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Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout
the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of
exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or
synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by
pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in
organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in
reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting
compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant
exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work
on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic
pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this
physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating
that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both
reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals
have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals
on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.
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Implications

Environmental pollutants include a wide range of chemicals,
mostly man-made, which are present in products that are
used on a daily basis, such as detergents, pesticides and
adhesives or derived from the combustion of hydrocarbon
fuels. Although concentrations of these chemicals in the
environment are generally low and, as such, may not induce
adverse effects when acting in isolation, combinations of
these chemicals can interfere, subtly, with physiological

systems and therefore the capacity of ruminants and other
animals to reproduce, rear offspring or fight disease. Thus,
both the viability of populations and the health and welfare
of individuals could be compromised by exposure to envir-
onmental levels of pollutants.

Introduction

Historically, ruminant animals production systems were of
relatively low intensity; the inputs of energy, food and ferti-
liser were small and outputs of meat, milk and by-products- E-mail: s.rhind@macaulay.ac.uk
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were low. Accordingly, fertiliser inputs comprised, primarily,
animal and human manure with more unusual products such
as seaweed being used only where available. Significant
accumulation of pollutants in soils, and potential exposure of
animals to elevated concentrations of pollutants was rare
and occurred only in certain highly specialised circum-
stances, for example, where soils were repeatedly fertilised,
with ash and bird carcases (Meharg et al., 2006). On the
other hand, the potential for pollutant exposure in modern
production systems is greatly increased, for several reasons.
First, modern animal production systems involve the wide-

spread use of pesticides and herbicides and traditional organic
fertiliser has been replaced to a significant extent with syn-
thetic nitrate fertilisers. However, the economical and envir-
onmental costs of inorganic fertiliser production, together with
anthropogenic waste generation, have led, in many countries,
to a return to the use of processed sewage sludge instead
(Commission of the European Communities, 1994; Swanson
et al., 2004). The chemical profile of sludge (Smith, 1995)
reflects the mix of thousands of different environmental
chemicals to which we are exposed, and its use gives rise to
potentially increased exposure to, and bioaccumulation of,
chemicals. Other potentially polluted materials such as com-
posted green waste, derived from domestic and municipal
sources are also being applied to land. Thus, domestic rumi-
nants may be exposed to concentrations of pollutants that are
higher than those occurring ‘naturally’ in the environment,
either through the application of chemicals or because they are
exposed to modern waste through recycling of waste to land.
However, at this time, it is logistically impossible to characterise
the magnitude of potential exposure owing to the complexity of
the mixture and the high cost of analysis.
Second, while aerial input of pollutants to the environment

as a result of human actions would originally have been rela-
tively trivial, comprising small amounts of potentially toxic
metals (PTMs) derived from the smelting of ores (Hong et al.,
1996) and polycyclic aromatic hydrocarbons (PAHs) as a result
of natural and man-made fires (Bostrom et al., 2002; Yunker
et al., 2002), in recent decades aerial inputs have increased
enormously. Thousands of new, partially volatile, organic
chemicals manufactured for a multitude of industrial,

agricultural and domestic purposes are being released into
the environment. Occasionally, air pollution has been suffi-
ciently severe to cause damage to plants (e.g. acid rain) but
effects on animals, and ruminants in particular, have seldom
been proven, although often suspected (Kelly, 1995).

Environmental pollutants – what are they and from
where do they originate?

Most, but not all, pollutant types are derived from human
activities. From around the time of the Second World War,
the nature of the pollutant burden within the environment,
its distribution and effects have changed significantly, largely
as a result of human activities and inventions. As indicated
above, while PTMs have been used for thousands of years,
their use has increased enormously and so they have become
ubiquitous in the environment and now appear at low con-
centrations in soils and at higher concentrations in products
such as sewage sludge (Smith, 1995). The potential for low-
environmental concentrations of metals to perturb animal
physiology is now being recognised (Spurgeon et al., 1994).
Nitrates are another category of inorganic pollutant that

can interfere with animal physiology and in particular with
reproductive function; specifically, they have been implicated
in altered thyroid function and the disruption of gonadal
steroidogenesis (Guillette and Edwards, 2005; Edwards
et al., 2006). Thus, their presence in drinking water is of
concern to animal (and human) health and productivity.
Human activity and industrialisation have resulted in an

increase in the manufacture, use and release into the environ-
ment, of a wide variety of organic substances (Table 1).
Although not designed to be physiologically active, many of
these can bind to steroidal and other cellular receptors or
otherwise interfere with endocrine signalling or enzyme sys-
tems and thus affect physiological processes in species as
diverse as bacteria (Fox, 2004) and mammals (Toppari et al.,
1996; Sweeney et al., 2000). Environmental concentrations of
these pollutants are seldom high enough to exert toxic effects,
in the conventional sense, being similar to background levels
(Rhind, 2009), but through subtle effects on physiological sys-
tems they can interfere with normal function.

Table 1 Some classes of organic pollutant and their sources or route of entry to the environment

Chemical class Origin Reference

PAHs Incomplete combustion Yunker et al. (2002)
PCB Adhesives; electrical transformers Safe (1990)
PBDE Fire retardants electrical equipment and textiles Eriksson et al. (2001)
Phthalates Plasticizing agent in plastics Brooke et al. (1991)
Alkyl phenol Paints, cosmetics, etc. Ahel et al. (1994)
Bisphenol A Food tins; dental composites Brotons et al. (1995)
Dioxins Paper bleaching; foundries Skene et al. (1989)
Organochlorine pesticides (dieldrin, vinclozolin and kepone) Agriculture IEH (1999)
Dyes (aniline and benzidine) Textile industry IEH (1999)
Synthetic hormones (ethynyloestradiol) Contraceptive pills IEH (1999)
Pharmaceuticals (Prozac) Human use Heltsley et al. (2006)

PAH5 polycyclic aromatic hydrocarbons; PCB5 polychlorinated biphenyls; PBDE5 polybrominated diphenyl ethers.

Rhind et al.
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Chemicals that induce effects by perturbing endocrine
systems or mimicking endocrine mediators are collectively
described as endocrine disrupting compounds (EDCs).
Although pollutants can be very different, chemically and
mechanistically, for the purpose of this review, it is appro-
priate to consider all of these organic and inorganic pollutant
classes together and to loosely define them as EDCs because
all are known to have disruptive capabilities and they have the
potential to interact, additively (Bemis and Seegal, 1999).

How do these pollutants affect ruminants?

Investigations of the effects of EDC exposure on animals have
frequently involved the application of pharmacological doses of
individual pollutants to laboratory rodents (to elucidate effects
and mechanisms of action and to identify risks associated with
exposure to individual chemicals) and less controlled studies of
wild animals in which effects had been observed following
known pollution incidents (Colborn et al., 1993; Institute for
Environment and Health (IEH), 1999). Such studies have iden-
tified several characteristics of EDCs that make them biologi-
cally significant in relation to all animals, including domestic
ruminants. They (i) are highly persistent – for example, many
EDCs, including PAHs, polychlorinated biphenyls (PCBs) and
polybrominated diphenyl ethers (PBDEs), have half lives of
about 10 years or more (Smith, 1995) or in the case of heavy
metals are never degraded, (ii) are ubiquitous, that is, although
production and use can be localised, EDCs are distributed
throughout the environment, (iii) frequently accumulate in
animal tissue because they are hydrophobic and lipophilic
(Nimrod and Benson, 1996), (iv) exert effects on physiological
systems at very low concentrations, orders of magnitude lower
than those known to have acute toxic effects (Brevini et al.,
2005; Fowler et al., 2007a), (v) have unpredictable effects as
they can act additively or synergistically (Payne et al., 2000;
Rajapakse et al., 2002; Crofton et al., 2005; Hauser et al.,
2005), depending on circumstances; mixtures of compounds
can induce biological responses, even when each chemical
is present at concentrations too low to induce a biological
response by itself (Rajapakse et al., 2002; Kortenkamp, 2007)
and (vi) can induce changes in organ structure or function in
subsequent, unexposed, generations (Bøgh et al., 2001; Anway
and Skinner, 2006; Edwards and Myers, 2007; Steinberg et al.,
2008).
Collectively, these properties mean that low-level expo-

sure to pollutants has the potential to affect ruminant pro-
ductivity and, for example, through changes in the immune
system, health and welfare. However, the magnitude of the
responses, which is likely to depend on many factors,
including the rate, timing and duration of exposure, is ill
defined and poorly understood for all animal species.

Patterns of exposure and tissue concentrations

Ruminants, like other terrestrial species, can be exposed to
pollutants, at least theoretically, through ingestion of food
and water, through inhalation and by absorption through the

skin. It is widely accepted that the primary route of exposure
in such species is via the diet (Fries, 1995; Norstrom, 2002)
but the significance of other routes of exposure has not been
extensively investigated and they may yet prove to be
important. Exposure of target organs also depends on the
chemical class and associated properties, the age and stage
of development of the exposed animal (i.e. foetal, neonatal
and adult), the rate of pollutant uptake and rates of sub-
sequent degradation, excretion and/or metabolism (Meador
et al., 2008; Rhind, 2008). None of these determinants has
been well characterised in ruminants, or indeed for any
species, or for any of the classes of EDCs. However, as
exposure rates are normally very low and as the health and
productivity of the majority of ruminant populations, like that
of humans, appears to be unaltered by such levels of expo-
sure, at least superficially, it might be concluded that the
environment is almost always entirely benign.
In certain production systems, ruminants can be exposed

to slightly higher levels of thousands of different pollutants,
relative to those seen in the wider environment, for example
when animals are grazed on pastures fertilised with sewage
sludge (Rhind, 2005) or drink water contaminated with
sewage (Meijer et al., 1999). The practice of recycling human
waste is ancient and ‘night soil’ was collected and returned
to land both before and after industrialisation. Processed
sewage sludge, as generated in the 21st century, however, is
a very different product to that, which has been used as
fertiliser in the past as it contains variable combinations of
anthropogenic pollutants including organic pollutants and
PTMs from domestic, agricultural and industrial sources, at
much higher concentrations than those found in the rest of
the natural environment (Smith, 1995). However, the actual
pattern of exposure to individual pollutants is unknown
because it would require analysis of thousands of different
chemicals. Rates of tissue accumulation of selected chemi-
cals, and associated effects on the physiology of grazing
animals on pastures fertilised with sewage sludge have been
addressed both theoretically and in practice. Theoretical
estimation of tissue accumulation of individual pollutants
would suggest that increases in tissue levels would be small
and of no physiological consequence (Wild and Jones, 1992;
Duarte-Davidson and Jones, 1996). These conclusions have
been largely supported by empirical studies that involved
exposure of animals to sewage sludge or to specific com-
pounds (Fries and Marrow, 1977; Fries et al., 1978; Fries,
1996; Rhind et al., 2005a, 2005b, 2007 and 2009). None of
these studies reported the patterns of reproductive perfor-
mance associated with exposure to pollutants but related
studies, discussed below, have shown that even such small
increases in tissue concentrations of the pollutants measured,
following sludge exposure, are associated with physiological
changes. It should be noted that a relatively limited range of
chemical types has been measured in tissue and it cannot be
assumed that those measured are the ones responsible for
inducing the observed effects; at best, the reported values
represent an index of the total pollutant ‘insult’, which is likely
to include several thousand chemicals.

Environmental pollutants and reproduction
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Effects on animal physiology

The fundamental mechanisms of action of pollutants have
been investigated and reviewed previously (Sikka and Naz,
1999; Rhind, 2002). The majority of experiments have been
based on laboratory rodents and studies in ruminants are
relatively rare; a small number of studies, mostly in sheep,
have addressed the physiological effects of EDC exposure,
using the classical model whereby relatively high con-
centrations of selected pollutants are administered for short
periods of time (Beard et al., 1999; Sweeney et al., 2000;
Wright et al., 2002). However, additional results are now
emerging from investigation of the effects of prolonged,
low-level exposure to EDC mixtures in sheep that have
been maintained on sewage sludge-treated pastures (Erhard
and Rhind, 2004; Paul et al., 2005; Fowler et al., 2008;
Bellingham et al., 2009; Lind et al., 2009). In these studies,
the concentrations of chemicals to which animals were
exposed, and the specific mixture of chemicals involved,
were not comprehensively defined because this would have
been logistically impossible. However, effects of exposure
were demonstrated by comparing animals reared on sludge-
treated pastures with others reared on comparable pastures
treated with inorganic fertiliser, which contains minimal
amounts of pollutants.
The majority of reported ruminant trials have concentrated

on the effects of EDC exposure on the reproductive axis
and the results can be classed according to organ/function.

Hypothalamic-pituitary axis
The endogenous activity of the gonads is driven by the
actions of the hypothalamus and pituitary gland, both of
which are steroid-sensitive and, thus, potential targets for
EDCs. Studies in sheep and goats have reported significant
effects of exposure to chemicals with known endocrine dis-
rupting effects, including octylphenol (Sweeney et al., 2000;
Wright et al., 2002), bisphenol A (Evans et al., 2004; Sava-
bieasfahani et al., 2006), methoxyclor (Savabieasfahani
et al., 2006), PCB153 (Lyche et al., 2004; Oskam et al., 2005)
and valporate (Krogenaes et al., 2008), on the hypothalmic-
pituitary (HP) gland axis. The majority of these studies have
investigated the effects of EDCs on the HP axis during
development, that is, during gestation and/or lactation, the
most sensitive ‘windows’, when the endocrine system can be
permanently altered (IPCS, 2002). Comparison of the results
obtained in these studies show that although the chemicals
applied and/or the purported mechanisms of action were
similar, the observed effects were often chemical and species
specific. For example, the timing of puberty, which reflects
activation of the HP axis, was advanced in female lambs
exposed to octylphenol (Wright et al., 2002), delayed in both
male (Oskam et al., 2005) and female (Lyche et al., 2004) goats
exposed to PCB153, and remained unchanged in male (Oskam
et al., 2005) and female (Lyche et al., 2004) goats exposed to
PCB126, during development. These results illustrate the com-
plexity of the effects of EDCs on the HPaxis and the difficulty of
extrapolating between, or even within, species.

In line with the hypothesis that exposure, during critical
windows of development can be more disruptive to physio-
logical systems, the results of studies that exposed sheep to
the same dose of octylphenol, at different development
stages, indicated different physiological consequences.
Exposure to pharmacological doses during development
(in utero and early post natal period), the period during
which HP axis differentiation and sexual dimorphism occurs
(Rhind et al., 2001; Robinson, 2006), was found to be
potentially more detrimental than later exposure and was
seen to induce effects on reproductive function/physiology
which were manifested only in later life. For example,
gestational exposure to octylphenol at 1mg/kg per day for
2 weeks resulted in reduced foetal FSH secretion, which
compromised testis development (Sweeney et al., 2000) and
lactational exposure was associated with altered semen
quality (Sweeney et al., 2007). Similarly, octylphenol expo-
sure of female lambs, in utero, altered FSH secretion during
the late follicular phase, and changed the timing of puberty
(Wright et al., 2002). However, exposure to similar doses
of octylphenol during the pre-pubertal period had no sig-
nificant effect on either LH or FSH secretion in female lambs
(Evans et al., 2004).
Bisphenol A exposure, also at pharmacological doses

(5mg/kg per day for 2 months) has also been shown to
suppress LH secretion in female sheep either when exposure
occurs during development (Savabieasfahani et al., 2006) or
during the pre-pubertal period (Evans et al., 2004). Although
it was not possible to determine the exact nature and loca-
tion of action in these studies, Katoh et al. (2004) showed
that bisphenol exposure affected growth hormone through
an effect exerted at the level of the pituitary gonadotrophes,
whereas other studies such as those by Wright et al. (2002)
with octylphenol, and Lyche et al. (2004) with PCB153, have
indicated that EDC exposure can have effects at the level of
the hypothalamus as puberty is driven by maturational
changes in the hypothalamus and the timing of puberty was
affected in both studies.

Figure 1 Ovaries (hematoxylin-stained sections) of 18-month-old ewes
exposed from conception to control inorganic fertiliser (a, b) or sewage
sludge fertiliser (c, d); panels a and c 310, b and d 340 objective
magnification. Treated ovaries have a higher proportion of unhealthy
primordial and activating primordial follicles. Unhealthy follicles include
follicles with intense nuclear staining (c, d), vacuoles (c) and clusters of two
or more oocytes, which often share a common layer of granulosa cells (c, d).

Rhind et al.
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A criticism of the above studies that have investigated the
effects of EDCs on the HP axis is that they addressed effects
of exposure to pharmacological doses of single chemicals, at
concentrations hundreds or thousands of times higher than
the levels present in the environment, where effects are
likely to be exerted through the actions of many chemicals,
at low concentrations, in combination. Studies using the
sewage sludge model described earlier provide a means to
address this real world exposure. Preliminary results indicate
that sludge exposure alters the population of gonadotrophes
in the pituitary glands of adult ewes that had been main-
tained on these pastures and changes the phenotype of
pituitary cell populations. Changes in the activity of a num-
ber of neurotransmitter systems within the hypothalamus
have been reported (Bellingham et al., 2009). Given the
fundamental importance of the HP axis in the regulation of
normal gonadal function, alterations to this system by EDCs,
may have deleterious consequences for ovarian or testicular
function and thus reproductive function and fertility.

Testis
As for the HP axis, most studies of EDC effects have
involved laboratory animals and employed levels of chemical
exposure that are probably not environmentally relevant
(Hotchkiss et al., 2008). More recently, several well-designed
studies have investigated the effect of mixtures of EDCs on
the developing rodent testis and its functions, and have
shown that combinations of, for example, anti-androgenic
EDCs, exert major effects at doses at which the individual
EDCs have no significant effect (Christiansen et al., 2008;
Rider et al., 2009). Such observations indicate that it is likely
that in domestic animals, exposure to the thousands of EDCs
in the environment will exert effects on the developing
testis, although the large numbers of chemicals involved
and the potential complexities of their interactions make it
difficult to predict the incidence or severity of such effects.
Nevertheless, the high incidence of reproductive abnormal-
ities in human males at birth (cryptorchidism and hypospa-
dias) and in adulthood (e.g. low-sperm counts), together
with the evidence of temporal changes in incidence of these
disorders, especially of falling/low-sperm counts (Swan et al.,
2000), is at least consistent with environmental impacts
(Skakkebaek et al., 2001; Sharpe and Skakkebaek, 2003).
The issue of falling sperm counts in human males remains

controversial, largely because of difficulties in proving/dis-
proving that it is happening and of identifying potential
causes (Swan et al., 2000). One argument against sperm
counts having fallen is the absence of evidence of any similar
decline in domestic ruminants, over the same time period; it
is assumed that their exposures should be broadly similar to
that of humans (Setchell, 1997). However, this comparison is
invalid for two reasons. First, and most important, domestic
ruminants store sperm and are thus able to maintain a high
and uniform sperm count over many frequent ejaculations,
whereas humans do not store sperm and therefore sperm
counts are greatly affected by ejaculatory frequency (Sharpe,
1994). Consequently, sperm counts in the ejaculates of

domestic ruminants do not provide an accurate insight into
the level of sperm production, whereas in humans it does
(Sharpe, 1994; Sharpe and Skakkebaek, 2003). Second,
domestic animals are constantly selected for high fertility/
sperm production and normal husbandry practice would
have resulted in the culling of less fertile animals within the
timescale that sperm counts have ‘fallen’, whereas repro-
ductive technologies act to perpetuate and potentially
exacerbate defects in human sperm production.
The rodent EDC mixture studies referred to above have not

so far addressed effects on sperm counts/sperm production,
although the reported adverse effects on foetal testis
development including suppression of androgen production/
action would be expected to reduce Sertoli cell proliferation
in foetal life (Scott et al., 2007 and 2008). Similar results
have also been found in the foetal sheep after pregnant
ewes were reared on pasture fertilised with sewage sludge
(Paul et al., 2005); specifically, foetal blood testosterone
levels were reduced alongside of reductions in Leydig, Sertoli
and germ cell numbers. Although these effects were con-
siderable, they did not allow dissection of mechanisms and
of cause and effect relationships; on the basis of rodent
studies, it would be expected that reduced intra-testicular
testosterone concentrations during development would
result in reduced Sertoli cell number in the adult (Scott et al.,
2007). However, studies in the rat have also shown that even
when Sertoli cell number is reduced at birth by 40% to 50%,
compensation occurs rapidly after birth so that normal Ser-
toli cell numbers are restored by puberty and maintained into
adulthood (Hutchison et al., 2008; Scott et al., 2008). How-
ever, this recovery occurred following cessation of the causal
treatment (in this instance, dibutyl phthalate) and so it could
be argued that continued EDC exposure through foetal and
postnatal life, which is more akin to ‘real world’ exposures,
might interfere with compensatory Sertoli cell proliferation;
this possibility remains to be tested.
Rat studies have led to the identification of ‘a male pro-

gramming window’ (Welsh et al., 2008), during which
androgens (produced by the foetal testis) act to programme
later development of the reproductive tract and genitalia.
Deficient androgen action during this time window leads to
permanent reductions in size of the penis, prostate and testis
and increased risk of malformations such as hypospadias
and cryptorchidism (Welsh et al., 2008). Exactly, the same
time window applies to programming of the male–female
difference in anogenital distance and so the latter, at any
age after birth, can provide an index of overall androgen
exposure/action within the male programming window
(Scott et al., 2008; Welsh et al., 2008). A similar time win-
dow applies to domestic ruminants, the best characterised
being in the sheep (Wood and Foster, 1998), and is thought,
by analogy to the rat and human, to start when testosterone
production by the foetal testis first commences (Welsh
et al., 2008). With regard to the effects of EDC exposure, the
most important implication of these findings is that only
exposure within the male programming window is likely
to affect androgen-dependent reproductive development.

Environmental pollutants and reproduction
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However, development of the normally formed penis (Welsh
et al., 2008) and the increase in Sertoli cell number/deter-
mination of adult testis size (Scott et al., 2008) also depend
upon androgen action after the male programming window
and therefore may be susceptible to EDC effects for a greater
period.

Ovary
Ovarian follicle formation in ruminants occurs during foetal
life (Rüsse, 1983) and involves the assembly of meiotically
arrested oocytes and somatic pre-granulosa cells into pri-
mordial follicles (Hirshfield, 1991). EDCs could, potentially,
perturb the function of each of the cell types involved.
Female germ cells begin meiosis during early development,
and EDC-exposure at this time can potentially reduce a
female’s lifetime reserve of oocytes, which cannot be
renewed, unlike males in which continuous spermatogenesis
may quench transient EDC effects. On the other hand
oogonia may be less sensitive than male germ cells to some
gonotoxic insults (e.g. Guerquin et al., 2009).
The developmental stage at which damage occurs deter-

mines the impact that exposure to chemicals will have on
reproduction (Hoyer, 2005; Uzumcu and Zachow, 2007).
Chemicals selectively damaging large growing or antral fol-
licles only temporarily interrupt reproductive function, unlike
when damage to the primordial follicle population occurs,
because these are replaced by recruitment from the pri-
mordial follicle pool. Two key developmental processes occur
subsequent to oocyte meiotic arrest: (i) primordial follicle
assembly (at 75-day gestation in sheep: Sawyer et al., 2002)
and (ii) primordial follicle recruitment. Both are coordinated
by paracrine and autocrine growth factors and occur in the
later stages of ruminant gestation (McNatty et al., 1999).
Primordial follicles are then activated and recruited into the
growing cohort of primary follicles, a vital determinant of

reproductive life span (Skinner, 2005). Thus it is possible to
investigate the effects of EDC exposure in relation to the
known developmental changes that occur during maturation
of the oocycte, its release and fertilisation.
As multiple ovarian systems are sensitive to EDCs, asso-

ciated effects are diverse and dependent on the specific
chemical involved (Table 2). As for other organs, exposure to
environmental concentrations of pollutant mixtures has
been shown to perturb ovarian development in the sheep
(Fowler et al., 2008; Mandon-Pepin et al., 2009) and follicle
health in the adult offspring (Figure 1; Amezaga et al., 2009).
Disruption of the first stages of gametogenesis and gonadal
differentiation, in utero, ultimately control reproductive via-
bility in mature offspring and can have transgenerational
consequences (Anway and Skinner, 2006).
With regard to future investigations of these effects, it

should be noted that much of the literature concerning
reproductive effects of EDCs is based on rodent models but
ruminants exhibit significant differences in physiology com-
pared with, say, laboratory rodents such as mice; for exam-
ple, steroidogenesis occurs in ruminants during foetal, not
postnatal, ovarian development. Thus, the use of the rodent
model alone to understand risks posed to domestic rumi-
nants is unwise.

Oocyte maturation and early embryo development
During maturation, the oocyte and early embryo are parti-
cularly susceptible to pollutants, even at the background
doses to which they might be exposed, in vivo, when their
mothers are not exposed to elevated environmental levels of
pollutants (Pocar et al., 2001a and 2001b). For example,
incubation with PCBs (0.0001 to 1mg/ml of a mixture of
PCBs (Aroclor); exposed for 24 to 48 h) significantly reduced
the percentage of bovine oocytes reaching metaphase II, and
lower doses that do not impair meiotic processes reduced

Table 2 Ovarian follicle and oocyte disruption by EDC – mechanisms and effects

Agent Effect Reference

BPA Abnormal chromosome number; embryo defects Hunt et al. (2003)
BPA/Zearalenone Increased cycle length Nikaido et al. (2004)
Zearalenone Reduced ovulation rate Hussein and Brasel (2001)
Zearalenone Reduced meiotic maturation of bovine oocytes and increased

chromatin abnormalities
Minervini et al. (2001)

DES/EE2 Polyovular follicles; reduced fertilisation Kirigaya et al. (2006)
Androgenic EDCs Accelerated follicle development Forsdike et al. (2007)
PCB Disrupted oocyte maturation and embryo development Pocar et al. (2001a)
PCB Increased polyspermy Pocar et al. (2001b)
PCB Variable translational regulation within oocyte Pocar et al. (2001b)
PCB Increased apoptosis in cumulus cells Pocar et al. (2005b)
MEHP Reduced meiotic maturation of bovine oocytes Anas et al. (2003)
Octylphenol Perturbed bovine oocyte maturation Pocar et al. (2003)
Mixture Reduced oocyte density in fetuses Fowler et al. (2008)
Mixture Reduced follicle health in adults Amezaga et al. (2009)
Mixture Altered expression of multiple genes Mandon-Pepin et al. (2009)

EDC5 endocrine disrupting compound; BPA5 bisphenol A; DES5 diethylstilbestrol; EE25 ethinyl estradiol; PCB5 polychlorinated biphenyls;
MEHP5mono ethylhexyl phthalate.
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fertilisation rates and embryonic development (Pocar et al.,
2001a and 2001b). Some of the underlying mechanisms
responsible for this, and similar effects, have been identified
(Table 2) but many potential mechanisms remain to be
investigated.
The processes of endometrial transformation, and devel-

opment and implantation of the embryo depend on an
exchange of hormonal signals between the embryo and
mother. During early embryo development and the implan-
tation window, specific amounts of oestradiol (E2) and pro-
gesterone (P) are required for endometrial maintenance and
chorionic gonadotropin for maintenance of hormone pro-
duction by the corpus luteum (Makrigiannakis et al., 2006).
These vital endocrine dialogues can be disturbed by EDCs.
In addition to indirect effects of EDCs on embryo develop-
ment, exerted via changes in hormone profiles, direct
embryotoxic effects are possible through actions of EDCs on
hormone receptors (Agras et al., 2007; Davey et al., 2007). It
has been shown that the hormone receptor expression in
blastocysts differs between embryoblast and trophoblast,
which represent different cell lineages, and this results in
different developmental impacts (Navarrete Santos et al.,
2004a, 2004b and 2008). Along with steroid hormone
receptors, many of the effects of EDCs on pre-implantation
embryos, and on implantation, are mediated through the aryl
hydrocarbon receptor (AhR) and peroxisome proliferator-
activated receptor (PPAR) signalling pathways. The AhR, a
binding partner of dioxins and coplanar PCBs (McMillan and
Bradfield, 2007), is essential for fertility, being involved in
folliculogenesis, oestrogen biosynthesis and signalling, pro-
gesterone biosynthesis and corpus luteum function (e.g.
Pocar et al., 2004, 2005a and 2005b, Li et al., 2006; Barnett
et al., 2007, Ohtake et al., 2009). It may be necessary, also,
for normal development of the pre-implantation embryo
(Clausen et al., 2005) and embryo-maternal signalling during
implantation. Both indirect and direct EDC effects were

observed at environmentally relevant concentrations with
exposure durations between 4 h and 7 days (short-term) or
6 to 12 weeks (long-term).
Pre-implantation exposure to EDCs of a variety of classes,

at environmentally relevant concentrations, can perturb the
reproductive and implantation systems of early embryos
through some of the above mechanisms (Table 3). Effects
include perturbation of energy metabolism (Tonack et al.,
2007) and downregulation of relevant genes (Hanlon et al.,
2005). As PPAR signalling is disrupted by EDCs (Huang, 2008;
Nakanishi, 2008) and affects AhR expression (Hanlon et al.,
2003; Lovekamp-Swan and Davis, 2003; Villard et al., 2007), it
directly links metabolic and EDC pathways with pollutants.
In summary, embryo implantation is highly vulnerable to

endocrine disruption, as EDCs, (plasticiser, PAHs, PCBs, PDBEs,
dioxins, pesticides, organotins and heavy metals) at concentra-
tions as low as 10 nM or 2 ng/kg and for an exposure period as
short as 4 h, can interfere with the actions of many hormones
and receptors essential for pre- and peri-implantation develop-
ment of the embryo and endometrium.

Effects on other aspects of animal health and welfare
Although direct effects on components of the reproductive
system are often among the most noticeable adverse effects
of pollutants, animal performance and welfare can also be
compromised by sub-optimal function in other physiological
systems. Milk production and associated success in rearing
offspring are critical to healthy populations. Rodent studies
have shown that mammary development, differentiation and
gene expression can be perturbed by exposure to organic
pollutants before or around puberty (Fenton, 2006; Moral
et al., 2008) and during pregnancy (Fenton, 2006), poten-
tially compromising neonatal nutrition and survival. Simi-
larly, studies of the mammary tissue of sheep exposed to
sewage sludge (Fowler et al., 2007b) demonstrated changes
in tissue structure and associated protein expression.

Table 3 Early embryo disruption by EDC – mechanisms and effects

Agent Effect Reference

Dioxin (TCDD) Damaged embryonic cells/mitotic disorders Hutt et al. (2008)
Wasting syndrome/perturbed energy metabolism Swedenborg et al. (2009)

PAHs Embryo loss (caspase 3/bax-mediated cell death) Detmar et al. (2006)
PCBs Disturbed energy metabolism Kietz and Fischer (2003)

Altered expression of implantation relevant genes Clausen et al. (2005)
Inhibition of blastocyst development Brevini et al. (2004)

Nitrate/nitrite Reduced progesterone production and reproductive success Inoue et al. (2004)
Heavy metals Reduced viability, morphological abnormalities, inhibited cell

division and blastocyst development
Nandi et al. (2010)

Suppressed steroid synthesis, delayed implantation, early
embryo loss and apoptosis

Thompson and Bannigan (2008)

Pesticides (various) Blastomere apoptosis Greenlee et al. (2005)
Perturbed hormone production Wójtowicz et al. (2007)
Reduced maternal progesterone; implantation failure Ema et al. (2007)
Reduced testosterone and libido in male offspring Amstislavsky et al. (2006)
No development beyond blastocyst stage Hausburg et al. (2005)

EDC5 endocrine disrupting compound; TCDD5 2,3,7,8-Tetrachlorodibenzo-p-dioxin; PAH5 polycyclic aromatic hydrocarbons; PCB5 polychlorinated biphenyls.
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The capacity of environmental pollutants to adversely
affect the immune system and the importance of exposure
during foetal development, are well known from studies of
species exposed to heavy pollutant burdens (Martineau
et al., 1988; De Swart et al., 1995; Dietert and Piepenbrink,
2006). The complexity and individual variability of the
immune response makes it difficult to detect when the sup-
pression is modest, as is likely to be the case in ruminants, but
it remains highly likely that EDC exposure is having adverse
effects on immune function in this taxon as well.
EDC exposure can affect thyroid function and therefore

metabolism; for example, EDCs have been shown to inhibit
the expression of nuclear thyroid hormone receptors or per-
turb the hypothalamic-pituitary–thyroid axis (Jekat et al.,
1994; Hansen, 1998; Sugiyama et al., 2005). In addition,
PCBs acting via AhRs, can induce multiple histological and
physiological changes within the gland, affecting thyroid
hormone production (Hansen, 1998). As the thyroid gland is
involved in the regulation of many fundamental physio-
logical processes, particularly in the developing animal
(Erenberg et al., 1974), and in seasonal reproductive transi-
tions (Shi and Barrell, 1992), its disruption could adversely
affect animal health, welfare, reproduction and productivity.
Effects of exposure to environmental pollutants on bone

structure have been identified previously in both wildlife
(Lind et al., 2004a; Lundberg et al., 2008) and domestic
species (Lundberg et al., 2006) and recent work involving the
sewage sludge paradigm has shown that exposure to a
mixture of pollutants at low concentrations can increase
mineral content and reduce bone strength, at least in
females, (Lind et al., 2009).
Studies of humans also indicate that environmental pol-

lutants can affect adipogenesis (Stahlhut et al., 2007).
Experiments involving various species indicate that phtha-
late exposure can induce insulin resistance and alter receptor
activity, glucose transporters and transcription factors
(Alonso-Magdalena et al., 2005; Fujiyoshi et al., 2006; Grun
et al., 2006). Thus, it seems likely that subtle changes in
nutrient partitioning and in feed efficiency will occur in EDC-
exposed ruminants although they are, as yet, undetected.
Exposure of rats to PCBs increased serum cholesterol

concentrations and blood pressure, risk factors for heart
disease (Lind et al., 2004b), and studies of humans suggest a
relationship between dioxin exposure and risk of cardiovas-
cular disease (Humblet et al., 2008). Theoretically, such sub-
clinical disorders have the potential to compromise ruminant
health and welfare, causing small reductions in productivity.
One measure of neuroendocrine development is offspring

behaviour. Altered patterns of behaviour have been reported
in children exposed to various pollutants during pre-natal
and early post-natal development (Vreugdenhil et al., 2002;
Lanphear et al., 2005; Korrick and Bellinger, 2007) and in
lambs exposed to sewage sludge, via their dams (Erhard and
Rhind, 2004). Altered social or sexual behaviour, learning
ability or fearfulness all have the potential to reduce animals’
capacity to obtain food, breed and compete successfully with
others in the flock or herd.

In summary, environmental pollutants can adversely affect
diverse physiological systems and processes in many species,
including ruminants. These effects are not generally reflected
in visible reductions in animal performance but sub-clinical
effects may result in subtle reductions in animal performance,
with associated economic consequences. Furthermore, such
underlying physiological changes may become increasingly
important as new chemicals are manufactured or as con-
centrations of others in the environment are increased. These
add to the animal burden but readily observable effects may
only become apparent if, or when, a critical level of the ‘insult’
is reached. For example, human sperm quality and fertility are
reportedly declining over time (Nordstrom Joensen et al., 2009)
but effects on conception rates may become obvious only
when the number of fertile sperm declines to a critical level.
The fact that some effects are known to be exerted on the
developing foetus and are expressed in the adult animal and,
critically, also in subsequent generations (Bøgh et al., 2001),
means that exposures now may lead to animal production
problems in the future.

Future research needs

In order to understand risks and effects, the input of pollu-
tants into biological systems has to be defined. However, at
present, measures of environmental concentrations are
costly, often technically difficult, and generally limited to
relatively few of the thousands of chemicals that may be
important. Such measurements rarely take account of factors
that can affect biological availability such as substrate
binding or conversion into different forms with different
chemical characteristics and/or biological effects.
Similarly, the processes regulating transfer of pollutants

between the environment and the target organs, in animals
at each stage of development, must be better characterised.
The overall efficiency of this process depends on several
components including the rate of ingestion or inhalation and
pollutant availability, as determined by the strength of bonds
between it and the substrate (food, soil, water and air).
Transfer depends, also, on the efficiency of physiological
processes such as uptake from the maternal gastrointestinal
tract, lungs or skin and, following uptake by the dam, uptake
from the maternal circulation via the placenta, rates of foetal
metabolism, excretion and absorption into lipid stores
(Rhind, 2008). These processes have been quantified for very
few species or pollutant classes.
Understanding the effects of pollutants requires knowl-

edge of actions at the cellular and molecular level. Different
sets of genes are expressed while others are silenced, in a
developmental stage and tissue-specific manner, by the co-
ordinated action of a number of epigenetic mechanisms that
involve chemical modifications to both DNA and chromatin
(Li, 2002; Morgan et al., 2005). The precedent that EDCs
can epigenetically modify at least one of these modifications
(i.e. DNA methylation) in the germ line, thereby promoting
transgenerational abnormalities including impaired male fer-
tility, has been established in rats exposed to the agricultural
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chemicals vinclozolin and methoxychlor (Anway et al.,
2005). Although it remains to be determined if the effects of
EDCs in ruminants operate by similarly dysregulating the
normal pattern of epigenetic-mediated gene expression, a
different ‘insult’, in the form of clinically relevant reductions
in specific micronutrients during the peri-conceptional per-
iod, in sheep has been shown to lead to widespread epige-
netic alterations to DNA methylation in offspring. Such
alterations are associated with obesity, insulin resistance
and high blood pressure (Sinclair et al., 2007). Consequently,
the focus of future studies on the effects of EDC exposure in
ruminants will need to consider such modes of action.
The process of identifying causal relationships between

different classes of pollutant and their effects has to be
extended using numerous approaches already proven in
ruminants. These include measurements of changes in organ
structure and/or function (Evans et al., 2004; Paul et al.,
2005) and in gene or protein expression (Edwards and
Myers, 2007; Fowler et al., 2008). However, current under-
standing of additive and synergistic effects of EDCs, espe-
cially in complex mixtures, is, at best, very limited and so
elucidation of these effects will be a critical area of future
research. As it is logistically impossible to address every
possible combination, it will be appropriate to study com-
binations with different mechanisms of action in order to
better comprehend the effects of mixtures (Kortenkamp,
2007). There is also likely to be a significant role for bioin-
formatics and computer modelling approaches (Suk et al.,
2002). However, such studies may be partially constrained by
lack of understanding of mechanisms of action and of data
pertaining to the effects of each EDC, individually, let alone
when part of a mixture.
The variability associated with each of the multiple pro-

cesses regulating tissue concentrations of EDCs results in very
large individual animal variation in tissue concentrations
(Rhind, 2008). Investigation of the relationships between
genotype and phenotypic responses might be expected to lead
to improved predictability of effects but, owing to the com-
plexity of mixtures and multiple genomic factors it is almost
impossible for a single DNA variant site to be consistently
associated with a particular trait (Nebert, 2005). This area of
work is likely to be of major significance in the future, although
frequently unpopular with funding agencies.
Although a number of physiological systems have already

been shown to be affected by a wide range of chemicals, it is
important to recognise not only that there may be chemicals,
which are not yet widely recognised as endocrine disruptors,
but also that there may be physiological responses to
exposure that are not currently recognised as effects of EDC
(Guillette, 2006). Thus, it is important that research into
these phenomena is approached with an open mind and
receptiveness to previously unidentified risks and mechanisms.
The work of the European REACH (Registration, Evaluation and
Authorisation of Chemicals) programme is designed to address
the issue of chemical use and, by implication, environmental
pollutants. Although it will undoubtedly help to identify and
control the use of the most persistent, bioaccumulative and

toxic chemicals, concerns remain that the legislation may fail to
take account of effects of mixtures and of chemicals present at
levels deemed to be below the ‘no effect level’ (Santillo and
Johnston, 2006).

Conclusions

Environmental pollutants can adversely affect animal health
and reproductive function, through either direct or indirect
effects on numerous organs and systems. However, empirical
evidence of the relationships between exposure and physiolo-
gical effects is scarce, particularly for ruminants, reflecting the
fact that levels of exposure to each individual chemical are
generally very low and they do not act individually. At this
time, effects of environmentally relevant levels of exposure to
EDCs are not yet reflected in visibly reduced animal perfor-
mance. Nevertheless, concerns remain that there may be subtle
perturbations of reproductive function and since some of the
observed changes in physiological functionmay be expressed in
subsequent generations, even without further exposure to
pollutants, there may be even greater cause for concern. Like
ruminant productivity, human health is generally considered to
be good/improving but, at the same time, the incidence of
breast cancer in women in the United Kingdom, a disease
considered to be related to EDCs, is increasing at a rate of 2%
every year (Office for National Statistics, 2008) indicating that
some trends in health/performance may only be observed on a
population basis rather than an individual basis. It is postulated
that comparable insidious effects on ruminants may also be
present but until appropriate end points are recognised and
measured, such potential threats may remain hidden.

Acknowledgements
Much of the work reported in this paper, and the preparation of
the paper, was funded by the Scottish Government Research
and Analysis Directorate, the Welcome Trust (Contact no.
080388/Z/06/Z) and the European Commission Framework 7
Programme (Contract no. 212885).

References
Agras K, Shiroyanagi Y and Baskin LS 2007. Progesterone receptors in the
developing genital tubercle: implications for the endocrine disruptor hypothesis
as the etiology of hypospadias. The Journal of Urology 178, 722–727.

Ahel M, Giger W and Schaffner C 1994. Behaviour of alkylphenol polyethoxylate
surfactants in the aquatic environment-II. Occurrence and transformation in
rivers. Water Research 28, 1143–1152.

Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoli C, Soria B and Nadal
A 2005. Low doses of bisphenol A and diethylstilbestrol impair Ca21 signals in
pancreatic a-cells through a nonclassical membrane estrogen receptor within
intact islets of Langerhans. Environmental Health Perspectives 113, 969–977.

Amezaga MR, Speers CJB, Bellingham M, Evans NP, Mandon-Pepin B, Cotinot
C, Sharpe RM, Rhind SM and Fowler PA 2009. Sudden changes in exposure to
environmental chemicals perturbs ovarian development. In Proceedings of the
Society for Reproduction and Fertility, 7–9 January 2009, Edinburgh, UK, p. 37.

Amstislavsky SY, Amstislavskaya TG, Amstislavsky VS, Tibeikina MA, Osipov KV
and Eroschenko VP 2006. Reproductive abnormalities in adult male mice
following preimplantation exposures to estradiol or pesticide methoxychlor.
Reproductive Toxicology 21, 154–159.

Environmental pollutants and reproduction

9



Anas MK, Suzuki C, Yoshioka K and Iwamura S 2003. Effect of mono-(2-
ethylhexyl) phthalate on bovine oocyte maturation in vitro. Reproductive
Toxicology 17, 305–310.

Anway MD, Cupp AS, Uzumcu M and Skinner MK 2005. Epigenetic
transgenerational actions of endocrine disruptors and male fertility. Science
308, 1466–1469.

Anway MD and Skinner MK 2006. Epigenetic transgenerational actions of
endocrine disruptors. Endocrinology 147, S43–S49.

Barnett KR, Tomic D, Gupta RK, Babus JK, Roby KF and Terranova PF 2007. The
aryl hydrocarbon receptor is required for normal gonadotropin responsiveness in
the mouse ovary. Toxicology and Applied Pharmacology 223, 66–72.

Beard AP, Bartelewski PM, Chandolia RK, Honaramooz A and Rawlings NC
1999. Reproductive and endocrine function in rams exposed to the
organochlorine pesticides lindane and pentachlorophenol from conception.
Journal of Reproduction and Fertility 115, 303–314.

BellinghamM, Fowler PA, Amezaga MR, Rhind SM, Cotinot C, Mandon-Pepin B,
Sharpe RM, Kyle CE and Evans NP 2009. Exposure to environmental endocrine
disrupting compounds in sewage sludge: effects on the KiSS-1/GPR54 system in
ovine hypothalamus and pituitary gland. Environmental Health Perspectives
117, 1556–1562.

Bemis JC and Seegal RF 1999. Polychlorinated biphenyls and methylmercury act
synergistically to reduce rat brain dopamine content in vitro. Environmental
Health Perspectives 107, 879–885.

Bøgh IB, Christensen P, Dantzer V, Groot M, Thøfner ICN, Rasmussen RK, Schmidt M
and Greve T 2001. Endocrine disrupting compounds: effect of octylphenol on
reproduction over three generations. Theriogenology 55, 131–150.

Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug
A, Törnqvist M, Victorin K and Westerholm R 2002. Cancer risk assessment,
indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient
air. Environmental Health Perspectives 110(suppl. 3), 451–488.

Brevini TAL, Vassena R, Paffoni A, Francisci C, Fascio U and Gandolfi F 2004.
Exposure of pig oocytes to PCBs during in vitro maturation: effects on
developmental competence, cytoplasmic remodelling and communications with
cumulus cells. European Journal of Histochemistry 48, 347–356.

Brevini TAL, Cillo F, Antonini S and Gandolfi F 2005. Effects of endocrine
disrupters on the oocytes and embryos of farm animals. Reproduction in
Domestic Animals 40, 291–299.

Brooke DN, Nielsen IR, Dobson S and Howe PD 1991. Environmental hazard
assessment: di-(2-ethylhexyl) phthalate. Toxic Substances, Division, Directorate
for Air Climate and Toxic Substances Department of the Environment, Watford,
England.

Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V and Olea N 1995.
Xenoestrogens released from lacquer coatings in food cans. Environmental
Health Perspectives 103, 608–612.

Christiansen S, Scholze M, Axelstad M, Boberg J, Kortenkamp A and Hass U
2008. Combined exposure to anti-androgens causes markedly increased
frequencies of hypospadias in the rat. International Journal of Andrology 31,
241–248.

Clausen I, Kietz S and Fischer B 2005. Lineage-specific effects of polychlorinated
biphenyls (PCB) on gene expression in the rabbit blastocyst. Reproductive
Toxicology 20, 47–56.

Colborn T, Vom Saal AM and Soto AM 1993. Developmental effects of endocrine
disrupting chemicals in wildlife and human. Environmental Health Perspectives
101, 378–384.

Commission of the European Communities 1994. Directorate Generale XI,
Waste Management – Sewage Sludge, Part I. Survey of Sludge Production,
Treatment, Quality and Disposal in the European Union. EU Commission,
Brussels, Belgium.

Crofton KM, Craft ES, Hedge JM, Gennings C, Simmons JE, Carchman RA, Carter
WH and deVito MJ 2005. Thyroid-hormone-disrupting chemicals: evidence for
dose-dependent additivity or synergism. Environmental Health Perspectives
113, 1549–1554.

Davey JC, Bodwell JE, Gosse JA and Hamilton JW 2007. Arsenic as an endocrine
disruptor: effects of arsenic on estrogen receptor-mediated gene expression
in vivo and in cell culture. Toxicological Sciences 98, 75–86.

De Swart RL, Ross PS, Timmerman HH, Vos HW, Reijnders PJH, Vos JG and
Osterhaus ADME 1995. Impaired cellular immune response in harbour seals
(Phoca vitulina) feeding on environmentally contaminated herring. Clinical and
Experimental Immunology 101, 480–486.

Detmar J, Rabaqlino T, Taniuchi Y, Oh J, Acton BM, Benito A, Nunez G and
Juriscova A 2006. Embryonic loss due to exposure to polycyclic aromatic
hydrocarbons is mediated by Bax. Apoptosis 11, 1413–1425.

Dietert RR and Piepenbrink S 2006. Perinatal immunotoxicity: why adult
exposure assessment fails to predict risk. Environmental Health Perspectives
114, 477–483.

Duarte-Davidson R and Jones KC 1996. Screening the environmental fate of
organic contaminants in sewage sludge applied to agricultural soils: II the
potential for transfers to plants and grazing animals. The Science of the Total
Environment 185, 59–70.

Edwards TM, Miller HD and Guillette LJ 2006. Water quality influences
reproduction in female mosquitofish (Gambusia holbrooki) from eight Florida
springs. Environmental Health Perspectives 114(suppl.), 69–75.

Edwards TM and Myers JP 2007. Environmental exposures and gene regulation
in disease etiology. Environmental Health Perspectives 115, 1264–1270.

Ema M, Fujii S, Ikka T, Matsumoto M, Hirose A and Kamata E 2007. Early
pregnancy failure induced by dibutyltin dichloride in mice. Environmental
Toxicology 22, 44–52.

Erenberg A, Omori K, Menkes JH, Oh W and Fisher DA 1974. Growth and
development of the thyroidectomized ovine fetus. Pediatric Research 8,
783–789.

Erhard HW and Rhind SM 2004. Prenatal and postnatal exposure to environmental
pollutants in sewage sludge alters emotional reactivity and exploratory behaviour in
sheep. The Science of the Total Environment 332, 101–108.

Eriksson P, Jakobsson E and Fredriksson A 2001. Brominated flame retardants: a
novel class of developmental neurotoxicants in our environment. Environmental
Health Perspectives 109, 903–908.

Evans NP, North T, Dye S and Sweeney T 2004. Differential effects of the
endocrine-disrupting compounds bisphenol-A and octylphenol on gonadotro-
phin secretion, in prepubertal ewe lambs. Domestic Animal Endocrinology 26,
61–73.

Fenton SE 2006. Endocrine-disrupting compounds and mammary gland
development: early exposure and later life consequences. Endocrinology 147,
S18–S24.

Forsdike RA, Hardy K, Bull L, Stark J, Webber LJ, Stubbs S, Robinson JE and
Franks S 2007. Disordered follicle development in ovaries of prenatally
androgenized ewes. Journal of Endocrinology 192, 421–428.

Fowler PA, Abramovich DR, Haites NE, Cash P, Groome NO, Al-Qahtani A,
Murray TJ and Lea RG 2007a. Human fetal testis Leydig cell disruption by
exposure to the pesticide dieldrin at low concentrations. Human Reproduction
22, 2919–2927.

Fowler PA, Gordon KL, Thow CA, Cash P, Miller DW, Lea RG and Rhind SM
2007b. Exposure to sewage sludge disrupts ewe mammogenesis. In Proceed-
ings of the Society for Reproduction and Fertility, 15–18 April 2007, York, UK,
p. 75.
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