly educated workers (Freeman 1976).  Second, persistent informational asymmetries may 

exist between workers and firms about skill requirements (Tsang and Levin 1985; Malamud 

2009).  Third, institutional characteristics of the labor market, such as internal labor market 

considerations, can cause earnings to be based on observable characteristics of the worker and 

job and not directly on productivity (Thurow 1975).  Yet, these conjectures seem, in part, ex post 

rationalizations as standard labor market theory would suggest that the disadvantages of 

mismatch would shrink or vanish as more information became available causing decisions on 

educational investments and match quality to improve. 

 The research confirming the adverse consequences of mismatch focuses primarily on 

cross sectional data.  We follow a handful of more recent studies in focusing on panel data.  

                                                 
1
 See Hartog (2000) for a review of studies examining over-education, a form of mismatch in which the worker has 

more education than required for the job, and see Robst (2007a) for a discussion of general mismatch in which the 

worker's education is simply not relevant for the job. 
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Moreover, we are particularly interested in using panel techniques to explore the consequences 

and determinants of mismatch at different parts of a career. There are several compelling reasons 

for doing this.  First, it informs the true consequences of mismatch.  Even substantial initial 

negative consequences of mismatch could be modest in aggregate if they are quickly diminished 

by improving match quality or if the negative consequences attenuate rapidly.  Second, it informs 

the competing theoretical conjectures by investigating the extent to which any movement toward 

equilibrium actually exists.  Third, it informs our understanding of careers.  This is of particular 

importance in the science- and engineering-based careers we investigate in which human capital 

requirements change rapidly often in response to frequent technological change.  Reinvestment 

in rapidly depreciating skills becomes neither personally nor socially desirable as the length of 

the payback periods shrinks.  Thus, late career mismatch may be both anticipated and not 

indicate large scale social inefficiency.  

This paper examines these issues using the Survey of Doctoral Recipients (SDR), a micro 

panel dataset of U.S. workers who have received their PhD in a science or engineering discipline.  

We explore the likelihood of mismatch over a career and when in a career its consequences are 

most negative.  We also explore the determinants of mismatch and the factors that cause 

mismatched workers to become matched.  Finally, we explore the pattern in the reasons for 

mismatch by discipline, by period of career, and by gender.  On balance, the evidence suggests 

that mismatch is more likely late in career, that it is harder to return to a job that matches a 

worker’s education late in career and that the negative consequences of mismatch are greater late 

in career. 

 

2.  Background 
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In addition to the cross-section evidence on the negative consequences of mismatch, there is an 

emerging longitudinal literature to which we contribute.  This literature grapples with the 

persistence and causes of mismatch. Thus, one view is that the mismatched have unmeasured 

characteristics that may be associated with negative outcomes and that mismatch is an indicator 

but not a cause of these outcomes.  Using Australian longitudinal data, McGuiness and Wooden 

(2009) identify mismatched workers (over-skilled in their case) as moving rapidly between jobs, 

lacking in any additional confidence that they will find a better match and, indeed, finding "most 

remain either in jobs rarely where their skills are not adequately utilized or exit the workforce 

entirely." (p. 284)  In this view, the mismatched may simply be workers of lower ability who 

never achieve the match their education would imply. This view can be contrasted with the 

reading of the UK longitudinal data by Lindley and MacIntosh (2008) who suggest that "over-

education is a temporary phenomenon at the start of individuals' careers" and that examination of 

the transmission mechanisms reveals significant movement out of over-education. Yet, they do 

identify a minority of individuals for whom over-education is a reasonably permanent state 

extending over many years.
2
 

 Estimates of the consequences of mismatch also show variation. Verhaest and Omey 

(2009) show that over-education (as measured by a job analysis approach) has substantially 

smaller negative consequence on earnings for Flemish school leavers in panel estimates than in 

cross-section estimates. Nonetheless, the penalty remains statistically significant and there is a 

hint that the size of the penalty drops with years of work experience.  Dolton and Siles (2008) 

examine the graduates of a single UK university using panel estimates but using an instrumental 

variable approach to correct for the measurement bias that is typically compounded in such 

                                                 
2
 While these studies examine, respectively, over skilling and over education, see Mavromaras et al. (2010) for an 

attempt to compare Australia and Britain on both the extent of over-skilling and its wage penalty. 
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estimates.  Their ultimate panel estimates of the wage penalty for over-education look very 

similar in size to those from their cross-section suggesting that low ability may not be the 

primary source of the wage penalty. 

 These studies use very different samples and different measures of mismatch. In our 

sample of PhD holders in engineering and science, we focus on a measure of how closely the job 

is related to the doctoral degree.  Thus, the educational level is held constant but the field of that 

education varies.  The questions on mismatch probe whether or not the current job utilizes and 

reflects the doctoral education. Examining mismatch among these workers is crucial for several 

reasons.  First, substantial governmental resources are devoted to educating these workers and 

improving their diversity.  Yet, the growth in U.S. university students pursing advanced science 

degrees has slowed and trained scientists increasingly abandon scientific careers (Preston 2004). 

High degrees of mismatch may signal wasted governmental and, hence, societal resources. 

Second, managers of the highly skilled remain concerned with maximizing the productivity of 

their scientific workforce and mismatch has been shown to reduce job satisfaction and, 

potentially productivity, among research and development workers (Kim and Oh 2002). Third, 

the workers we examine play a crucial role in innovation and creating technological progress and 

their efficient deployment may be particularly critical. In this view mismatch may represent not 

only a loss in current efficiency but also reduced prospects for future growth. 

 While documenting the extent of mismatch and its consequences is important, 

understanding the causes and timing of mismatch is critical and has been understudied.  From a 

market point of view, if initial (early career) mismatch rates are high and persist, this more likely 

evidences inefficiency in the functioning of the labor market.  However, if mismatch emerges 

late in careers it is unlikely to reflect markets working inefficiently and could indicate just the 

opposite. In occupations with substantial and frequent changes in skill requirements, the skill sets 
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learned while earning a PhD will depreciate over time.  Moreover, reinvesting in the latest skills 

may not be economically sensible late in a career as the costs exceed the benefits. Thus, 

individuals may efficiently move from research oriented jobs to management-oriented ones (e.g. 

becoming a dean in a university or a manager in government or business).  These transitions 

would be sensible when optimizing over a short remaining expected work life but would still get 

reported as mismatch.  Thus, we posit a substantial theoretical and policy difference between 

early career mismatch that persists (likely inefficient) and late career mismatch in an era of 

rapidly changing skill requirements (likely efficient).   

More generally, the labor economics literature is clear that many firms employ older 

workers but will not hire older workers (Hutchens 1986).  This reflects a potentially efficient use 

of upward sloping age earnings profiles as a career incentive device to build loyalty and increase 

worker effort (Lazear 1979, 1981).  A well-recognized consequence of such devices, is that older 

workers become less likely to find career jobs late in life once displaced from an original career 

job (Daniel and Heywood 2007; Heywood et al. 2010).  Firms using such devices can afford 

neither to hire an older worker immediately into the reward phase of such profiles nor to start 

them over again at the beginning of such profiles (Heywood and Siebert 2009). Thus, 

independent of older workers' willingness to invest in recent skills, those mismatched late in life 

are less able to become properly matched.  As these older mismatched workers are being 

compared to older workers in the reward phase of their earnings profile, the negative 

consequences of mismatch may be particular severe.  Nonetheless, the presence of such older 

mismatched workers need not be evidence of inefficiency if the alternative is to abandon upward 

sloping age earnings profiles that generate efficient lifetime effort.  Thus, to the extent that 

deferred compensation represents an important market phenomenon, it would result in older 

workers being mismatched for longer periods as they cannot easily find alternative career jobs.  
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Because of this inability to change jobs to find a better match, older workers will face larger 

relative penalties for mismatch given their position in the upward sloping age earnings profile.   

Rapidly depreciating human capital combined with short pay back periods and the 

potential of efficient upward sloping age earnings profiles allows a series of predictions.  First, 

older workers are more likely to be mismatched as they have less incentive to reinvest in rapidly 

changing skills.  Second, mismatched older workers are less likely to move out of mismatch both 

because it requires such reinvestment and because firms with deferred compensation contracts 

would be unwilling to hire them into career jobs. Third, the penalty associated with mismatch 

will be greater for older workers as they become mismatched and possibly out of career jobs 

during the reward phase of deferred compensation contracts.   

To the extent these predictions are confirmed, mismatch would appear less socially 

wasteful than might otherwise be the case  Put differently, if young workers are less likely to be 

mismatched and if mismatched, they suffer small penalties and are fairly quickly matched, the 

concern over mismatches between education and jobs should be minimal.  In turn, perhaps, less 

emphasis should be given to the government role in subsidizing education and the inefficiency of 

labor market matching and more emphasis should be given to what happens to workers and skills 

over the course of their careers.
3
 

 

3.  Data 

 The data for this analysis comes from the SDR conducted by the National Opinion 

Research Center on behalf of the US National Science Foundation.  Started in 1993, the SDR is a 

longitudinal survey of a nationally representative sample of individuals who have received their 

                                                 
3
 Again, recognize that we our estimates reflect on the consequences of the mismatch between education and skills 

not specifically on the consequences of over- or under-education.  See Robst (2008) for a comparison of the 

consequences of mismatch and of over-education. 
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PhD in a (hard or social) science, math, or engineering (SME) field who currently reside in the 

US.  The initial survey, as well as new cohorts of new SME PhDs, comes from the NSF’s Survey 

of Earned Doctorates.  The survey is conducted roughly every two years and included in this 

study are data from the 1993, 1995, 1997, 1999, 2001, 2003 and 2006 waves.  (See Bender and 

Heywood 2009, or http://sestat.nsf.gov for more details of the survey.) 

 The survey includes a wealth of information including data on socio-demographic, 

educational, and job characteristics.
4
  Central to this study, in each survey, a question is asked 

that indicates the (self-reported) match between a person’s job and his or her education.  

Specifically, the question asks: "Thinking about the relationship between your work and your 

education, to what extent is your work related to your doctoral degree?"  The possible responses 

are "closely related," "somewhat related" and "not related."   Those scientists working in jobs not 

related to their education are presumably using less of the knowledge, training and skills learned 

in that education.  In this critical sense they may be identified as mismatched.   

 We will first summarize the pattern of which workers are mismatched and then present 

panel estimates the earnings consequences of mismatch.  We will discuss the reasons for 

mismatch and estimate the determinants of moving into and out of mismatch.  We will be 

sensitive to differences in out patterns by gender and by the three broad types of fields in our 

sample, hard science (including math), social science and engineering. We recognize that the 

likelihood of mismatch, the reasons for mismatch and the consequences of mismatch may differ 

critically among these separate samples and we have sufficient observations, as we will make 

clear, to provide reasonable estimates within each of these subsamples as well as for the sample 

as whole. 

                                                 
4
Although there is a public use version of the data available, we need to employ a restricted data version of the 

survey, since information such as salary, detailed discipline of education and job, and race are masked in the public 

use version.  More information about both versions of the survey can be found at the SESTAT website, or 

http://sestat.nsf.gov. 
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4.  Results 

Rates of mismatch 

Table 1 gives the rate of mismatch for the different samples in the data. We note the large size of 

over 200,000 observations across the seven waves. The full sample (pooled over all waves) 

shows that more than two-thirds of the respondent observations report that their job is closely 

related to their education and eight percent indicate that the job and education are not closely 

related.  The yearly pattern hints that mismatch has increased slightly over time.  In 1997 the 

match rate was 69.3 percent, and it falls to 64.5 percent by 2006. It remains unclear whether this 

decline is due to the aging of the sample or a general increase in mismatch (we return to this 

issue in our estimation).  Males are more likely than females to be somewhat or very mismatched 

(25.5 percent compared to 22.5 percent and 8.3 percent to 7 percent).  Workers with a social 

science degree are more likely to be matched compared to those with a hard science/math or 

engineering degree as might be anticipated if more technical skills depreciate more quickly 

resulting in mismatch later in career.  Finally, and unsurprisingly, workers in academia are much 

more likely to be matched, while nearly 50 percent of workers in the business sector report some 

degree of mismatch (see Bender and Heywood, 2009, for more on differences by sector of the 

economy). 

(Table 1 about here.) 

 In order to explore the role of career, we use several approaches.  First, at the bottom of 

Table 1, we examine the percentages of mismatch by career stages: ‘Early in Career’ (10 years or 

less since degree), ‘Middle of Career’ (11 to 24 years since degree) and ‘Late in Career’ (25 or 

more years since degree).  These percentages reveal that those early in their career are more 

likely to be closely matched (71.3 percent compared to 66.3 and 63.1 percent) and less likely to 

be severely mismatched (5.9 percent compared to 8.5 and 10.2 percent).  In a bit more detail, in 
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Figure 1, we use the pooled sample to examine the proportion of workers who are in the three 

match categories at different ages.  In general it seems that the lowest rates of mismatch do 

happen at young ages with over 70 percent reporting a close educational match until their late 

30’s.  Indeed, rates of educational mismatch start at relatively low levels and gradually climb to 

about 10 percent in the early to mid 70s.   

(Figure 1 about here.) 

 However, individuals may start their PhDs some years after their college education. This, 

combined with the heterogeneity in the length of time in the completion of a PhD, suggests it 

might be more informative to examine the relationship between educational mismatch and the 

number of years since an individual’s PhD degree.  Figure 2 has these results.  The general 

pattern is similar.  If anything, the decrease in those closely matched is faster than in Figure 1. At 

the start of careers 75 percent of workers report being matched but toward the end of careers this 

drops to only 45 percent of workers. The associated increase in mismatch is not only among the 

most mismatched, but the share in the middle mismatch category also increases.  These figures 

indicate that much of the mismatch may be late in a career and may, as a consequence, not be as 

reflective of labor market inefficiency.  We will provide estimations that account for other 

determinants later when we examine transitions between mismatch statuses.  These estimates 

will support the increase in mismatch late in career. 

(Figure 2 about here.) 

The earnings consequences of mismatch 

Most of the previous literature uses cross sectional data to find a decrease in earnings of 10-20 

percent associated with mismatch (see Robst 2007a, for example).  This subsection examines 

whether these findings are robust to using fixed effects estimation.  Table 2 reports selected 

results for the worker fixed effect models estimated for the different subsamples listed in the first 
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column.  The first row presents the critical results from the full sample.  Workers who are 

somewhat mismatched suffer a decrease in log wages of 0.024 or slightly more than two percent.  

Workers who are very mismatched suffer a decrease in log wage of nearly 0.114 roughly in line 

with cross-sectional estimates (Robst 2007; Bender and Heywood 2009).  These fixed effect 

estimates hold constant the individual specific earnings component and use the variation in 

match status across individuals to provide the earnings coefficients.  Thus, the critical sample 

size becomes not the number of overall observations but the number of transitions in match 

status which introduce this variation.  As shown in the third column of Table 2, there exist over 

30,000 transitions in mismatch status over the 13 years of the panel. We note that one 

consequence of the fixed effect estimates is that only time varying parameters add to the 

estimations summarized in Table 2.  

(Table 2 about here.) 

Breaking our sample into males and females and estimating separate fixed effect 

estimates within each subsample generates only modest gender difference in the salary reduction 

for the somewhat mismatched. Yet, the influence of severe mismatch appears about three 

percentage points greater for women.  Returning the gender together but breaking out broad 

disciplinary subsamples also shows some differences.  The separate estimates on the samples of 

workers with PhDs in the Social Sciences and of workers with PhDs in Engineering show no 

statistically significant reduction in salary, ceteris paribus, for being somewhat mismatched. On 

the other hand, those with degrees in the Hard Sciences and Math have a reduction of almost four 

percent for being somewhat mismatched.  This last group also has the largest reduction in salary 

for severe mismatch – approximately 14 percent. This compares with approximately 11 percent 

for Social Scientists and a relatively small six percent for Engineers.   
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Broadly then, the results remain in the ballpark of previous studies, even after controlling 

for fixed effects. The earnings penalties appear to be largest for hard scientists and smallest for 

engineers.  At a minimum, these new results make it unlikely that previous results stemmed 

largely from sorting in which the inherently less able (those with lower earnings potential) were 

more likely to be mismatched.  The apparent absence of such strong sorting would tend to 

discount the idea that mismatch happens to a selected sample and be more supportive of the 

possibility that it is often part of a career cycle.  We note that the number of transitions, even 

within our subsamples, is large enough that it is unlikely that our results flow from a few 

influential outlying observations. 

 The results from Figures 1 and 2 indicate that rates of mismatch increase with age or 

years since degree.  We now focus on the earnings penalty early in careers and late in careers. As 

we've suggested, mismatch late in career may be economically rational as human capital 

accumulated during graduate education can depreciate meaning that skill sets can become out of 

date and new investments do not pay for themselves. This may naturally lead to jobs that are no 

longer related to education. If this results in separation from a career track job, it may have more 

serious consequences for older workers who otherwise would be in the reward phase of an 

upward sloping age earnings profile.  

Table 3 contains results for panel estimates of earnings penalties for those early in their 

career (ten years or less since degree) or late in their career (25 years or greater since degree).  

Again, we provide estimates on the full sample and for separate samples by gender and by broad 

degree field group. The full sample results indicate that being mismatched later in one’s career 

carries a greater penalty.  For being somewhat mismatched, the penalty is less than two percent 

for those in the early career stage, but it is about five percent for those in the later stages of their 

career.  While the penalty increases for a more severe mismatch, the gap also grows with a 
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penalty of around five percent for those early in career but of nearly twenty percent for those late 

in career. The gender specific results mirror generally this pattern.  Interestingly, there seems to 

be little difference across genders for those early in their careers, while being slightly 

mismatched has the stronger penalty for late career women and more severe mismatch has the 

stronger penalty for males in their late career. The results by broad field group are interesting as 

it is clear that hard scientists face significant earnings penalties in both early and later career 

while all three fields face earnings penalties in late career.   Together with the larger penalties in 

late career compared to early career for hard scientists, this provides further evidence that the 

influence of mismatch is concentrated in late career. Again, these panel estimates hold constant 

the worker fixed effects meaning that the estimates are generated by the within-worker variation 

in earnings as they change mismatch status.  Nonetheless, our number of transitions is adequate 

to assure reasonable estimates. While the later career stage has fewer observations, it is clear that 

number of transitions is not proportionately smaller.  In other words, those in late career face a 

higher chance of a transition helping to boast the number of transitions during that period.  

(Table 3 about here.) 

Reasons for mismatch  

Determinants  

Table 4 reports fixed effects (conditional) logit results for those early and late in careers.  Since 

the mismatch variable has three values and the fixed effects logit only allows for a binary 

dependent variable, there are two specifications of the dependent variable here.  The first, 

denoted as ‘Any Mismatch’, equals one if the mismatch variable indicates that the worker’s 

education relates to their job (partly matched) or that the education is not at all related to the job 

(very mismatched).  The second, denoted ‘Very Mismatched’, equals one if the mismatch 
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variable indicates only that the job and education are not at all related (thus, a more severe form 

of mismatch). 

(Table 4 about here.) 

 Focusing on the former, we observe that controlling for fixed effects, moving into the 

government or business sector generates more mismatch compared to moving into the academic 

sector, but only for those early in their career.  Relative to primarily doing research, other main 

activities such as management, computers, or other nonteaching duties, generates more mismatch 

in either sector.  This effect is similar across career stages. Such evidence fits with the notion that 

those moving out of research, which tends to happen later in a career, move into mismatch. 

Along a similar theme, an additional year since degree increases the chance of mismatch.  

Moreover, this influence emerges with a stronger marginal effect on mismatch among those late 

in their career. Those who become disabled late in their career are also more likely to be 

mismatched, while there is little effect for those early in the career.  The results are largely 

similar when examining movement into the most mismatched category in the final two columns.  

We emphasize that as these are conditional logit estimates, the worker dimensions that do not 

vary by time such as gender, race and the broad field of degree cannot be part of this estimation. 

Reasons for severe mismatch  

Workers in the survey who report that their job and education are not at all related also identify 

the most important reason that their job and education are not at all related.  The options for 

response include pay and promotion opportunities, working conditions (hours, equipment, 

working environment), job location, change in career or professional interests, family-related 

reasons, job in degree field not available, and an ‘other’ category.  While it is left to the 

researcher to interpret exactly what might be implied by each response, it is valuable to explore 

the pattern of responses in light of our hypotheses. 
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 Table 5 examines the relative frequency of the reasons for mismatch and does so for 

those early and late in careers by various subsamples.  In general, the most frequent reasons for 

mismatch regardless of the career stage is being mismatched due to ‘pay and promotion’, 

‘career’, and ‘no job’.  Those in the early part of the career, however, are slightly more likely to 

be mismatched because of pay and promotion (22.1 compared to 19.3 percent) and also 

somewhat more likely to report that no job is available (26.7 compared to 18.3 percent).  On the 

other hand, those at the end of their career are much more likely (38.9 compared to 25.6 percent) 

to report that their career (career stage?) is causing them to be mismatched.  This would be 

consistent with progression in one’s career away from one’s education toward management or 

other tasks.  Thus, mismatches are concentrated late in careers and the major reason given for 

mismatch at that time is the career itself, a reason much less likely to be given early in career.  

Family reasons are less likely to explain mismatch late in career and mismatch due to location or 

other reasons show little variation by career stage.  

(Table 5 about here.) 

 There exists some variation across the samples.  Women are more likely to report being 

mismatched because of family reasons regardless of the stage of the career, compared to men.  

They are also less likely than men to say that pay and promotions are the main reason for 

mismatch. Academics are more likely to say that their mismatch is due to their career 

(particularly for those late in their career), while those in business are more likely to say that pay 

and promotions are the main reason, particularly early in the career.  Interestingly those in 

government late in career have a relatively high percentage of the mismatched saying that there 

was no job available.  While there are differences by broad degree type for those early in the 

career (hard scientists and engineers are mismatched due to pay and promotion and career while 
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social scientists are more likely to say that there is no job available), there are fewer differences 

late in careers.   

 We now return to our panel estimates of earnings to incorporate the reasons for 

mismatch. Recall that the reasons for mismatch are only given for those who identify a severe 

mismatch.  Thus, our fixed effects log earning equations include the one general dummy for 

being somewhat mismatched and then a series of mutually exclusive dummies indicating the 

primary reason for severe mismatch where all the coefficients are relative to those who are fully 

matched.  The results are shown in Table 6 which mimics our early results for Table 3 although 

the subsamples are now shown across the columns. Each subsample is as before and, again, they 

are divided into early and late in career.  Thus, the numbers of transitions generating the 

aggregate variations in mismatch status are identical to those shown in Table 3. The current 

difference is that the single composite measure of severe mismatch is broken down into the 

causes of that severe mismatch.  This implies that the variation for the individual reasons for 

mismatch is generated by the number of transitions into or out of that cause. Thus, variation can 

be caused by aggregate variation, a move into severe mismatch and by changes in the cause of 

mismatch among those reporting mismatch.   

(Table 6 about here.) 

The full sample results in the first column of Table 6 make clear that the cause of 

mismatch that behaves least like the others is that for pay and promotion.  While there is 

variation in magnitudes across the other causes, they all tend to generate negative and 

statistically significant coefficients that are larger in late career than in early career.  There exists 

no influence on earnings for being mismatched for reasons of pay or promotion.  This hints that 

some workers may willing accept severe mismatch to pursue pay and promotion.  The alternative 

may well be less severe mismatch and the pay reduction or eventual severe mismatch for other 
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reasons with the greater pay reduction. Indeed, the influence of this cause of severe mismatch 

can even be positive in some subsamples. Women and engineers actually enjoy a double digit log 

earnings advantage when mismatched for reasons of pay and promotion early in the career 

suggesting even greater willingness to accept mismatch. Men suffer a disadvantage late in career 

even when mismatched even for these reasons but it is the smaller than the disadvantage 

associated with any other cause of mismatch late in career.  

The other cause that seems most muted in its influence of mismatch on earnings is 

mismatched for career reasons.  Here there is never a significant disadvantage early in career but 

one typically develops by late career. This hints some workers early in their career may be 

mismatched but don't pay a penalty as those around them who are matched may still be investing 

in human capital and not capturing the return on their match, say in post-doctoral or other 

training positions. Nonetheless, the general pattern for all causes other than pay and promotion is 

a reduction in earnings that emerges as large late in career. 

Mismatch and transitions into and out of mismatch 

In this subsection we focus on the transitions between match statuses that have generated our 

earlier earnings penalties.  In starting we emphasize our early point, shown with the mean 

proportions, that mismatch is more common later in the career. To provide that emphasis we use 

the available controls and simply estimate the determinants of being mismatched. We take as a 

dependent variable the dichotomous indicator of being mismatched (either somewhat or 

severely) and estimate a logit within each of the now familiar samples. In each estimate, the 

crucial comparison is that across career stage.  We compare the influence of the broad middle 

career and of the late career with the early career influence on being mismatched.  The marginal 

effects of this comparison are shown in column 1 of Table 7.  In the full sample, those in middle 

career are a statistically significant 3.3 percentage points more likely to be mismatched than 
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those early in career.  Those in late career are an even larger 7.5 percentage points more likely to 

be mismatched.  Not only is the second point estimate statistically different from zero but it is 

statistically different from the estimate for those in middle career.  It is also a meaningfully large 

estimate as the total share of observations reporting mismatch is 32.3 percent. 

(Table 7 about here.) 

 There exists interesting variation across our subsamples but the broad message does not 

change. The likelihood of mismatch grows for both men and women with their career stage.  The 

size of that growth is larger for women as they are more likely to be mismatched in late career 

than are men.  The extent of mismatch and growth in mismatch over the career is particularly 

large for those in hard sciences but the concentration of mismatch in late career is clear for both 

social scientists and engineers as well. 

 Having established more concretely our earlier point about the importance of career 

stage, we now examine the transition of those who are mismatched moving back to a match.  

This examination can shed light on the efficiency of the labor market in creating matches. If the 

probability of moving out of mismatch is low, the inefficiency would be greater all else equal. 

Yet, for a given probability of moving out of mismatch, the distribution of that probability 

remains important.  Again, if probabilities are much lower for those late in career we are less 

concerned about inefficiency and suspect we may be observing the consequences of upward 

sloping age earnings profiles reflecting deferred compensation.  

To examine these transitions we start with workers when we first observe them in 

mismatch (either somewhat or severe) and we follow them for three subsequent waves (typically 

six years from initial identification) and observe how many of them become matched.  The 

columns on the left hand side of Table 8 show us the the share of those moving from any 

mismatch to fully matched. The full sample figure shows us that 53.1 percent of those 
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mismatched move to a match within the observation window suggesting a fair amount of 

movement. While the likelihood of making such a transition does not monitonically decline with 

career stage, it is highest in early career.  In other words, relative to other career stages, those in 

early career are mostly likely eliminate their mismatch.  This remains true in each of subsamples. 

Social scientists are the most likely to move to matched from mismatched with hard scientists are 

generally the least likely.
5
 The gender differences appear modest. 

(Table 8 about here.) 

We now estimate the determinants of transitioning from mismatch to match using the 

available controls and doing so within each of our samples.  The dichotomous variable of having 

made the transition within the three years is the dependent variable in logit estimates. The 

independent variables include career stage (middle and late relative to early) and the other 

explanatory variables such as main work activity, years since degree, race, disability status, 

citizenship status, marital status and region of residence.  We take these explanatory variables at 

the stage of initial observation of a mismatch. The results are shown in the second column of 

Table 7 and largely support what was shown in the simple proportions.  In the full sample, it is 

the early stage workers who are most likely move from mismatch into match. This sits beside the 

fact that the early stage began with the fewest mismatched workers.  The difference in transition 

probability between the early stage and the other two stages is particularly large for women and 

particularly small for engineers. 

A second set of transitions provides a fuller picture.  We now augment our estimate of the 

determinants of mismatch with one of determinants of transitions into mismatch. This reverses 

                                                 
5
Attrition into retirement may be influencing the observed patterns.  Indeed, separate estimates by the authors show 

that among those late in career, the mismatched are more likely to retire, even after controlling for demographic 

characteristics, salary, broad degree field, employment sector, and main job activity (results available from the 

authors).  The fact that the mismatched are more likely to retire biases upward the share of workers who eventually 

report a match from the selected sample that remain employed. 
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the procedure we just described by starting with workers when we first observe them as matched 

and following them for three waves to observe how many of them become mismatched. As 

shown on the right hand side of Table 7, the full sample mean probability of making a transition 

to mismatch conditional upon being matched seems to decline modestly with career stage but 

this is not consistent across the subsamples. It appears to be generated largely by the hard 

scientists. 

We again take the making of a transition as the dependent variables in logit estimation 

using the available controls and estimating within each of the samples. In the full sample, the 

pattern evident in the sample statistics vanishes as there is not an evident pattern over career 

stage. Yet, this hides offsetting patterns among the broad fields. Hard scientists appear more 

likely to make the move away from being matched, conditional on being initially matched, in the 

early stage of their careers.  Together with the evidence that this is also the career stage in which 

hard scientists are more likely to move into a match, conditional on being mismatched, it 

suggests a lot of churning or change in status early in career for hard scientists. Yet, we 

emphasize that despite the pattern of the transitions, it remains the case that there are the fewest 

total mismatches for hard scientists in the early stage. The transition out of being matched shows 

a different pattern for engineers and social scientists (to a lesser extent).  They are less likely to 

move out of being matched early in career compared to the other career periods. 

While we have not been presenting the many full estimates behind the coefficients 

summarized in Table 7 because presenting all of them would be prohibitively long, they are 

available from the authors.  However, we do include the full sample estimates of the two 

transitions probabilities in Appendix Table 1.  They reveal the pattern by career stage 

summarized in Table 8 but are worth briefly discussing to focus on the other controls.  Perhaps 

most important is that engineers are less likely to make the move to being matched compared to 
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social scientists and that hard scientists are even less likely to make the move to being matched 

compared to social scientists.  Similarly, engineers and hard scientists are both much more likely 

to transition out of being matched.  This pattern supports the view that high technology fields 

with rapidly depreciating skills make moving into mismatch more likely and regaining a match 

less likely.  Women are less likely to find a match once mismatched.  They are also more likely 

to become mismatched once matched. The racial patterns seem less easily explicable with Blacks 

and Hispanics being more likely to find a match once mismatched and yet Blacks, Asians and 

Hispanics all being more likely to become mismatched once matched.  This pattern suggests 

more churning among statuses for racial minorities than for Whites. 

We note that transitions between statuses may be associated with changes in jobs or 

employers.  While we think these changes are at least as much an effect of growing mismatch as 

a cause, we included additional indicators in the estimates summarized in the Appendix Table 1 

(available from the authors).  We use indicators in each wave of whether or not the employee is 

in the same job and whether or not the employee is with the same employer.  Thus, there are four 

possibilities in each wave, the workers is with the same employer in the same job, with the same 

employer but in a different job, with a new employer doing the same job or with a new employer 

doing a different job.  In our estimates of the transition probabilities we found a clear pattern but 

it did not influence the pattern of other results.  Changes in mismatch status in either direction 

are associated with a new job either with the old or with a new employer.  Changes in employer 

but keeping the same job are not associated with an increased chance of status change.  This 

seems sensible as the question that forms the dependent variable directs workers to compare their 

education with their job and so job changes appear to be associated with changes in mismatch 

status.  
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 While this picture of differences in mismatch and mismatch transitions over career stages 

is shaded, several points deserve restatement.  First, it is clear from the sample statistics and our 

estimations that mismatch is most likely late in the career and least likely early in a career. 

Second, the ability to transition back into being matched once mismatched is greatest early in the 

career. Third, the transitioning into mismatch once matched differs by broad flied.  For engineers 

and social scientists, such transitions are least likely in early career while for scientists it is most 

likely in early career.  Thus, while the pattern of churning among hard scientists must be noted, 

the overall pattern appears to support our broad hypothesis showing that mismatch is more 

prevalent late in career and that mismatch early in a career is more likely to be resolved into a 

match. Finally, we note that hard scientists and engineers are both less likely to transition into a 

match once mismatched and more likely to transition into mismatch once matched when 

compared to social scientists. 

 

5.  Conclusions  

The literature on both over-education and mismatch is large yet only a few studies have 

examined their consequences and determinants in a panel framework.  Our examination does not 

measure over-education but does examine the degree of mismatch between education and the 

current job.  It adds value by making use of the panel framework. This framework allows testing 

whether the results from the cross-sectional estimates are robust and, critically, allows examining 

what happens to educational mismatch over workers’ careers. Again, while mismatch among our 

sample of PhD scientists may include those who are over-educated, this study has examined a 

concept that is not vertical (too little or too much education) but is simply about the quality of the 

match between education and the job. 
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The results make clear that mismatch is more likely late in careers.  The respondents 

themselves have the option of identifying that their career or career stage is a reason for 

mismatch.  A far larger share of workers makes this identification late in career than early in 

career. These findings are consistent with much of mismatch being a consequence of career 

evolution. Moreover, while the panel estimates confirm an earnings penalty from mismatch, the 

penalties are much larger, several times larger, for those late in their career.   Those who are 

mismatched early in career are substantially more likely to move into match than are those 

mismatched in middle or late career. In general, the incidence, consequences and duration of 

mismatch are disproportionately associated with workers late in their career.  These findings are 

consistent with the view that mismatch may not be as large an indicator of inefficiency as broad 

general statistics would imply.  Instead, it is concentrated late in career and may reflect both the 

natural evolution of those careers and perhaps the use of deferred compensation as an efficient 

incentive device. 

We recognize that our findings are limited by a sample that focuses on those for whom 

career issues may be paramount.  Moreover, the scientific workforce likely faces more rapidly 

changing human capital requirements and faster depreciation than do typical workers.  In 

addition, the highly educated workers in our sample may be more likely to find themselves in 

long-term employment relationships that make use of deferred compensation schemes.  Thus, it 

remains an open question whether these findings generalize.  Nonetheless, our examination 

stresses that mismatch may mean fundamentally different things at different points in a career.  

Recognizing this emphasizes our point that broad levels of mismatch and greater inefficiency 

need not always go together.  Late career mismatch can be a byproduct of labor markets working 

appropriately from a full career prospective.  
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Table 1: Rates of educational match and mismatch across samples 

 

Sample 

Fully 

matched 

Somewhat 

matched 

Severely 

mismatched 

Full 67.3% 24.7% 8.0% 

    

Wave    

  1993 67.3 25.1 7.6 

  1995 68.2 34.1 7.8 

  1997 69.3 23.4 7.3 

  1999 68.4 24.1 7.6 

  2001 68.1 24.3 7.7 

  2003 65.8 25.3 8.9 

  2006 64.5 26.8 8.8 

    

Male 66.3 25.5 8.3 

Female 70.5 22.5 7.0 

    

Hard science 64.0 26.9 9.1 

Social science 76.7 17.6 5.6 

Engineering 61.4 30.3 8.4 

    

Academic 81.4 15.7 3.0 

Government 62.7 29.8 7.6 

Business 53.1 33.5 13.4 

    

Early career 71.3 22.8 5.9 

Middle career 66.3 25.3 8.5 

Late career 63.1 26.8 10.2 

    

Notes:  Data are from 1993-2006 SDR. The percentages are weighted by SDR sample weights.  

The full sample has 200,574 observations over 60,676 separate workers. 
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Table 2:  Panel estimates of the effect of mismatch on (log) earnings, by gender and degree field 

 Coefficient on  

 

Sample 

Somewhat  

matched 

Severely 

mismatched 

# observations 

(# transitions) 

Full sample -0.024*** 

(-4.49) 

-0.116*** 

(-9.37) 

200,574 

(30,597) 

Female -0.030*** 

(-2.61) 

-0.139*** 

(-5.18) 

56,394 

(8,017) 

Male -0.022*** 

(-3.67) 

-0.108*** 

(-7.87) 

144,180 

(22,580) 

Hard science -0.038*** 

(-5.50) 

-0.142*** 

(-8.98) 

115,296 

(18,684) 

Social science 0.004 

(0.31) 

-0.109*** 

(-3.36) 

49,889 

(5,681) 

Engineering -0.015 

(-1.50) 

-0.058** 

(-2.39) 

35,389 

(6,232) 

Notes: Each row represents a separate regression based on a different sample. Coefficients are 

relative to a worker reporting that education and job are closely related.  Other time-varying 

controls include marital status, disability indicator, sector of employment (academic, business or 

government), citizenship, main activity at work (research, teaching, computer, management, and 

other), years since degree, and regional indicators.  Standard errors are clustered for individuals 

and t-statistics are in parentheses under coefficient estimates. *, **, *** indicate 1%, 5%, and 

10% significance, respectively.    
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Table 3. Panel estimates of earnings penalties for mismatch by career stage, gender, and degree 

field 

Sample 

 

Somewhat  

matched 

Severely 

mismatched 

# observations 

(# transitions) 

Early career    

  Full sample 

 

-0.018** 

(-2.39) 

-0.054*** 

(-3.51) 

83,660 

(10,308) 

  Female 

 

-0.019 

(-1.30) 

-0.077* 

(-1.93) 

30,792 

(3,632) 

  Male  

 

-0.019** 

(-2.21) 

-0.069*** 

(-3.52) 

52,868 

(6,676) 

  Hard science 

 

-0.030*** 

(-3.00) 

-0.121*** 

(-4.73) 

45,292 

(5,918) 

  Social science 

 

-0.016 

(-0.71) 

-0.054 

(-0.97) 

19,227 

(1,636) 

  Engineering 

 

0.002 

(0.17) 

0.015 

(0.50) 

19,141 

(2,754) 

    

Late career    

  Full sample 

 

-0.054*** 

(-3.55) 

-0.199*** 

(-5.96) 

39,886 

(7,565) 

  Female 

 

-0.115** 

(-2.58) 

-0.111 

(-1.40) 

5,367 

(1,035) 

  Male  

 

-0.045*** 

(-2.81) 

-0.211*** 

(-5.81) 

34,519 

(6,530) 

  Hard science 

 

-0.059*** 

(-3.10) 

-0.210*** 

(-5.11) 

24,646 

(4,955) 

  Social science 

 

-0.033 

(-0.95) 

-0.169* 

(-1.84) 

10,100 

(1,402) 

  Engineering 

 

-0.060 

(-1.60) 

-0.181** 

(-2.48) 

5,140 

(1,208) 

Notes: Each row is a separate regression based on a different sample.  'Early Career' is ten or 

fewer years since degree.  'Late Career' is 25 or greater years since degree.  Coefficients are 

relative to a worker reporting that their education and job are closely related.  Other time varying 

controls include marital status, disability indicator, sector of employment (academic, business or 

government), citizenship, main activity at work (research, teaching, computer, management, and 

other), years since degree, and regional indicators.  Standard errors are clustered for individuals 

and t-statistics are in parentheses under coefficient estimates. *, **, *** indicate 1%, 5%, and 

10% significance, respectively.    
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Table 4.  Determinants of mismatch within career stages: fixed effect (conditional) logit  

 Any mismatch Severely mismatched 

Variable Early career Late career Early career Late career 

Government sector 0.532*** 0.175 0.557*** 0.136 

 (5.07) (0.94) (2.66) (0.45) 

Business sector 0.596*** 0.191 0.650*** 0.216 

 (8.28) (1.45) (5.05) (1.16) 

Main activity: teaching -0.111 -0.204* -0.256 -0.429* 

 (-1.14) (-1.68) (-1.08) (-1.79) 

Main activity: management 0.600*** 0.589*** 0.798*** 0.461*** 

 (9.01) (6.82) (6.76) (3.33) 

Main activity: computers 0.484*** 0.692*** 0.767*** -0.018 

 (5.99) (3.39) (5.83) (-0.09) 

Main activity: other 0.606*** 0.638*** 0.878*** 0.421*** 

 (7.88) (6.29) (6.70) (2.74) 

Years since degree 0.023*** 0.047*** 0.038*** 0.039*** 

 (3.21) (6.12) (2.75) (3.13) 

Disability 0.035 0.201** 0.266 0.091 

 (0.32) (2.08) (1.27) (0.59) 

Naturalized citizen 0.282 0.315 0.135 -0.927 

 (0.75) (0.62) (0.19) (-1.02) 

Noncitizen 0.128 0.844 -0.128 -0.979 

 (0.33) (1.18) (-0.18) (-0.95) 

Notes: Other time varying variables controlled for but not reported are: marital status, discipline 

of current job, and region of residence.  Reference groups include: employed in academic sector, 

main work activity is research, and citizenship status.  Panel estimates are clustered for 

individuals.  Numbers in parentheses are t-statistics. *, **, *** indicate 1%, 5%, and 10% 

significance, respectively.  
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Table 5.  Most important reasons for severe mismatch at different career stages 
 

Sample 

Pay and 

promotion 

Working 

conditions 

 

Location 

 

Career 

 

Family 

 

No job 

 

Other 

Early Career        

  Full 22.1% 5.1% 4.6% 25.6% 8.1% 26.7% 7.7% 

  Female 17.7 7.0 5.1 26.1 13.8 22.8 7.6 

  Male 24.3 4.2 4.4 25.4 5.2 28.7 7.8 

  Academic 13.5 5.0 4.3 32.0 8.9 24.3 11.9 

  Government 17.9 5.5 5.0 22.6 9.2 25.4 14.4 

  Business 25.5 5.1 4.7  23.9 7.7 27.7 5.5 

  Hard science 22.1 5.0 4.3 27.3 8.0 25.6 7.7 

  Soc science 18.9 6.0 3.4 18.5 12.0 32.4 8.8 

  Engineering 24.2 4.7 6.3 26.7 5.7 25.5 7.0 

        

Late career        

  Full 19.3 4.9 5.2 38.9 4.6 18.3 8.7 

  Female 13.6 5.5 5.1 37.6 13.6 17.2 7.5 

  Male 20.3 4.7 5.3 39.2 3.0 18.5 8.9 

  Academic 18.5 4.9 5.1 46.2 4.8 12.0 8.5 

  Government 14.5 3.4 6.1 34.2 6.1 26.0 9.6 

  Business 20.2 5.0 5.1 37.5 4.4 19.0 8.6 

  Hard science 19.5 4.7  4.6 38.1 5.0 19.7 8.3 

  Soc science 17.2 5.3 5.8 41.4 3.0 15.3 12.0 

  Engineering 20.8 5.1 7.7 40.0 4.9 14.7 6.8 

Notes:  SDR respondents only record most important reasons for mismatch when they are severely mismatched.  

Sample sizes for the ‘Early career’ and ‘Late career’ for the full sample are 4,832 and  4,118, respectively.  No 

sample size for any subsample is below 402. 
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Table 6.  Fixed effects log earnings regressions for reasons for severe mismatch by sample 
  Sample 

 

Variable 

 

Career Stage 

 

Full 

 

Female 

 

Male 

Hard 

science 

Social 

science 

 

Engineering 

Somewhat matched Early career -0.017** 

(-2.28) 

-0.018 

(-1.24) 

-0.018** 

(-2.13) 

-0.029*** 

(-2.90) 

-0.016 

(-0.69) 

0.002 

(0.20) 

 Late career -0.053*** 

(-3.57) 

-0.113** 

(-2.54) 

-0.044*** 

(-2.75) 

-0.055*** 

(-2.92) 

-0.033 

(-0.95) 

-0.062* 

(-1.66) 

Pay and promotion Early career 0.033 

(1.19) 

0.114* 

(1.72) 

-0.001 

(-0.04) 

-0.035 

(-1.05) 

0.037 

(0.35) 

0.142*** 

(2.95) 

 Late career -0.075 

(-1.49) 

0.130 

(0.88) 

-0.096* 

(-1.80) 

-0.082 

(-1.31) 

0.036 

(0.26) 

-0.142 

(-1.33) 

Working conditions Early career -0.200*** 

(-2.74) 

-0.269** 

(-2.14) 

-0.132* 

(-1.72) 

-0.178* 

(-1.87) 

-0.422** 

(-2.26) 

-0.048 

(-0.38) 

 Late career -0.501*** 

(-5.12) 

-0.763** 

(-2.47) 

-0.452*** 

(-4.51) 

-0.569*** 

(-4.60) 

-0.498* 

(-1.87) 

-0.199 

(-1.55) 

Location Early career -0.042 

(-1.30) 

-0.007 

(-0.14) 

-0.061 

(-1.47) 

-0.098** 

(-1.96) 

0.038 

(0.40) 

0.037 

(0.97) 

 Late career -0.195** 

(-2.52) 

-0.149 

(-0.78) 

-0.203** 

(-2.42) 

-0.209** 

(-2.24) 

-0.259 

(-1.43) 

-0.088 

(-0.56) 

Career Early career -0.038 

(-1.19) 

-0.057 

(-0.95) 

-0.028 

(-0.76) 

-0.064 

(-1.39) 

0.008 

(-0.09) 

-0.006 

(-0.14) 

 Late career -0.159*** 

(-4.22) 

-0.135 

(-1.36) 

0.163*** 

(-3.98) 

-0.156*** 

(-3.32) 

-0.205** 

(-1.98) 

-0.126* 

(-1.77) 

Family Early career -0.186*** 

(-3.06) 

-0.171* 

(-1.81) 

--0.190*** 

(-2.84) 

-0.324*** 

(-4.01) 

0.060 

(0.51) 

-0.059 

(-0.46) 

 Late career -0.411* 

(-1.95) 

0.019 

(0.12) 

-0.696** 

(-2.12) 

-0.363 

(-1.50) 

-0.160 

(-0.62) 

-0.800 

(-1.11) 

No job Early career -0.101*** 

(-3.84) 

-0.080 

(-1.41) 

-0.115*** 

(-3.96) 

-0.117*** 

(-3.10) 

-0.104 

(-1.46) 

-0.076** 

(-2.18) 

 Late career -0.197*** 

(-4.20) 

-0.040 

(-0.31) 

-0.227*** 

(-4.53) 

-0.186*** 

(-3.29) 

-0.183 

(-1.38) 

-0.278** 

(-2.45) 

Other reason Early career -0.188*** 

(3.51) 

-0.250* 

(-1.83) 

-0.163*** 

(-3.42) 

-0.326*** 

(-3.93) 

-0.017 

(-0.19) 

-0.033 

(-0.42) 

 Late career -0.439*** 

(-5.04) 

-0.386 

(-1.36) 

-0.440*** 

(-4.90) 

-0.565*** 

(-4.26) 

-0.245* 

(-1.66) 

-0.173 

(-1.07) 

Notes: These estimations are mirrors of those in Table 3 with the exception of breaking out the cause of severe mismatch.  

* statistical significance at 10% ** statistical significance at 5% *** statistical significance at 1%
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Table 7:  Logit regressions of matching, marginal effects 

 

Sample 
Variable Probability of mismatch 

Any mismatch to  

fully matched 

Fully matched to  

any mismatch 

Full sample Middle career 0.034*** -0.068*** 0.001 

  (7.73) (-6.37) (0.16) 

 Late career 0.077*** -0.055*** -0.004 

  (12.48) (-3.59) (-0.33) 

Female Middle career 0.017** -0.083*** 0.008 

  (2.44) (-3.99) (0.57) 

 Late career 0.084*** -0.090** -0.007 

  (6.01) (-2.13) (-0.24) 

Male Middle career 0.040*** -0.063*** -0.002 

  (7.52) (-5.06) (-0.23) 

 Late career 0.079*** -0.049*** -0.005 

  (11.19) (-2.91) (-0.41) 

Hard science Middle career 0.041*** -0.105*** -0.029*** 

  (6.51) (-7.71) (-3.02) 

 Late career 0.090*** -0.073*** -0.028** 

  (10.54) (-3.85) (-2.09) 

Social science Middle career 0.026*** -0.067*** 0.028** 

  (4.08) (-2.74) (2.23) 

 Late career 0.052*** -0.095** 0.015 

  (5.41) (-2.46) (0.73) 

Engineering Middle career 0.011 0.048** 0.058*** 

  (1.01) (1.96) (2.79) 

 Late career 0.065*** 0.002 0.066** 

  (3.94) (0.05) (1.98) 

Notes:  Coefficient estimates have been converted into marginal effects.  Respondents must be in the sample for at least three waves after the 

mismatch occurs.  Other variables controlled for (where applicable) in all subsamples: gender, race, marital status, field of PhD,  sector of 

employment, disability status, marital status, region of residence, citizenship status and main activity.    *, **, *** indicate statistical significance 

at the 10%, 5% and 1% levels, respectively.  Numbers in parentheses under marginal effects are t-statistics.  
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Table 8:  Percent of workers who change in and out of fully matched by career stage  

 Any mismatch to fully matched Fully matched to any mismatch 

 Part of career stage Part of career stage 

Sample Any Early Middle Late Any Early Middle Late 

Full sample 53.1 57.5 49.3 52.2 34.4 35.0 34.3 32.0 

Female 54.1 58.5 48.2 50.8 33.6 33.9 33.3 30.7 

Male 52.8 57.0 49.6 52.3 34.7 35.5 34.6 32.1 

Hard scienc 51.6 58.0 46.4 51.6  36.1 37.6 35.3 32.9 

Soc science 58.2 62.4 55.6 55.1 25.7 24.3 27.8 24.5 

Engineering 53.6 53.5 54.4 51.6 42.0 40.7 45.3 42.3 

Note: The sample consists of those workers who can be observed for three waves following their 

initial observations as mismatched. 
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Appendix Table 1.  Selected results from logit regressions of matching  

Variable 

Any Mismatch to  

Fully Matched 

Fully Matched to  

Any Mismatch 

Middle career -0.068*** 0.001 

 (-6.37) (0.16) 

Late career -0.055*** -0.004 

 (-3.59) (-0.33) 

Female  -0.032*** 0.028*** 

 (-2.78) (3.63) 

Black 0.076*** 0.059*** 

 (3.39) (3.71) 

Hispanic 0.107*** 0.043** 

 (4.74) (2.75) 

Asian -0.011 0.069*** 

 (-0.68) (5.58) 

Other race 0.039 0.011 

 (0.82) (0.35) 

Divorced 0.017 0.039*** 

 (0.94) (2.98) 

Widowed 0.001 -0.066* 

 (0.02) (-1.70) 

Never married -0.040*** 0.030*** 

 (-2.78) (3.10) 

Disability -0.032 -9.4E-5 

 (-1.54) (-0.01) 

Hard science -0.074*** 0.096*** 

 (-5.80) (11.69) 

Engineer -0.037** 0.115*** 

 (-2.22) (9.49) 

Government Sector -0.089*** 0.096*** 

 (-5.30) (7.66) 

Business Sector -0.175*** 0.149*** 

 (-15.61) (18.15) 

#obs 

(% transition) 

12,793 

(53.1%) 

23,971 

(34.4%) 

 

Notes:  Coefficient estimates have been converted into marginal effects.  Respondents must be in 

the sample for at least three waves after the mismatch occurs.  Reference groups are:  male, 

white nonHispanic, currently married, no disability, social science degree, and academic sector.  

Other variables controlled for all subsamples: region of residence, citizenship status and main 

activity.    *, **, *** indicate statistical significance at the 10%, 5% and 1% levels, respectively.  

Numbers in parentheses under marginal effects are t-statistics.  
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Figure 1.  Rates of educational match and mismatch by age 
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Figure 2.  Rates of educational match and mismatch by years since degree 
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