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Abstract

We report results from an experiment that explores the empirical validity of correlated equi-

librium, an important generalization of the Nash equilibrium concept. Specifically, we seek to

understand the conditions under which subjects playing the game of Chicken will condition their

behavior on private, third–party recommendations drawn from known distributions. In a “good–

recommendations” treatment, the distribution we use is a correlated equilibrium with payoffs better

than any symmetric payoff in the convex hull of Nash equilibrium payoff vectors. In a “bad–

recommendations” treatment, the distribution is a correlated equilibrium with payoffs worse than

any Nash equilibrium payoff vector. In a “Nash–recommendations” treatment, the distribution is

a convex combination of Nash equilibrium outcomes (which is also a correlated equilibrium), and

in a fourth “very–good–recommendations” treatment, the distribution yields high payoffs, but is

not a correlated equilibrium. We compare behavior in all of these treatments to the case where

subjects do not receive recommendations. We find that when recommendations are not given to

subjects, behavior is very close to mixed–strategy Nash equilibrium play. When recommendations

are given, behavior does differ from mixed–strategy Nash equilibrium, with the nature of the differ-

ences varying according to the treatment. Our main finding is that subjects will follow third–party

recommendations only if those recommendations derive from a correlated equilibrium, and further,

if that correlated equilibrium is payoff–enhancing relative to the available Nash equilibria.
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1 Introduction

A standard assumption in noncooperative game theory is that players’ strategies—whether pure or

mixed—are probabilistically independent. However, researchers at least as long ago as Aumann (1974,

1987) recognized that relaxing this assumption by allowing correlation in players’ strategies could

greatly enlarge the set of equilibrium possibilities beyond the set of Nash equilibria. The equilibria

that result are known as correlated equilibria.1 As an illustration, consider the two–player game of

Chicken, shown in Figure 1; strategies are defect (D) and cooperate (C). This game has two asymmetric

pure–strategy Nash equilibria—(D,C) and (C,D)—as well as a mixed–strategy Nash equilibrium in

which each player chooses D with probability two–fifths.

Player 2

D C

Player D 0,0 9,3

1 C 3,9 7,7

Figure 1: The basic Chicken game

The mixed–strategy equilibrium of this game has the attractive feature of symmetry—thus avoid-

ing the “symmetry–breaking” question implicit in asymmetric equilibria (see, for example, Crawford

(1998)). Evolutionary dynamics often favor such symmetry and indeed, the Nash equilibrium mixed

strategy is the unique evolutionarily stable strategy of this game (see, for example, Hofbauer and Sig-

mund (1998)). However, as Skyrms (1996) and others have observed, this mixed–strategy equilibrium

is inefficient: in the Chicken game of Figure 1, it yields expected payoffs of just 5.4 for each player.

By contrast, if the players somehow agreed to condition their behavior on a fair coin toss, playing (for

example) the strategy profile (D,C) after Heads and (C,D) after Tails, each could improve her ex ante

expected payoff to 6. Moreover, since both recommended outcomes are pure–strategy Nash equilibria,

both would strictly prefer to honor the agreement as long as they believed that the other would, even

after knowing which recommendation was received.2

Furthermore, as Aumann pointed out, the players could actually do even better in this game by

enlisting the services of a monitor—a non–strategic third party—who has access to a randomizing

device. If this device, for example, chooses the three outcomes (D,C), (C,D), and (C,C) with equal

probability, and the monitor tells each player privately that player’s own action according to the

chosen outcome (e.g., if the outcome randomly drawn is (C,D), the monitor recommends C privately

to Player 1 and D privately to Player 2), and players follow these recommendations, then expected

payoffs increase to 6 1
3 for each player. Furthermore, under the assumption that the players know

the distribution obeyed by the randomizing device, as well as their own recommendation, but not

the recommendation given to the other player, both players will strictly prefer to follow their own

1An early example of a correlated equilibrium is also found in Luce and Raiffa (1957, pp. 115-120).
2By contrast, see Young (2005, Chapter 3) for a discussion of a variant on this setup (due to Moulin and Vial (1978))

in which players choose—before receiving recommendations—whether to commit to following them or not. Young calls

a distribution of recommendations under this setup a coarse correlated equilibrium if no player prefers not to commit to

following recommendations, given that the others have chosen to commit.
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recommendation if they believe that the other will also do so.

A correlated equilibrium is a probability distribution over outcomes—that is, a joint distribution

over players’ strategies—such that under the assumptions mentioned above, all players prefer to follow

their own recommendations.3 Then, a Nash equilibrium is just a special case of correlated equilibrium,

in which the joint distribution of strategies is the product of the corresponding marginals (that is, the

resulting players’ strategies are probabilistically independent of one another). Indeed, as Hart and

Mas-Colell (2000, p. 1128) observe:

“...from a practical point of view, it could be argued that correlated equilibrium may be

the most relevant noncooperative solution concept. Indeed, with the possible exception of

well–controlled environments, it is hard to exclude a priori the possibility that correlating

signals are amply available to players, and thus find their way into the equilibrium.”

The purpose of this paper is to examine the empirical validity of this “most relevant noncooperative

solution concept.” Perhaps ironically, we study correlated equilibria in the well–controlled environment

of the laboratory, as this enables us to clearly assess the role of well–defined, correlated signals as

coordinating devices. Specifically, we design and conduct an experiment in which human subjects

play the game shown in Figure 1. Prior to making their choices, subjects receive private signals

(“recommendations”) generated according to a known distribution of outcomes that serves as our main

treatment variable. Three of the distributions we use are symmetric correlated equilibria. In one of

our treatments, which we call our “Nash–recommendations” treatment, the correlated equilibrium we

attempt to implement is simply a convex combination of Nash equilibria. In a second treatment—our

“good–recommendations” treatment—the correlated equilibrium is the one described above, which

yields payoffs that are Pareto superior to all symmetric payoff vectors in the convex hull of Nash

equilibrium payoff vectors.

It is often forgotten, though, that there also exist correlated equilibria in which payoffs are Pareto

inferior to all symmetric payoff vectors in the convex hull of Nash equilibrium payoff vectors. If

correlated equilibrium is to be taken seriously as a descriptive device, and not just a theoretical

curiosity, then it should be possible to induce these bad correlated equilibria as well as the good

ones. To our knowledge, however, there has never been an experimental test of a bad correlated

equilibrium. We remedy this, with what we call our “bad–recommendations” treatment. Despite

the “bad” moniker, the distribution over outcomes we use in this treatment is every bit as much a

correlated equilibrium as that in our good– and Nash–recommendations treatments. In particular, it

is still optimal for a player to follow her recommendations, as long as she believes her opponent will

follow the recommendations given him.

Finally, we attempt to distinguish between subjects’ following recommendations as part of a cor-

related equilibrium and their following of recommendations for other reasons—for example, out of a

3 We do not claim that recommendations from a third party are the only way of achieving correlated equilibrium. Hart

and Mas-Colell (2000), for example, show that under a simple adaptive learning algorithm, the empirical distribution of

outcomes converges to the set of correlated equilibria; in that case, players are able to correlate their strategies according

to the history of play rather than third–party recommendations. See also Foster and Vohra (1997), Fudenberg and Levine

(1998 Chapter 8, 1999), Vanderschraaf (2001), Vanderschraaf and Skyrms (2003), and Brandenburger and Friedenberg

(2008).
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desire to please the experimenter (also known as “experimenter demand effects”)—with our “very–

good–recommendations” treatment. In this treatment, the distribution of recommended outcomes is

not a correlated equilibrium, but the temptation to follow recommendations may be great, because

if both players follow recommendations, payoffs are Pareto superior to all symmetric correlated–

equilibrium payoff vectors.

In the experiment, subjects play the game shown in Figure 1 repeatedly against changing oppo-

nents. In half of the rounds, they receive recommendations (always according to the same correlated

equilibrium distribution), while in the remaining rounds, they do not receive any recommendations.

The main results are as follows. When players do not receive recommendations, their behavior is

well–described by the mixed–strategy Nash equilibrium. Giving subjects recommendations has an ef-

fect that depends on which underlying distribution of outcomes is used. The likelihood of following a

recommendation is higher in the good– and Nash–recommendations treatments and lower in the bad–

and very–good–recommendations treatments, and also varies somewhat with which of the available

actions is recommended. In nearly all cases, subjects follow recommendations more than chance would

predict, but there is no treatment where subjects follow recommendations all the time.

2 Correlated equilibrium—theory and tests

The game we use is the Chicken game shown in Figure 1 above. We chose Chicken as it is perhaps the

simplest game with the property that there exist correlated equilibrium payoff pairs that lie outside

the convex hull of Nash equilibrium payoff pairs. The game has three Nash equilibria: (D,C), (C,D),

and a mixed–strategy Nash equilibrium in which each player chooses D with probability 2
5 . Payoffs in

these three equilibria are, respectively, (9,3), (3,9), and (5.4,5.4).

As mentioned in the introduction, one way to think about correlated equilibria is as involving a

“monitor”—a non–strategic third party—in the game. The monitor chooses one of the four pure–

strategy profiles according to a commonly–known probability distribution, and to each player “recom-

mends” that player’s component in the profile. (The monitor never recommends a mixed strategy.)

The probability distribution is a correlated equilibrium of the original game if each player at least

weakly prefers following her recommended action to choosing any other action. (Thus, a correlated

equilibrium of the original game corresponds to a Nash equilibrium of this new game, in which players’

strategies are mappings from recommended actions to chosen actions.4)

Define pDD, pDC , pCD , and pCC to be the probabilities of the outcomes (D,D), (D,C), (C,D), and

(C,C), according to the commonly–known distribution characterizing the monitor’s behavior. Suppose

Player 1 is given a recommendation of D. Then, the conditional probability that the chosen outcome

was (D,D) is pDD

pDD+pDC
, and the probability that the chosen outcome was (D,C) is pDC

pDD+pDC
. If Player

1 believes that Player 2 will follow the recommendation given to him, then Player 1’s conditional

expected payoff from following her recommendation of D is

pDD

pDD + pDC

· 0 +
pDC

pDD + pDC

· 9 =
9pDC

pDD + pDC

,

4This Nash equilibrium is not unique. There always exist three “babbling” equilibria corresponding to the three Nash

equilibria of the original game, in which both players completely ignore the recommendations given them, and play Nash

equilibrium strategies instead. There exist additional equilibria as well.
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and her conditional expected payoff from choosing C instead is

pDD

pDD + pDC

· 3 +
pDC

pDD + pDC

· 7 =
3pDD + 7pDC

pDD + pDC

,

so she prefers to follow the D recommendation if 9pDC

pDD+pDC
≥ 3pDD+7pDC

pDD+pDC
—that is, if 2pDC ≥ 3pDD.

Using similar reasoning for Player 1 following a C recommendation, Player 2 following an D recom-

mendation, and Player 2 following a C recommendation gives us a total of four inequalities:

2pDC ≥ 3pDD

3pCD ≥ 3pCC

2pCD ≥ 3pDD

3pDC ≥ 3pCC .

A correlated equilibrium is a quadruple (pDD, pDC, pCD, pCC) that satisfies these four inequalities,

along with pDD + pDC + pCD + pCC = 1.

Since the set of correlated equilibria can be characterized as an intersection of sets defined by linear

equations and inequalities, it is a convex set, and because it contains the set of Nash equilibria, it must

also contain the convex hull of Nash equilibria. The same is true in payoff space; that is, the set of

correlated–equilibrium payoffs of a game always contains the convex hull of the set of Nash equilibrium

payoff pairs. However, in most games—including ours—there also exist correlated equilibria that are

not in the convex hull of Nash equilibrium payoff pairs. Figure 2 shows the regions corresponding to

the sets of Nash equilibrium payoff pairs and correlated equilibrium payoff pairs. The Nash equilibrium

payoff pairs of this game are (3,9) (corresponding to the equilibrium (C,D)), (9,3) (corresponding to

(D,C)), and (5.4,5.4) (corresponding to the mixed–strategy equilibrium). Therefore, the convex hull of

Nash equilibrium payoff pairs is the triangle with these three points as vertices (region A in the figure);

in particular, 6 is the highest symmetric payoff in this convex hull, and 5.4 the lowest. The set of

correlated equilibrium payoff pairs is the quadrilateral with vertices (3,9), (4.5,4.5), (9,3), and (63
7 , 63

7)

(the union of regions A, Bl, and Bh in the figure), so that 63
7 is the highest symmetric correlated

equilibrium payoff and 4.5 the lowest.

Relatively little experimental research has looked at correlated equilibria that are not convex

combinations of Nash equilibria.5 The earliest such study that we know of is that by Moreno and

Wooders (1998), who examine the ability of several game–theoretic solution concepts (including Nash

equilibrium and correlated equilibrium) to characterize subject behavior in a three–player version

of a one–shot matching pennies game, in which two of the players have perfectly aligned interests;

their game is shown on the left of Figure 3. Instead of giving players recommendations as we do,

they allowed subjects to participate in a round of cheap talk prior to play of the game; subjects

could send messages to either other player individually, or to both at once. Moreno and Wooders

found that the choices of the players with aligned interests were highly correlated, so that mixed–

strategy Nash equilibrium poorly described the distribution of outcomes. Rather, they concluded

5Experimental studies of correlated equilibria that are convex combinations of Nash equilibrium include Van Huyck,

Gilette, and Battalio (1992), Brandts and McLeod (1995), and Seely, Van Huyck, and Battalio (2005). In a market

setting, Duffy and Fisher (2005) examine whether subjects will coordinate on the closely related concept of a sunspot

equilibrium involving a randomization over two certainty equilibria.
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Figure 2: Characteristics of the Game
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that the best–performing solution concept was coalition–proof correlated equilibrium (Einy and Peleg

(1995), Moreno and Wooders (1996)), a generalization of Bernheim et al.’s (1987) coalition–proof Nash

equilibrium.

More recently, Cason and Sharma (2007) attempted to induce a correlated equilibrium through

the use of private recommendations to subjects, as we do. The game they use is a version of Chicken,

shown on the right of Figure 3. The correlated equilibrium they attempt to induce has (Up, Right)

Player 2 Player 2 Player 2

H T H T Left Right

Player H 1,1,–2 –1,–1,2 Player H –1,–1,2 –1,–1,2 Player Up 3,3 48,9

1 T –1,–1,2 –1,–1,2 1 T –1,–1,2 1,1,–2 1 Down 9,48 39,39

Player 3: H Player 3: T

Moreno and Wooders (1998) Cason and Sharma (2007)

Figure 3: Games used in previous correlated–equilibrium experiments

and (Down, Left) occurring with probability 0.375 each, and (Down, Right) with probability 0.25,

with (Up, Left) never occurring. This correlated equilibrium yields expected payoffs of 31.125 for

each player: higher than the mixed–strategy Nash equilibrium expected payoffs of 20.4, and indeed,

higher than any symmetric payoff pair in the convex hull of Nash equilibrium expected payoffs. In

the experiment, subjects often did follow recommendations, doing so roughly 80% of the time in their

baseline treatment, and earning payoffs well above the mixed–strategy Nash equilibrium prediction

(though below the prediction of the correlated equilibrium) as a result.6

However, by only considering a correlated equilibrium that was payoff–enhancing relative to Nash

equilibrium, Cason and Sharma’s study risks confounding the coordinating role of third-party rec-

ommendations with a general interest by subjects in earning higher payoffs. Further, in Cason and

Sharma’s experimental instructions, they explicitly tell subjects that they ought to follow recommen-

dations, as doing so will result in higher payoffs.7

By contrast with Cason and Sharma’s (2007) experiment, which considered a single type of corre-

lated equilibrium, our experimental design considers three different correlated equilibria, each associ-

ated with a different probability distribution for recommended play. In our “Nash–recommendations”

treatment, the recommendations (D, C) and (C, D) are each selected with probability one–half, and

(C, C) and (D, D) are selected with probability zero. This distribution of recommended outcomes is

a correlated equilibrium, and moreover, is a convex combination of Nash equilibria, with payoffs of 6

6Cason and Sharma—somewhat pessimistically, in our opinion—conclude from these results that “players frequently

reject recommendations,” and their experiment includes additional treatments designed to increase the likelihood that

recommendations are followed, such as having human subjects play against a computer program that always follows

recommendations. Recommendations are typically followed even more often in these variations.
7For example, their instructions state “[y]ou should follow the recommendation given by the computer, be-

cause as long as the person you are paired with also follows his or her recommendation then you earn more

on average by following the recommendation” and “[t]o reiterate: you always earn more by following your rec-

ommendation as long as the participant you are paired with also follows his or her recommendation”; see

http://www.krannert.purdue.edu/faculty/cason/papers/corr-inst.pdf.
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for each player. We also consider two correlated equilibria that are not convex combinations of Nash

equilibria. In our “good–recommendations” treatment, the recommended outcomes (D, C), (C, D),

and (C, C) are each selected with probability one–third, and (D, D) is selected with probability zero.

These probabilities satisfy the conditions for a correlated equilibrium, and yield payoffs of 61
3 for each

player—more than any point in the convex hull of Nash equilibrium payoff pairs. In addition to the

good–recommendations treatment, however, we also consider a “bad–recommendations” treatment,

in which the recommended outcomes (D, C) and (C, D) are each selected with probability 0.4, and

(D, D) is selected with probability 0.2, so that (C, C) is selected with probability zero. These proba-

bilities also satisfy the conditions for a correlated equilibrium, but result in payoffs of only 4.8 for each

player—less than any point in the convex hull of Nash equilibrium payoff pairs. As far as we know,

there are no existing experimental studies of correlated equilibria that are payoff–reducing relative to

Nash equilibrium.

Finally, as an even stronger test of the correlated equilibrium concept, we consider one distribution

of recommended outcomes that is not a correlated equilibrium. In our “very–good–recommendations”

treatment, the recommended outcome (C, C) is selected with probability 0.8, (D, C) and (C, D) are

each selected with probability 0.1, and (D, D) is selected with probability zero. Given these prob-

abilities, a player receiving a D recommendation will prefer to follow it—assuming she believes her

opponent will also follow recommendations—but a player receiving a C recommendation will not,

instead preferring to choose D. If recommendations are followed, however, payoffs are 6.8 for each

player—higher than in any of three correlated equilibria discussed above.

Some features of the four recommended outcome distributions we use, as well as the mixed–strategy

Nash equilibrium, are shown in Table 1. The expected payoffs from following these distributions of

recommended outcomes are also shown in Figure 2 (as plus signs).

Table 1: Outcome frequencies imposed in the experiment

Probability Probability Probability Probability Probability Expected

of (D,D) of (D,C) of (C,D) of (C,C) of C choice payoffs

outcome outcome outcome outcome

Good recommendations 0.000 0.333 0.333 0.333 0.667 (6.333,6.333)

Bad recommendations 0.200 0.400 0.400 0.000 0.400 (4.8,4.8)

Nash recommendations 0.000 0.500 0.500 0.000 0.500 (6,6)

Very good recommendations 0.000 0.100 0.100 0.800 0.900 (6.8,6.8)

Mixed–strategy NE 0.160 0.240 0.240 0.360 0.600 (5.4,5.4)

3 Experimental procedures

Besides varying the type of recommendations that were given to subjects (that is, the probability

distribution over outcomes), we varied whether recommendations were given at all. All experimental

sessions lasted for 40 rounds: 20 rounds with recommendations and 20 rounds without recommenda-

tions. We also varied the order of these; in half of our sessions, the 20 rounds without recommendations

7



came first, and in the other half, the 20 rounds with recommendations came first. (Thus, whether

or not recommendations were given was varied within–subject, while the type of recommendations

and the ordering between recommendations and no recommendations were varied between–subjects.)

Each experimental session involved 12 subjects. Subjects were primarily undergraduate students from

University of Pittsburgh, and were recruited by newspaper advertisements and email. No one took

part in more than one session of this experiment.

At the beginning of a session, subjects were seated in a single room and given a set of written

instructions for the first twenty rounds.8 They were told at this time that there would be a second

part to the session, but details of the second part were not announced until after the first part had

ended. The instructions for the first part were read aloud to subjects, in an attempt to make the

rules of the game common knowledge. After the instructions were read, subjects were given a short

quiz to ensure that they understood the instructions. After subjects’ quizzes were completed, they

were graded anonymously. If any question was answered incorrectly, the experimenter went over the

question and answer out loud for the benefit of all subjects (without identifying which subject had

answered incorrectly). After any incorrect answers were discussed, the first round of play began. After

the twentieth round of play was completed, each subject was given a copy of the instructions for the

remaining twenty rounds. These were also read aloud, after which another (shorter) quiz was given

out, before the final twenty rounds were played.

In the instructions, we strove to use neutral terminology. Instead of relatively loaded terms such

as “opponent” or “partner”, we used phrases such as “the player matched with you”. Also, in our

discussion of recommendations, we never went so far as to instruct subjects to follow recommendations,

or even to point out that following recommendations might lead to higher payoffs; rather, we merely

explained how one’s recommendation may or may not convey information about the recommendation

given to the other player.9

The experiment was run on networked computers, using the z–Tree experiment software package

(Fischbacher (2007)). Subjects were asked not to communicate directly with one another, so the only

interactions were via the computer program. Subjects were paired using a round–robin matching

format, in an attempt to minimize incentives for reputation building and other supergame effects; for

the same reason, subjects were not given identifying information about their opponents in any round.

A round of the game in which there were no recommendations (either rounds 1–20 or rounds 21–40,

depending on the cell) began by prompting subjects to choose one of the two available actions. (In the

instructions and during the session, the actions were named X and Y instead of D and C, respectively.)

After the action choices were entered, each subject was shown the following information: own action,

8The set of instructions given to subjects—as well as additional materials given to them (quizzes and record sheets)—

from one of our cells can be found at http://www.abdn.ac.uk/˜pec214/papers/corr instructions.pdf. Materials used in

the other cells and screenshots of the computer interface seen by subjects, as well as the raw data from the experiment,

are available from the corresponding author upon request.
9One passage from our instructions states, “These recommendations are optional; it is up to you whether or not

to follow them. Notice that your recommendation gives you information about the recommendation that was given to

the person matched to you.” To further emphasize this point, one of the questions in the quiz given to subjects after

reading the instructions was, “You are required to follow the recommendations shown on your computer screen (circle

one): TRUE FALSE”—to which the correct answer was FALSE. We acknowledge the possibility that our use of the term

“recommendations” itself might have influenced subjects to follow them to some extent.

8



opponent action, own payoff, and opponent payoff. In a round of the game with recommendations,

the sequence of play was similar except for the recommendations. Specifically, subjects would first

be shown their “recommended actions”, which were randomly drawn from the appropriate outcome

distribution. Then, they were prompted to choose an action. After these choices were entered, each

subject was shown the following information: own recommendation, own action, opponent recommen-

dation, opponent action, own payoff, and opponent payoff. In all treatments, subjects were not given

information about the results of any other pairs of subjects, either individually or in aggregate. At the

end of the round, subjects were asked to observe their result, write the information from that round

down onto a record sheet, and then click a button to continue to the next round.

At the end of round 40 of any treatment, the experimental session ended. One of the first twenty

rounds and one of the last twenty rounds were randomly chosen, and each subject received his/her

earnings from these two rounds, at an exchange rate of $1 per point. Additionally, all subjects

received a $5 show–up fee. Total earnings for subjects participating in a session averaged about $15,

and sessions typically lasted between 45 and 60 minutes.

4 Experimental results

A total of 16 sessions were conducted—four of each treatment—with 12 subjects per session, for a total

of 192 subjects. We first look at whether (and how) recommendations affected aggregate behavior. In

the following section, we look at how subjects responded to the recommendations given to them.

4.1 Effect of recommendations on population aggregates

The first question we ask is whether the recommendations given to subjects have any effect at all.

Table 2 provides strong evidence that they do. This table reports the relative frequencies over 20

rounds of each of the three possible outcomes: both choosing D, exactly one choosing D (the pure–

strategy Nash equilibrium), and both choosing C, conditional on the type of recommendations given

to subjects (none, good, bad, Nash, very good).10

Table 2: Aggregate observed outcome frequencies

Outcome Recommendations

None Good Bad Nash Very good

(D,D) 0.159 0.140 0.192 0.112 0.169

(C,D) or (D,C) 0.497 0.579 0.481 0.565 0.469

(C,C) 0.343 0.281 0.327 0.323 0.363

Average payoff 5.387 5.444 4.902 5.648 5.350

10In this table and elsewhere, we combine the data from sessions with recommendations in the first 20 rounds with the

data from sessions with recommendations in the last 20 rounds. We will see later (in Table 4 and surrounding discussion)

that pooling the data in this way is justifiable.
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In the rounds with no recommendations, the aggregate outcome frequencies were very close to the

mixed–strategy Nash equilibrium prediction of 16% (D,D) outcomes, 48% (C,D) and (D,C) outcomes,

and 36% (C,C) outcomes. On the other hand, outcome frequencies are significantly different when

subjects are given recommendations, and the difference is in the direction predicted by correlated equi-

librium (following recommendations), in each of the cases where recommendations are consistent with

a correlated equilibrium. Both good recommendations and Nash recommendations increase the like-

lihood of a pure–strategy Nash equilibrium outcome, from 49.7% without recommendations to 56.5%

with Nash recommendations and 57.9% with good recommendations, though this likelihood decreases

slightly in the game with bad recommendations—to 48.1%—and with very good recommendations,

to the lowest frequency of 46.9%. Also, the Pareto–dominated (D,D) outcome becomes more likely

under bad or very good recommendations (19.2% and 16.9% of the time respectively, versus 15.9%

when no recommendations are given) and less likely under good recommendations (14.0%) or Nash

recommendations (11.3%). For some of the treatments, this last result might be expected in light of

the outcome probabilities we attempted to impose: 20% chance of (D,D) in the bad–recommendations

treatment and 0% in the good– and Nash–recommendations treatment as compared with 16% in the

mixed–strategy Nash equilibrium. However, this does not hold for the very–good–recommendations

treatment, as the frequency of (D,D) recommended outcomes was 0% in this treatment as well.

One–sample chi–square tests imply that the distribution of outcomes in the good–recommendations

treatment is significantly different from the mixed–strategy Nash equilibrium distribution (χ2 = 38.71,

d.f. = 2, p < 0.001), as are those in the bad–recommendations treatment (χ2 = 8.91, d.f. = 2,

p ≈ 0.012) and the Nash–recommendations treatment (χ2 = 31.51, d.f. = 2, p < 0.001).11 We do

not find significant differences between the very–good–recommendations treatment and the mixed–

strategy Nash equilibrium (χ2 = 0.729, d.f. = 2, p ≈ 0.695), suggesting that on average, subjects

ignore recommendations in this case. Similarly, two–sample chi–square tests find significant differences

in the distribution of outcomes under no recommendations and under good, bad, or Nash recommen-

dations (p < 0.05 for each), but not between no recommendations and very good recommendations

(χ2 = 2.522, d.f. = 2, p ≈ 0.283). The finding of no difference between no recommendations and very

good recommendations is striking: it suggests that subjects will not blindly follow just any recommen-

dations, but rather will follow them only if they are consistent with implementation of a correlated

equilibrium. Furthermore, we note that in the cases where recommendations were consistent with

implementation of a correlated equilibrium, aggregate outcome frequencies—while different from the

point predictions of Table 1—typically move in the direction predicted by correlated equilibrium rel-

ative to the mixed–strategy Nash equilibrium value. For example, if subjects were always to follow

recommendations in the good–, bad– and Nash–recommendations treatments, the resulting frequency

of (C,C) outcomes would be lower than in the mixed–strategy Nash equilibrium. As Table 2 shows,

the frequencies of (C,C) outcomes in these cases are indeed lower than in mixed–strategy Nash equi-

librium. By contrast, in the very–good–recommendations case, if subjects followed recommendations,

the predicted frequency of (D,D) outcomes would be lower than in the mixed Nash equilibrium (0

11See Siegel and Castellan (1988) for descriptions of the nonparametric tests used in this paper. We note that in each

treatment, observed frequencies are significantly different from any of the correlated–equilibrium predictions, as each of

the latter predicts zero probability of at least one outcome that occurs with positive frequency in the experimental data.
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versus 0.16), but Table 2 shows that the observed frequency is actually higher. Finally, two–sample

chi–square tests nearly always find significant differences in the distribution of outcomes between any

two of the recommendations treatments (χ2 = 5.73, d.f. = 2, p ≈ 0.057 between the good– and

Nash–recommendations treatments, p < 0.05 for any other pair of treatments).

Summarizing, we have:

Result 1 When no recommendations are given, aggregate outcome frequencies are similar to mixed–

strategy Nash equilibrium frequencies. When recommendations are given, they lead to significant dif-

ferences in aggregate outcome frequencies, compared with the no–recommendations case, if and only

if the recommendations come from a correlated equilibrium. Also, there are significant differences in

aggregate outcomes across the treatments with recommendations. When recommendations come from

a correlated equilibrium, the effect on aggregate outcome frequencies is consistent with the directional

predictions—though usually not the point predictions—of the corresponding correlated equilibrium.

We next consider the effects of recommendations on average payoffs. If recommendations are al-

ways followed, then good recommendations should lead to higher payoffs than in mixed–strategy Nash

equilibrium, while bad recommendations should lead to lower payoffs. Also, our Nash recommen-

dations should lead to payoffs in between good and bad recommendations, though still higher than

mixed–strategy Nash equilibrium payoffs, while very good recommendations should lead to the highest

payoffs of all the treatments.

In fact, average payoffs in rounds without recommendations are approximately 5.387, very close

to the mixed–strategy Nash equilibrium level of 5.4. In rounds with good recommendations, average

payoffs do increase, but only slightly—to 5.444 (compared with a prediction of 6.333 in the good

correlated equilibrium). In rounds with Nash recommendations, average payoffs increase even more

(despite the correlated–equilibrium prediction that payoffs in this treatment should be lower than in the

good–recommendations treatment), to 5.648, though this is still below the corresponding correlated–

equilibrium prediction of 6.12

In rounds with bad recommendations, average payoffs do decrease relative to rounds without rec-

ommendations, but again, not by as much as predicted—to 4.902 (compared with a prediction of 4.8 in

the bad correlated equilibrium). In rounds with very good recommendations, average payoffs also de-

crease, to 5.350 (compared with an increase to 6.8 if subjects always followed their recommendations),

and lower than when subjects were not given recommendations.

Despite these many payoff differences, a nonparametric Kruskal–Wallis one–way analysis of vari-

ance fails to reject the null hypothesis that average payoffs are the same in all four recommendations

12The success of the Nash–recommendations treatment—relative to the good–recommendations treatment—in achiev-

ing higher payoffs may reflect the greater transparency of recommendations in the former. Under Nash recommendations,

low–payoff (D,D) outcomes are the result of a player following a D recommendation while her opponent chooses D de-

spite having received a C recommendation. However, the latter player, after receiving a C recommendation, knows with

certainty his opponent received a D recommendation, and thus that choosing D rather than C is likely to result in a

low–payoff outcome. On the other hand, a player receiving a C recommendation in the good–recommendations treatment

knows that his opponent might have gotten either a C or a D recommendation. If his opponent did also receive a C

recommendation, then he himself could choose D in the (reasonable) hope that his opponent will choose C. The resulting

greater temptation to choose D in the good–recommendations treatment might be a factor in the higher frequency of

(D,D) outcomes, and lower average payoffs, in that treatment than under Nash recommendations.
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treatments (session–level data, p > 0.10), and robust rank–order tests find no significant differences

in pairwise comparisons between treatments (session–level data, p > 0.10 in all cases). This lack

of significance in the payoff dimension is likely owing to the relatively small differences in predicted

expected payoffs amongst the various correlated equilibria, combined with the inherent conservatism

of nonparametric tests using session–level data.

4.2 Effects of recommendations on individual behavior

Having shown that aggregate play with recommendations is usually different from aggregate play

without recommendations—and that this difference depends on which recommendations are given—

we next consider how subjects treat the particular recommendations they receive. Table 3 shows the

frequencies with which recommendations are followed in each treatment (over all twenty rounds) as

well as for the last five rounds of each treatment (after subjects have had time to gain experience

with the strategic environment). For the sake of comparison, the table also shows the corresponding

predicted frequencies according to mixed–strategy Nash equilibrium. (Note that the predictions in

the last two columns depend on the actual frequencies of C versus D recommendations given in the

experiment, so these will vary across treatments and rounds).

Table 3: Frequencies of followed recommendations—all subjects, all rounds

Frequency of Frequency of Frequency of Frequency of

followed D followed C followed followed

Treatment recommendations recommendations recommendations recommendations

(overall) (pairs)

Observed (all rounds) 0.735∗ 0.732∗ 0.733∗ 0.531∗

Good Observed (rnds 16–20) 0.750∗ 0.770∗ 0.762∗ 0.583∗

Mixed NE prediction 0.400 0.600 0.531 0.277

Observed (all rounds) 0.477 0.631 0.541 0.269∗

Bad Observed (rnds 16–20) 0.529∗ 0.530 0.529∗ 0.300∗

Mixed NE prediction 0.400 0.600 0.483 0.226

Observed (all rounds) 0.567∗ 0.777∗ 0.672∗ 0.454∗

Nash Observed (rnds 16–20) 0.608∗ 0.792∗ 0.700∗ 0.517∗

Mixed NE prediction 0.400 0.600 0.500 0.240

Very Observed (all rounds) 0.511∗ 0.608 0.599 0.381

good Observed (rnds 16–20) 0.227 0.537 0.508 0.308

Mixed NE prediction 0.400 0.600 0.580 0.336

*: Significantly different from corresponding mixed–strategy prediction (sign test, session–level data, p=0.0625)

Here we see more differences across treatments. In the good– and Nash–recommendations treat-

ments, subjects are substantially more likely to follow recommendations than would be predicted

by the mixed–strategy Nash equilibrium. They follow D recommendations 73.5% of the time in the

good–recommendations treatment and 56.7% of the time in the Nash–recommendations treatment,

compared to a prediction of 40%, and they follow C recommendations 73.2% of the time in the
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good–recommendations treatment and 77.7% of the time in the Nash–recommendations treatment,

compared to a prediction of 60%. As the table shows, these frequencies are even higher if we concen-

trate on the last five rounds of the treatment, and all of these differences are significant (one–tailed

sign test, session–level data, p = 0.0625).

In the bad– and very–good–recommendations treatments, evidence that subjects follow recommen-

dations is weaker. If we look at frequencies for the entire bad–recommendations treatment, subjects

are not significantly more likely to follow either type of recommendation than predicted by mixed–

strategy equilibrium (p > 0.10), though the frequencies are slightly higher than predicted (47.7% for D

recommendations and 63.1% for C recommendations, versus predictions of 40% and 60%). However,

if we focus on the last five rounds, we find a higher frequency of following D recommendations, and

this frequency is significantly higher than the mixed–strategy equilibrium prediction (p = 0.0625),

though we also see that subjects actually become less likely to follow C recommendations in the last

5 rounds. Subjects in the very–good–recommendations treatment are not significantly more likely to

follow C recommendations than mixed–strategy equilibrium predicts (p > 0.10), either over all rounds

or in the last five. They are more likely to follow D recommendations over all rounds (51.1% versus

a predicted 40%), and this difference is significant (p = 0.0625), but this frequency drops sharply in

the last five rounds to below one–fourth, and in those rounds is not significantly different from the

mixed–strategy equilibrium prediction (p > 0.10).

Given how these results vary according to the treatment, it should not be surprising that we

find significant differences across treatments in how often recommendations are followed. A Kruskal–

Wallis one–way analysis of variance rejects the null hypothesis that the likelihood of following a

C recommendation is the same across the four treatments (p < 0.05), and similarly for the case

of a D recommendation (p < 0.05). The null of equal frequencies across treatments of following

recommendations overall is also rejected (p < 0.05), but we should note that mixed–strategy Nash

equilibrium does not imply equal frequencies in this case.

We next examine how subjects’ willingness to follow recommendations changes over time. Figure 4

shows the frequency with which recommendations are followed in each five–round block, disaggregated

according to which correlated equilibrium was being implemented, and which action was recommended.

For C recommendations, there are no obvious time trends in the good– and Nash–recommendations

treatments, while subjects in the bad– and very–good–recommendations treatments become less likely

over time to follow these (falling from about 75% to just over 50% in both). The frequency of following

D recommendations stays roughly constant over time in the good–recommendations treatment and

rises slightly in the bad– and Nash–recommendations treatment. In the very–good–recommendations

treatment, sample sizes for D recommendations are small (since only one–tenth of recommendations

is for a D choice), but their frequency of being followed rises somewhat from the first to the third

five–round block, before plummeting in the last five–round block.

Further evidence of the effects of recommendations on individual subject choices can be found

in Table 4, which reports the results of several probit regressions with the subject’s choice of action

as the dependent variable. (To be precise, the dependent variable is an indicator for a C choice.)

Our main independent variables are two indicators for recommendations given to subjects—one for

a C recommendation (viz., taking on the value of one if a C recommendation was made, and zero
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Figure 4: Frequency of followed recommendations
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otherwise) and one for a D recommendation. (To avoid perfect collinearity, we do not include an

indicator for no recommendation.) We also include variables for the products of these indicators with

the round number, to capture any time–varying effect of recommendations that exists. Additionally,

we include a variable for the round number itself, as well as an indicator variable that takes the value

one in sessions in which recommendations were given in the first twenty rounds rather than the last

twenty (to capture any order effects).

We estimate coefficients separately for the four treatments. For each treatment, we estimate one set

of coefficients using individual–session fixed effects, and one set without these. All of the regressions

were performed using Stata (version 10) and incorporate individual–subject random effects. The

results are shown in Table 4, which shows the coefficient and standard error for each variable in

our eight model specifications. Also shown is the absolute value of the log–likelihood, as well as a

pseudo–R2, for each model specification.13

Before discussing the main results of these regressions, we note that there do not seem to be

substantial order effects between rounds with recommendations and rounds without recommendations

in any of the treatments, as the “Order” variable is never significant. Also, coefficient estimates are

quite robust to whether session fixed effects are used. On the other hand, there is some nonstationarity

in the data, as shown by the negative and significant coefficient on the round number t in three of the

four treatments (the lone exception being the good–recommendations treatment).

The significance of the recommendation variables varies substantially across treatments. In the

good and Nash–recommendations treatments, the C–recommendations and D–recommendations in-

dicators are both significant, but their products with the round number are not, and each has the

sign associated with subjects’ following recommendations: positive for C and negative for D. In the

bad–recommendations treatment, the D–recommendations indicator is insignificant, but its product

13The pseudo–R2 values were computed by rescaling the log–likelihoods into [0,1], such that a model with no right–

hand–side variables other than the constant term maps to zero, and a perfect fit maps to one.
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Table 4: Results of probit regressions with random effects (std. errors in parentheses)

Dependent variable: Good–recommendations Bad–recommendations Nash–recommendations Very–good–

cooperative action treatment (N = 1920) treatment (N = 1920) treatment (N = 1920) recommendations

chosen in round t treatment (N = 1920)

Session fixed effects? No Yes No Yes No Yes No Yes

constant 0.372 0.411 0.464 0.295 0.727∗∗∗ 0.854∗∗ 0.956∗∗∗ 0.898∗∗∗

(0.237) (0.320) (0.295) (0.395) (0.250) (0.340) (0.241) (0.324)

Order (indicator 0.046 –0.256 0.232 0.825 –0.097 –0.137 –0.440 –0.252

for order effects) (0.312) (0.434) (0.392) (0.539) (0.327) (0.462) (0.314) (0.437)

t (round number) 0.001 0.001 −0.022∗∗ −0.022∗∗ −0.027∗∗∗ −0.027∗∗∗ −0.048∗∗∗ −0.048∗∗∗

(0.008) (0.008) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008)

Drec (D recom– −1.098∗∗∗ −1.097∗∗∗ –0.075 –0.076 −0.463∗∗∗ −0.463∗∗∗ −1.313∗∗∗ −1.315∗∗∗

mendation given) (0.207) (0.207) (0.181) (0.171) (0.172) (0.172) (0.299) (0.299)

Drec · t –0.001 –0.001 −0.022∗∗∗ −0.022∗∗∗ –0.009 –0.009 0.088∗∗∗ 0.088∗∗∗

(0.017) (0.017) (0.014) (0.014) (0.015) (0.015) (0.025) (0.025)

Crec (C recom– 0.593∗∗∗ 0.592∗∗∗ 0.338∗ 0.338∗ 0.472∗∗ 0.472∗∗ 0.086 0.086

mendation given) (0.162) (0.162) (0.200) (0.200) (0.184) (0.184) (0.150) (0.150)

Crec · t –0.014 –0.014 –0.021 –0.021 0.021 0.022 0.002 0.002

(0.013) (0.013) (0.016) (0.016) (0.015) (0.015) (0.012) (0.012)

–ln(L) 970.789 970.058 898.429 897.032 950.705 950.485 971.544 971.325

pseudo–R2 0.106 0.107 0.027 0.028 0.086 0.087 0.037 0.037

* (**,***): Coefficient significantly different from zero at the 10% (5%, 1%) level.

with the round number is significant; the coefficient of the C–recommendations indicator is barely

significantly different from zero, while that of its product with the round number is insignificant. In

the very–good–recommendations treatment, both the C–recommendations indicator and its product

with the round number are significant, with the former negative and the latter positive, but neither

of the D–recommendations variables are significant.

Next, in order to examine the overall significance of C and D recommendations in our four treat-

ments, we estimate the effect of a recommendation versus no recommendation on the subject’s sub-

sequent action. To do this, we first note that the total effect in round t of a C recommendation,

instead of no recommendation at all, on the argument of the normal c.d.f. used in the probit model

is given by βCrec + βCrec·Round · t (where βY is the coefficient of the variable Y ). So, the incremental

effect (the analog to a marginal effect, for a discrete variable) of a C recommendation rather than no

recommendation in round t has the form

Φ
(

X̄ · B + βCrec + βCrec·Round · t
)

− Φ
(

X̄ · B
)

, (1)

where X̄ is the row vector of the other right–hand–side variables’ values, and B is the column vector

of their coefficients. The incremental effect of a D recommendation has a similar form.

In Figures 5 and 6, we graph all eight versions of this incremental effect (versions of Equation 1 for

C and D recommendations and for good–, bad–, Nash–, and very–good–recommendations treatments).

These figures show, for each expression, the corresponding point estimates and 90% confidence intervals

for each value of t (the round number) from 1 to 20.14 Consistent with what we’ve seen already, Figure 5

14We use 90% confidence intervals rather than the more common 95% confidence intervals in order to give us 5%

rejection regions for each tail; this corresponds to using one–tailed hypothesis tests at the 5% level.
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Figure 5: Estimated incremental effect of recommendation on C choice probability based on Table 4

results (Circles represent point estimates; line segments represent 90% confidence intervals)
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shows that in the good–recommendations treatment, both types of recommendation have a significant

effect: C recommendations increase the subject’s likelihood of choosing C, and D recommendations

increase the likelihood of a D choice, in every round. In the bad–recommendations treatment, a C

recommendation has no significant effect on the likelihood of a C choice except in the first few rounds.

The effect of a D recommendation, conversely, is initially insignificant, but by round 6 becomes

significant and negative, and remains so for the remainder of the session.

Figure 6 shows that in the Nash–recommendations treatment, as in the good–recommendations

treatment, both types of recommendation have effects that are significant and in the predicted direction

in every round: C recommendations increase the likelihood of choosing C, and D recommendations

decrease it. In the very–good–recommendations treatment, a C recommendation has no significant

Figure 6: Estimated incremental effect of recommendation on C choice probability based on Table 4

results (Circles represent point estimates; line segments represent 90% confidence intervals)

r r

b bC recommendations C recommendations
D recommendations D recommendations

+0.5

0

–0.5
1 110 1020 20

Size of
effect

Nash–recommendations treatment Very–good–recommendations treatment

Round

s s s s s s s s s s s s s s s s s s s s

c c c c c c c c c c c c c c c c c c c c

s s s s s s s s s s s s s s s s s s s s

c c c c c c c c c c c c c c c c c c c c

16



effect on the likelihood of a C choice in any round. A D recommendation significantly decreases the

likelihood of a C choice—that is, increases the likelihood of a D choice—in early rounds, but this effect

decreases over time, becoming insignificant by the end of the session.

Based on the results in this section, we conclude:

Result 2 There are significant differences across treatments in how subjects use their recommenda-

tions. Subjects are most likely to follow recommendations in the good– and Nash–recommendations

treatments. In the bad–recommendations treatment, recommendations have less effect on behavior.

In the very–good–recommendations treatment, subjects either don’t follow recommendations at all, or

learn over time not to follow them.

A natural next question to ask is whether subjects who fail to follow recommendations suffer

(monetarily) due to this failure. To examine this question, we consider subjects’ forgone payoffs:

the payoff a subject would have gotten from choosing the other action, minus the payoff the subject

actually got. (Thus, a negative forgone payoff means the subject chose a best response.)

Overall, in rounds with no recommendations, forgone payoffs averaged –0.079 points per round,

meaning that on average, subjects earned higher payoffs with the actions they chose than they would

have by choosing the opposite action. Forgone payoffs averaged –0.467 points per round in rounds with

good recommendations, +0.026 points per round in rounds with bad recommendations, –0.428 points

per round in rounds with Nash recommendations, and +0.059 points per round in rounds with very

good recommendations, suggesting that subjects in the good– and Nash–recommendations treatments

by and large made correct choices, while subjects in the other two treatments did not. Since the good–

and Nash–recommendations treatments were also the ones where subjects were most likely to follow

recommendations, the implication is that following recommendations is indeed positively associated

with better outcomes for the individual subject, at least on average. However, we are interested less in

these treatment–wide aggregates than in how forgone payoffs are associated with how often subjects

followed the recommendations they were given.

In Figure 7, we present scatterplots showing, for each individual subject, the proportion of recom-

mendations that were followed (on the horizontal axis) and the subject’s mean forgone payoff (on the

vertical axis). Also shown are least–squares lines for each scatterplot, as well as the corresponding

slopes. For subjects in the good– and Nash–recommendations treatments, there is a visible negative

correlation between following recommendations and forgone payoffs, while no such correlation is ap-

parent for subjects in the bad– and very–good–recommendations treatments. Spearman rank–order

correlation tests provide further, quantitative, evidence of this result. The Spearman correlation co-

efficient between frequency of followed recommendations and mean forgone payoff is approximately

–0.312 in the good–recommendations treatment and –0.469 in the Nash–recommendations treatment,

both of which are significantly different from zero (p ≈ 0.02 for the former and p < 0.001 for the

latter), suggesting that following recommendations more often was associated with better payoffs for

individual subjects. In the bad– and very–good–recommendations treatments, on the other hand, the

Spearman coefficients are approximately +0.003 and +0.092 respectively, neither of which is signif-

icantly different from zero (p ≈ 0.98 and p ≈ 0.25, respectively), suggesting that subjects in these

treatments did not do better by following recommendations than by ignoring them. The trend lines
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Figure 7: Relationship between followed recommendations and

forgone payoffs (Individual subjects, all rounds)
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give additional evidence of these relationships; their slopes are negative and significantly different from

zero in the good– and Nash–recommendations treatments (p < 0.01 for both treatments, using robust

standard errors adjusted for clustering by session), and are not significantly different from zero in the

bad– and very–good–recommendations treatments (p > 0.20 for both treatments).

Finally, disaggregating by round and according to the recommended action tells a more detailed,

but similar, story. Linear panel–data regressions with individual–subject random effects, either with or

without session fixed effects, show that a subject’s following either type of recommendation in either

the good–recommendations treatment or the Nash–recommendations treatment is associated with

significant decreases in forgone profit, as is following a C recommendation in the bad–recommendations

treatment. In contrast, there is no significant association between forgone payoffs and either following

D recommendations in the bad–recommendations treatment or following C recommendations in the

very–good–recommendations treatment. Finally, following D recommendations is actually positively

correlated with foregone payoffs in that treatment; that is, following D recommendations actually
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lowers the player’s payoff.15

We thus conclude:

Result 3 In the good and Nash–recommendations treatments, it pays subjects (individually) to follow

either type of recommendation. In the bad–recommendations treatment, it pays subjects to follow C

recommendations, but there is no statistically significant relationship between following D recommen-

dations and payoffs. In the very–good–recommendations treatment, there is no significant relationship

between following C recommendations and payoffs, and it pays subjects not to follow D recommenda-

tions.

5 Summary and discussion

The aim of this paper was to assess the empirical validity of correlated equilibria, a generalization

of the Nash equilibrium concept which Hart and Mas-Colell (2000, p. 1128) characterize as perhaps

the “most relevant noncooperative solution concept.” Specifically, we have explored whether subjects

would make use of known distributions of private recommendations as a coordination device in the

game of Chicken, the simplest game with which to study a wide variety of correlated equilibria. The

treatments in our experiment differ in the distributions of third–party recommendations. Three of

our four treatments use distributions that form correlated equilibria; two of these yield symmetric

payoffs that are outside the convex hull of Nash equilibrium payoff vectors. In our “good” correlated

equilibrium, payoffs are better than any symmetric payoff in the convex hull of Nash equilibrium

payoff vectors, while in our “bad” correlated equilibrium, payoffs are worse than any symmetric payoff

in the convex hull of Nash equilibrium payoff vectors. A third, “Nash” treatment uses a correlated

equilibrium with payoffs in the convex hull of Nash equilibrium payoff vectors, and a fourth, “very

good” treatment uses an outcome distribution yielding high payoffs, but which is not a correlated

equilibrium.

We find that when subjects do not receive recommendations, their choices can be described fairly

well by mixed–strategy Nash equilibrium. This result suggests that theoretical rationales for correlated

equilibria that do not rely on extrinsic, third–party recommendations (or some other “external event

space” in the terminology of Vanderschraaf (2001)) might be difficult to observe in practice—though

we acknowledge the possibility that if subjects had interacted in fixed pairings rather than under the

random matching protocol we adopted, spontaneously arising correlated equilibrium might have been

more likely to have been observed.

By contrast, giving subjects recommendations nearly always has an effect on behavior, but the

effect depends on what recommendations are given. When recommendations are based on an under-

15These regressions used the subset of the data in which recommendations were given. The dependent variable is

forgone payoff, and independent variables are C recommendation, D recommendation, followed C recommendation,

followed D recommendation. No constant term was used. In the results, p–values were below 0.001 for both types

of recommendation in the good– and Nash–recommendations treatment, approximately 0.043 for C recommendations

in the bad–recommendations treatment, and approximately 0.77 for D recommendations in the bad–recommendations

treatment. In the very–good–recommendations treatment, the p–value was approximately 0.78 for C recommendations

and 0.030 for D recommendations, but the coefficient for the latter was positive. Adding session fixed effects to these

regressions had little qualitative effect.
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lying correlated equilibrium, subjects follow them more often than the mixed–strategy equilibrium

predicts, though far less than 100% of the time. When recommendations are not based on a correlated

equilibrium, subjects learn to ignore them.

As in previous efforts to experimentally implement correlated equilibria in the laboratory, our

results cast some doubt on the usefulness of this solution concept as a descriptive notion, as the

correlated equilibrium point predictions are not observed. On the other hand, our study reveals several

new and important empirical findings about the correlated equilibrium concept. First, the lesson of our

very–good–recommendations treatment is that correlated equilibrium is likely a necessary condition

for recommendations to be followed. In particular, we found that, consistent with the theoretical

prediction, subjects were not blindly following recommendations in this treatment (as they would

have if they were, for example, simply trying to please the experimenters, or choosing high–payoff

outcomes irrespective of the outcomes’ strategic properties). Second, we found that average payoffs

were highest in our Nash–recommendations treatment, even though correlated equilibrium payoffs were

predicted to be highest in our good–recommendations treatment. This finding suggests that simpler

correlated equilibria—those involving randomizations over pure Nash equilibria—might be the more

likely outcome of agent learning dynamics than more complicated correlated equilibria yielding payoffs

outside the convex hull of Nash equilibrium payoffs. Finally, our bad–recommendations treatment

shows that it may not be possible to induce subjects to follow recommendations based on correlated

equilibria that are Pareto inferior to the available Nash equilibria. This last finding would seem to

greatly limit the class of empirically relevant correlated equilibria to those that Pareto improve upon

the set of Nash equilibria.

Future theoretical and empirical work on the topic of correlated equilibria might relax the assump-

tion that recommendations arise from a non–strategic third party according to deterministic (and

commonly known) probabilities. In place of this construct, a self–interested “monitor” player might

repeatedly choose recommendations to make to the players of the stage game. In such an environment,

the monitor’s payoff could be based on the payoffs earned by the stage–game players: for example, it

might be proportional to their average payoff. In this setting, the researcher could explore whether the

monitor’s frequencies of recommendations to players were consistent with any correlated equilibrium,

and if so, which one: good, bad, Nash, or some other one.

A second useful extension would be to consider some “language” issues. For instance, one might

wonder whether the form of recommendations matters: for example, whether subjects are told, “It is

recommended that you play C”, as in our design, or they simply see the message “C” on their screens.

The salience and literal meanings of recommendations are also of interest: must the message space

for recommendations correspond precisely to the action space, or might it be larger (for example,

including also “no message”), or consist of a set of messages with no clear mapping to the action space

(such as the message space {@, & })?16

We leave these extensions to future research.

16To this last question, we note that the recommendations in this setup are a special case of games with cheap talk.

See Crawford (1998) for a survey of games with cheap talk, including a discussion of the effects of literal meanings in

messages.
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