
Arguing Using Opponent Models

Nir Oren1 and Timothy J. Norman2

1 Dept. of Computer Science
King’s College London

Strand, London
WC2R 2LS, United Kingdom

nir.oren@kcl.ac.uk
2 Dept. of Computing Science

University of Aberdeen
Aberdeen
AB24 3UE
Scotland

t.j.norman@abdn.ac.uk

Abstract. While researchers have looked at many aspects of argumen-
tation, an area often neglected is that of argumentation strategies. That
is, given multiple possible arguments that an agent can put forth, which
should be selected in what circumstances. In this paper we propose a
heuristic that implements one such strategy. The heuristic is built around
opponent modelling, and operates by selecting the line of argument that
yields maximal utility, based on the opponent’s expected response, as
computed by the opponent model. An opponent model may be recur-
sive, with the opponent modelling of the agent captured by the original
agent’s opponent model. Computing the utility for each possible line of
argument is thus done using a variant of M* search, which in itself is
an enhancement of min-max search. After describing the M* algorithm
we show how it may be adapted to the argumentation domain, and then
study what enhancements are possible for more specific types of dialogue.
Finally, we discuss how this heuristic may be extended in future work,
and its relevance to argumentation theory in general.

1 Introduction

Argumentation has emerged as a powerful reasoning mechanism in many do-
mains. Applications tend to revolve around either the logical form of argument,
identifying when an argument is, in some sense, acceptable. Some extension of
Dung’s seminal argument framework [8] is typically used in such applications,
and domains have included negotiation [3] and normative conflict detection [12].
Another use of argumentation makes use of the dialogue level, and focuses on the
interaction between different parties as the dialogue progresses. It is important
to note that these two approaches are not mutually exclusive, but rather com-
plementary. In describing argumentation systems, Prakken [18] identified four
layers with which an argument framework must concern itself. These are the



logical, dialectic, procedural, and heuristic layers. The first strand of research
primarily concerns itself with the logical and dialectic layers, while the second
focuses on the procedural level. As Prakken notes, little work has dealt with the
heuristic layer, which, among other things, deals with how agents should decide
which argument to advance at different points in the dialogue.

In this paper, we focus on the heuristic layer, examining argument strategies.
In other words, we attempt to determine what argument an agent should advance
in order to achieve a certain goal. Previous work on the topic includes a utility
based approach with one step lookahead [14], while another tack has focused on
game theory and mechanism design [19, 20] to ensure that dialogues are strategy
free. Here, we look at how an agent may decide what utterance to advance by
making use of opponent modelling. That is, given that agent α has a belief
about agent β’s knowledge and goals, we determine what argument the agent
should advance to achieve its aims. Informally, we examine possible utterances
from each position in the dialogue, creating a tree of possible dialogues. We then
make use of techniques adapted from computer game playing, namely opponent
model search and the M* algorithm [5], which is itself an extension of standard
min-max search [22].

As an example of such a search, consider two agents (α and β) participating
in a dialogue regarding whether to invade a small country. Agent α would like to
persuade β that this is a prudent course of action. One possible line of argument
is that the country has weapons of mass destruction, and that invading it will
prevent the use of these weapons. If α knows that β cannot determine whether
the country has such weapons, and that β may not ask α where it obtained
its information from, then α will use this line of argument in the dialogue.
However, if it knows that β knows that the country has no WMDs, it will not
attempt to use this line of argument. Thus, α can make use of its model of β’s
knowledge in deciding what arguments to advance as part of a dialogue. The
use of opponent modelling as an argument strategy has clear applications to
many different scenarios, including persuasion type dialogues, and the domain
of automated negotiation.

This paper’s main contribution is a description of how a dialogue participant
may decide what arguments to advance given that it has a model of the other
dialogue party. We also show how the M* algorithm may be adapted for the
argumentation domain, and provide some domain dependant enhancements to
the search process, which results in a pruning of the dialogue tree.

After describing the M* algorithm in more detail in the next section, we
show how M* can be adapted for the argumentation domain. Our initial effort,
described in Section 3.1 deals with very general situations, and we show how our
approach can be specialised for more specific types of dialogues and situations
in Sections 3.2 and 3.3. Finally, we discuss a number of possible enhancements
to our approach, and describe additional related work.



2 Background

In this section, we examine work in the field of opponent modelling. When partic-
ipating in a competitive event in which strategy may affect the outcome, human
players typically adjust their strategy in response to the opponent(s) they face.
On the other hand, artificial agents typically construct plans in which they as-
sume that their opponent will play in the way most damaging to their goals,
resulting in algorithms such as min-max search, and many of the results of game
theory. Such approaches typically also assume that the opponent will use the
same strategy as the player.

By making use of opponent modelling, it is possible to represent opponents
with different goals and strategies to the agent doing the modelling. Such an
approach raises a number of interesting possibilities. First, it allows for situations
such as swindles and traps. The former occurs when a player may, due to an
opponent’s weakness, play a non-optimal move and still win, while the latter
allows a player to play a weak move under the assumption that the opponent
will view it as a strong move. Second, by explicitly modelling the opponent’s
goals, it is easier to deal with non-zero sum games. Other advantages gained by
making use of strategies built around opponent modelling are described in [5].

The M* algorithm is similar to the min-max search algorithm, but makes
use of an explicit opponent model to more accurately calculate the utility of a
position. An opponent model (described as a player in [5]) is a pair 〈f,O〉 where
f is an evaluation function, and O is an opponent model. The latter may also
take on the special value of NIL, representing the case where no opponent model
exists.

In this paper, we make use of a slightly modified form of this algorithm,
but before describing this modified algorithm, we examine the original, which is
shown in Algorithm 1.

Informally, given a board position, a search depth, and an opponent model
(consisting of the opponent’s evaluation function and another opponent model),
the algorithm returns the best move (and its value) by recursively computing
what move the best move for the opponent would be for the given opponent
model (line 11), based on what the opponent thinks the player’s best move
would be (line 10), and so on, until the maximal depth of search is reached. At
this point, the utility of the current move can be computed (lines 2 and 8). The
MoveGen function in line 5 is dependant on the rules of the game, and generates
all possible moves from the current board position pos. It should be noted that
it is easy to represent standard min-max search using the M* algorithm by using
an opponent model of the form (f, (−f, (f, . . .))) to the depth of the search. It
should also be noted that the algorithm assumes that the depth to which the
opponent is modelled is greater than (or, more usually equal to) the depth to
which the search takes place.



Algorithm 1 M∗(pos, depth, fpl, oppModel)
Require: A board position pos
Require: A search depth depth
Require: A position evaluation function fpl

Require: An opponent model oppModel = {fo
pl, oppModelo}

1: if depth=0 then
2: return (NIL, fpl(pos))
3: else
4: maxUtil = −∞
5: PossibleMoves = MoveGen(pos)
6: for all move ∈ PossibleMoves do
7: if depth=1 then
8: playUtil = fpl(move)
9: else

10: 〈oppMove, oppUtil〉 = M∗(move, depth− 1, fo
pl, oppModelo)

11: 〈playMove, playUtil〉 = M∗(oppMove, depth− 2, 〈fpl, oppModel〉)
12: end if
13: if playUtil > maxUtil then
14: maxUtil = playUtil
15: maxMove = move
16: end if
17: end for
18: end if
19: return (maxMove, maxUtil)

3 Approach

Argument strategies are employed by agents taking part in a dialogue. Argu-
ments are thus added over time, and the goal of an agent’s strategy involves
deciding which utterance to make. For dialogue to take place, participants must
agree on the rules governing the dialogue. These include not only the rules of
the dialogue game itself [10], such as whether turn taking exists, what utter-
ances may be made at which point, and the like, but also the rules governing
the interactions between arguments; for example stating that modus ponens is
valid.

3.1 Opponent Modelling for General Dialogues

We begin by assuming a very general type of dialogue game similar in spirit to the
one proposed in [17]. This game is represented by agents advancing arguments.
Arguments may take the form of more specific utterances such as “assert x”, but
such utterances are captured in abstract form, by being represented as arguments
themselves. Thus, for example, an agent may make an argument a, and if another
agent questions this argument (for example, by asking “why a?”), this could be
viewed as an argument b which attacks a. A response could then be an argument
c, attacking b, etc. We denote this set of abstract arguments Args.



A dialogue represents the utterances made by an agent. We define it very
simply as follows:

Definition 1. (Dialogue) A dialogue is an ordered set of arguments

Dialogue = {a, b, . . .}

such that Dialogue ⊆ Args.

For convenience, and without loss of generality, we assume that only two
dialogue participants exist, and that they take turns when making utterances.
We do not therefore need to associate a dialogue participant with an utterance
in our representation of a dialogue.

In order to abstract the rules governing a dialogue, we assume the existence
of a generator function allowing us to compute the set of legal possible moves in
a dialogue. This function is equivalent to the MoveGen function in Algorithm 1.

Definition 2. (Move Generation) The function

legalMoves : 2Dialogue → 2Args

takes in a dialogue and returns the set of arguments that may be uttered by an
agent at that point in the dialogue.

Note that only a single argument may be advanced by an agent during its
turn (as this argument may actually encapsulate other arguments). Also, note
that the legal moves function does not explicitly depend on the player making
an utterance (though such information may be implicitly found by examining
the dialogue’s current length). The legalMoves function identifies legal moves
rather than possible moves for a dialogue. That is, moves that are sanctioned by
the rules of the game, rather than those moves that an agent may actually make
based on factors such as its knowledge and goals.

At this point, we must define the structure of dialogue participants (also
referred to as agents). An agent participating in a dialogue has a knowledge
base identifying the arguments it is aware of, some goals it is trying to achieve,
and an opponent model.

Definition 3. (Agent) An agent is a tuple

〈KB,Goals, Opp〉

where KB ⊆ Args is a knowledge base containing those arguments known by an
agent, Goals is the agent’s goal function, and is described in Definition 4, while
Opp is an opponent model as detailed in Definition 5.

An agent participates in a dialogue to achieve certain goals. Different dia-
logues may meet these goals to a greater or lesser extent. An agent may thus
assign a utility to a dialogue, and this is modelled by the Goals function. This
utility may depend on many factors, including the arguments introduced within
the dialogue, the agent introducing these arguments, the arguments deemed ad-
missible by some argumentation semantics at some stage of the dialogue, and
the like.



Definition 4. (Goals) A Goals function takes in a dialogue, and returns its
utility.

Goals : 2Dialogue → R

An opponent model is meant to represent an agent, and thus looks very
similar to Definition 3. However, we must also handle the situation where an
agent has no recursive model of its opponent. We start by representing this
situation, and then recursively defining more complex, nested opponent models.

Definition 5. (Opponent Model) An opponent model is incrementally defined
as follows:

– 〈KB,Goals, ∅〉 is an opponent model
– 〈KB,Goals, Opp〉, where Opp is an opponent model.

Here, KB ⊆ Args and Goals : 2Dialogue → R are a knowledge base and goal
function respectively.

Given an agent with some knowledge base, goal function and opponent model,
together with a legalMoves function representing the dialogue game’s rules, an
agent may decide what utterance to make (i.e. what argument to advance) by
following the slightly modified version of M*, called M∗

gd shown in Algorithm 2.
Apart from the different specification of an agent, line 5 ensures that an agent

not only uses moves generated by the legalMoves function, but filters these to
ensure that it only uses moves that it believes are possible (according to its
knowledge base). Also, note that on line 10, the opponent model is treated as
an agent when passed as a parameter to the algorithm.

The M∗
gd algorithm is very general, in the sense that it does not make use of

any of the properties of argument that would differentiate it from other types of
search. In the remainder of this section, we take a closer look at the legalMoves
and Goals functions, showing how they may be specialised to represent more
specific dialogues, and how these specialisations may aid in pruning the possible
dialogue tree.

3.2 Pruning by Legal Moves

One of the focuses of argumentation research examines how groups of arguments
interact. Typically, this interaction is built around the notion of attack, and
more controversially support, between arguments. The arguments advanced by
(rational) agents in the course of a dialogue are aimed at achieving their goals,
either by building up support for, or attacking other arguments [2].

Various semantics for argument frameworks have been proposed [8, 13]. These
semantics, when given a set of arguments and the interactions between them,
identify which sets of arguments may be viewed as, in some sense, consistent
with each other. In most cases, it makes little sense for an agent to introduce an
argument which would not be deemed consistent, and so we begin by showing
how this notion may be added to the agent’s reasoning process.

Filtering the set of arguments that may be advanced is the task of the
legalMoves function. We must, therefore, specialise this function as follows:



Algorithm 2 M∗
gd(dia, depth, agent, legalMoves)

Require: A dialogue dia
Require: A search depth depth
Require: An agent agent = 〈KB, Goals, oppModel〉
Require: A move generation function legalMoves
1: if depth=0 then
2: return (NIL, Goals(dia))
3: else
4: maxUtil = −∞
5: PossibleMoves = legalMoves(dia) ∩KB
6: for all move ∈ PossibleMoves do
7: if depth=1 then
8: playUtil = Goals(dia ∪ {move})
9: else

10: 〈oppMove, oppUtil〉 = M∗
gd(dia∪{move}, depth−1, oppModel, legalMoves)

11: 〈playMove, playUtil〉 = M∗
gd(dia ∪ {move, oppMove}, depth − 2 ,

agent , legalMoves)
12: end if
13: if playUtil > maxUtil then
14: maxUtil = playUtil
15: maxMove = move
16: end if
17: end for
18: end if
19: return (maxMove, maxUtil)

– Introduce the notion of an argument system; rather than having the ar-
guments Args in isolation, we define an argument system consisting of
Args and a set of relations between subsets (or elements) of Args. For
example, a Dung-style argument system is a tuple 〈Args,Attacks〉 where
Attacks ⊆ Args×Args.

– Add a semantics under which the concept of “additional information” can be
judged. In the case of a Dung-style argument system, these may be preferred,
grounded, stable, or some other semantics.

Definition 6. (The Legal Moves Function for Argument Systems) The
legalMoves function for an argument system AS is a function

legalMoves : AS × Semantics×Dialogue → 2Args

This function takes in an argument system AS, together with an associated se-
mantics Semantics, and a dialogue, and returns a set of possible arguments.

For example, in a Dung-style argument system, the legalMoves function
could be defined as follows3:
3 Note that this definition means that only an argument relevant (in the sense of

Definition 7) to some argument may be introduced in this dialogue game. However,



legalMoves(AS ,DSemantics,Dialogue) ={pass}∪
{a|a ∈ Args and
DSemantics(〈Dialogue ∪ {a},Attacks〉)
6= DSemantics(〈Dialogue,Attacks〉)}

Where pass is a move meaning no utterance is made4, AS = 〈Args,Attacks〉
and DSemantics : 2AS → 2Args captures the appropriate Dung-style preferred,
grounded or stable semantics.

This legalMoves function requires that a legal move be one that changes the
conclusions that can be drawn from the dialogue if it were to terminate at this
point. In other words, a legal move is one that changes the set of arguments that
are contained in the grounded, preferred or whatever extension that is required
by the semantics. As a consequence of this, the dialogue tree of moves excludes
those that do not alter the accepted set of arguments, and so this function
ensures that a dialogue will terminate (assuming a finite set of arguments).

It is important to note that the legalMoves function captures both the rules
of the dialogue game’s locutions, and the contents of these locutions, mixing the
dialogue game’s syntax with its semantics.

3.3 Filtering Using Relevance

Often, a dialogue participant’s goals revolve around having the other parties
accept, or reject a single argument. In such a situation, arguments that are not
directly relevant to this single argument may be ignored when searching the
possible move tree. This notion is related, but different to the idea presented in
the previous section. The legalMoves function captures all legal moves according
to a dialogue. A relevant move is a legal move that also affects the agent’s goals.
We define one argument as relevant to another if it can affect its status in some
way.

Definition 7. (Relevance) Given

– Two arguments a, b
– The set of all arguments Args
– A semantics for argument, which is able to determine the status of an ar-

gument given a set of arguments using the function Semantics(c,X) where
c ∈ Args and X ⊆ Args

We say that a is relevant to b (in the context of some argument system) if
∃X ⊆ Args such that a /∈ X and Semantics(b, X) 6= Semantics(b, X ∪ {a}).
We may write relevant(a, b) to indicate that a is relevant to b.

a relevance-aware agent (Definition 8) considers arguments relevant to its goals,
maintaining the distinction between legal moves and moves relevant to it. Note also
that this legalMoves function allows an agent to introduce arguments that attack
its own arguments, which may not be allowed in some dialogues.

4 A dialogue game typically ends after all agents consecutively pass.



In dialogues where an agent may pass to end the game, a pass move is also
considered relevant. In such games, relevant(pass, A) for any A ∈ Args also
holds.

While the legalMoves function may make use of the underlying argument
system’s semantics, the determination of relevance of an argument must employ
the system’s semantics.

Within a Dung-style argument framework, an argument is relevant if there
is a path within the argument graph between it and some other argument. This
makes sense intuitively, as the argument has the potential to affect the other
argument’s status (by directly, or indirectly attacking, or reinstating it).

Support is another way of having one argument affect another. In many dia-
logue types, an argument’s premises have to be introduced before the argument
itself may be used. A number of semantics have been proposed to deal with
support [13, 1, 9], and any are appropriate for the purposes of this algorithm5

As mentioned above, the notion of relevance requires that an agent be able
to specifically identify its goals. We extend the notion of an agent to capture
this as follows:

Definition 8. (Relevance-Aware Agent) A relevance-aware agent is a tuple

〈KB,Goals, GoalArguments, Opp〉

where KB ⊆ Args, Goals : 2Dialogue → R and Opp is an opponent model as in
Definition 3, and GoalArguments ⊆ Args.

As discussed below, a relevance-aware agent utilises Algorithm 3 to consider
only arguments which are relevant to its GoalArguments in its search. If the
GoalArguments set is small (in comparison to the arguments returned by the
legalMoves function), this may lead to a considerable pruning of the search
tree. If we assume a single argument within GoalArguments, then the notion
of relevance presented here is equivalent to R1 relevance in the work of Parsons
et al. [16].

As the number of GoalArguments increase, the usefulness of the relevance
optimization decreases, as more arguments typically become relevant. In order
for the relevance based approach to function, the Goals function must also be
constrained.

Since the utility of a dialogue is only evaluated once the tree is expanded to
the maximum search depth, we cannot simply alter the agent’s Goal function to
5 It should be noted that the dialogues resulting from a framework such as [13] are

very different to those obtained from a Dung style framework. In the latter, the
dialogue would begin with the goal arguments being introduced, and attacks on
those arguments (and attacks on those attacks) introduced in subsequent moves.
However, the former approach requires that all arguments be supported, meaning
that the dialogue would progress by first introducing arguments as premises, and
then build on these premises with additional arguments, until the goal arguments
are introduced. Attacks on introduced arguments may still occur at any time.



include the notion of relevance. Instead, an agent must filter the set of possible
moves to be evaluated based on its goals. To do this, a relevance-aware agent
invokes Algorithm 3 using

M∗
rel(dia, depth, 〈KB,Goals, Opp〉, GoalArguments, legalMoves)

Where dia, depth and legalMoves are dependent on the dialogue and the
agent’s capabilities.

It is clear that the relevant moves form a subset of the legal moves for a
dialogue. Thus, for all g ∈ GoalArguments⋃

g

{a|a ∈ Args and relevant(a, g)} ⊆ legalMoves(AS, Semantics, Dialogue)

If this subset relation is strict, the notion of relevance is useful in pruning the
search tree. However, even in this case, we still filter by using the legalMoves
function (line 5) before filtering by relevance, as we assume that this operation
is computationally cheaper than relevance filtering.

Lines 6–10 filter out irrelevant moves. It should be noted that the relevance-
aware agent’s GoalArguments are used at all depths of this algorithm, as any
move that does not affect these goals can be ignored by the agent. This follows
from the idea that if the other party makes (what are considered) irrelevant
arguments, these have no effects on the arguments introduced by the agent.

As a simple example, consider the relevance-aware agent

〈{a, c}, {a}, {a}, 〈{b}, {¬a}, 〈{d}, {a}, {}〉〉〉

Here, ¬a represents a goal that a is not deemed acceptable according to
the game’s semantics. We may assume that only a single argument may be
introduced by an agent during its turn (or that it may pass), and assume Dung-
style argument system with grounded semantics.

AS = ({a, b, c, d}, {(b, a), (d, b)})

For simplicity, we represent goals as single arguments rather than dialogues;
we assume that all dialogues containing the goal argument are worth 10 utility,
less one utility for every argument the agent advances.

Then at the first level of argument, arguments a, c, and passing are all legal
moves according to the agent’s knowledge base and semantics. However, a and
pass are the only relevant moves, and the agent must then determine what
the opponent will play in response to a. According to its opponent model, the
opponent could play b. However, argument c is not relevant, and the agent will
thus not consider whether the opponent will play it or not. The algorithm shows
that if the opponent plays b, it believes that the agent will play d (even though
it does not actually know d). Since playing a move will cost the opponent utility,
the agent believes that the opponent will pass.



Algorithm 3 M∗
rel(dia, depth, agent, goalArguments, legalMoves)

Require: A dialogue dia
Require: A search depth depth
Require: An agent agent = 〈KB, Goals, oppModel〉
Require: A set of arguments goalArguments
Require: A move generation function legalMoves
1: if depth = 0 then
2: return (NIL, Goals(dia))
3: else
4: maxUtil = −∞
5: PossibleMoves = legalMoves(dia) ∩KB
6: for all move ∈ PossibleMoves do
7: if @a ∈ goalArguments such that relevant(move, a) then
8: PossibleMoves = PossibleMoves\move
9: end if

10: end for
11: for all move ∈ PossibleMoves do
12: if depth = 1 then
13: playUtil = Goals(dia ∪ {move})
14: else
15: 〈oppMove, oppUtil〉 = M∗

rel(dia ∪ {move}, depth− 1,
oppModel , goalArguments, legalMoves)

16: 〈playMove, playUtil〉 = M∗
rel(dia ∪ {move, oppMove}, depth − 2 ,

agent , goalArguments, legalMoves)
17: end if
18: if playUtil > maxUtil then
19: maxUtil = playUtil
20: maxMove = move
21: end if
22: end for
23: end if
24: return (maxMove, maxUtil)

If instead, the agent passes, it will gain no utility, while the opponent would
also pass, and would gain 10 utility. Thus, the agent will utter a, and if its
opponent model is accurate, will win the game when the opponent passes.

Given perfect information, the agent should not have won this game. Fur-
thermore, the agent gains 10 utility, while the opponent gains 0 utility.

4 Discussion

This paper is built around the idea of an agent being able to assign utility to
a dialogue. While the assignment of positive utility to a dialogue represents the
agent meeting some of its goals, negative utility can arise from a number of
dialogue-dependent situations. These obviously include the agent not meeting
its goals, and, more interestingly, may occur when some other argument is in-
troduced (c.f. [15]), or when the agent actually makes use of an argument (for



example, as a premise to one of its own arguments). Work such as [14] examines
some of these utility assignment approaches in more detail, but performs only
one step lookahead when selecting an utterance.

As discussed in Section 2, it is possible to model a min-max opponent by
making use of an opponent model of the form (f, (−f, (f, . . .))) to the depth
of the search. Constructing a min-max opponent model for the argumentation
domain requires incorporating a knowledge base into the opponent model. Two
natural choices for an opponent’s knowledge base arise. First, it could be identical
to the original agent’s knowledge base. Second, it could contain all arguments in
the system. Since min-max is inherently pessimistic, the latter approach makes
sense for the opponent’s model, while the former knowledge base would represent
the opponent’s model of the agent. It has been shown that an agent making use
of the M∗ strategy will perform no worse than an agent utilising min-max search
[5], and this result can be trivially mapped to our extensions of the strategy.

The worst case computational complexity of the M∗ algorithm, and thus
our heuristic is bounded by (b + 1)d−1 where b represents the branching fac-
tor, and d the search depth. Clearly, computational techniques that prune the
tree are important if the algorithm is to be used in real world situations. The
techniques described in Section 3.2 and 3.3 reduce the branching factor, and
perform pruning of the dialogue tree respectively. Furthermore, depending on
the form of the utility function, an adaptation of αβ-pruning may be applied to
M∗[5]. This adaptation is particularly applicable to persuasion dialogues, where
an agent meeting its goals usually means that its opponent fails to meet their
goals. Other techniques, such as transposition tables can also yield significant
computational savings, even when the utility function is relatively complex.

Moore [11] suggested that any strategy for argument must meet three criteria,
namely to maintain the focus of the dispute, build its point of view, or attack the
opponent’s one, and select an argument that fulfils the previous two objectives.
The inclusion of relevance, and the filtering of the legal moves function allows an
agent to include these criteria within its reasoning process. Clearly, any utterance
made as a result of a reasoning process meeting Moore’s criteria will itself meet
the criteria.

Additional work dealing with argument strategy includes the work of Riveret
[20, 21], who, like us, builds a tree of dialogues, and computes game theoretic
equilibria to determine which move an agent should make. However, he assumes
that the agent’s knowledge and goals are perfectly known, an assumption which
does not hold in many situations. Riveret’s work is more general than ours in
one sense, namely in that the dialogues they investigate do not assume that
agents make a single utterance during their turn, or indeed, take turns in an
orderly manner. However, our approach can easily be extended to include this
generalisation. Rahwan [19] has also examined the notion of strategy within
argument, but focused on showing how dialogues may be designed so as to make
them strategy-proof.

We have begun implementing and evaluating the performance of agents mak-
ing use of opponent modelling as part of their argument strategy. Our initial re-



sults indicate that this approach outperforms techniques such as min-max search,
but still need to investigate issues such as the effects of errors in the opponent
model on the quality of the strategy, and the tradeoffs between search time and
search quality when increasing the search depth.

It is clear that the introduction of an argument by an opponent may cause an
update in our knowledge base or opponent model (for example, if an argument
a supports an argument b, which in turn supports argument c and we believe
that our opponent’s goal is argument c, the introduction of a should cause us
to believe that our opponent knows b). Our algorithms cater for such updates
implicitly; the agent’s opponent model at the appropriate depth of the expanded
dialogue tree should include the fact that the opponent knows b. In the future,
we intend to provide more constraints on the form of the agent and its opponent
model, capturing notions such as knowledge/belief revision.

Another area of future work involves extending our algorithms to make use
of probabilistic opponent modelling [7]. In this paper, we assumed that an agent
had a single model of its opponent. However, probabilistic opponent modelling
would allow an agent to reason with imperfect information about its opponent,
a situation that commonly arises in real world situations. The addition of prob-
abilistic opponent modelling opens up many exciting avenues for research. For
example, an agent may have two strategies open to it; one that will yield it a
high utility, but assumes that there is a high chance that its opponent does not
know a key fact, and the other yielding less utility, but being much safer. In
such a situation, the agent must take into account the risk of making certain
utterances, and we intend to investigate how such considerations can form part
of an agent’s argument strategy.

Finally, we have assumed throughout the paper that an agent has some oppo-
nent model, with an arbitrary evaluation function and knowledge base. However,
we have not examined how an agent may learn an opponent model during the
course of a dialogue, or over repeated interactions with an opponent. Some work
on this topic exists in the context of game playing [6], and we intend to apply it
to the argumentation domain.

5 Conclusions

In this paper, we showed how an agent may decide on which utterances to
advance in the course of an argument by making use of an opponent model. By
making use of an opponent model, the agent can discover lines of argument that
may take advantage of its opponent’s beliefs and goals. Such lines of argument
would not be discovered by a more näıve strategy, such as min-max, which would
assume that the opponent’s goals are diametrically opposed to its own.

We also showed how various aspects of the argumentation domain, namely
the notion of relevance, and the interactions between arguments, may be used to
reduce the computational complexity of searching for an argument while making
use of opponent modelling.



To our knowledge, no work on argument strategies has yet utilised the no-
tion of an opponent model to the same extent as we have. The introduction of
opponent modelling opens up a number of avenues for future research, and also
allows for the creation of new, and novel strategies for argument.

References

1. L. Amgoud, C. Cayrol, and M.-C. Lagasquie-Schiex. On the bipolarity in ar-
gumentation frameworks. In Proceedings of the 10th International Workshop on
Non-monotonic Reasoning, pages 1–9, Whistler, Canada, 2004.

2. L. Amgoud and N. Maudet. Strategical considerations for argumentative agents
(preliminary report). In Proceedings of the 9th International Workshop on Non-
monotonic Reasoning, pages 399–407, 2002.

3. L. Amgoud and H. Prade. Generation and evaluation of different types of ar-
guments in negotiation. In Proceedings of the 10th International Workshop on
Non-monotonic Reasoning, 2004.

4. P. Besnard, S. Doutre, and A. Hunter, editors. Computational Models of Argument:
Proceedings of COMMA 2008, Toulouse, France, May 28-30, 2008, volume 172 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 2008.

5. D. Carmel and S. Markovitch. Incorporating opponent models into adversary
search. In In Proceedings of the Thirteenth National Conference on Artificial In-
telligence, pages 120–125. AAAI, 1996.

6. D. Carmel and S. Markovitch. Model-based learning of interaction strategies in
multi-agent systems. Journal of Experimental and Theoretical Artificial Intelli-
gence, 10(3):309–332, 1998.

7. H. H. L. M. Donkers, J. W. H. M. Uiterwijk, and H. J. van den Herik. Probabilistic
opponent-model search. Information Sciences, 135(3-4):123–149, 2001.

8. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–357, 1995.

9. D. C. Mart́ınez, A. J. Garćıa, and G. R. Simari. Progressive defeat paths in
abstract argumentation frameworks. In L. Lamontagne and M. Marchand, editors,
Canadian Conference on AI, volume 4013 of Lecture Notes in Computer Science,
pages 242–253. Springer, 2006.

10. P. McBurney and S. Parsons. Dialogue games in multi-agent systems. Informal
Logic, 22(3):257–274, 2002.

11. D. Moore. Dialogue game theory for intelligent tutoring systems. PhD thesis, Leeds
Metropolitan University, 1993.

12. N. Oren, M. Luck, S. Miles, and T. J. Norman. An argumentation inspired
heuristic for resolving normative conflict. In Proceedings of The Fifth Work-
shop on Coordination, Organizations, Institutions, and Norms in Agent Systems
(COIN@AAMAS-08), pages 41–56, Estoril, Portugal, 2008.

13. N. Oren and T. J. Norman. Semantics for evidence-based argumentation. In
Besnard et al. [4], pages 276–284.

14. N. Oren, T. J. Norman, and A. Preece. Arguing with confidential information.
In Proceedings of the 18th European Conference on Artificial Intelligence, pages
280–284, Riva del Garda, Italy, August 2006.

15. N. Oren, T. J. Norman, and A. Preece. Loose lips sink ships: a heuristic for argu-
mentation. In Proceedings of the Third International Workshop on Argumentation
in Multi-Agent Systems, pages 121–134, Hakodate, Japan, May 2006.



16. S. Parsons, P. McBurney, E. Sklar, and M. Wooldridge. On the relevance of utter-
ances in formal inter-agent dialogues. In AAMAS ’07: Proceedings of the 6th in-
ternational joint conference on Autonomous agents and multiagent systems, pages
1–8, New York, NY, USA, 2007. ACM.

17. H. Prakken. Relating protocols for dynamic dispute with logics for defeasible
argumentation. Synthese, 127:187–219, 2001.

18. H. Prakken and G. Sartor. Computational Logic: Logic Programming and Beyond.
Essays In Honour of Robert A. Kowalski, Part II, volume 2048 of LNCS, pages
342–380. Springer-Verlag, 2002.

19. I. Rahwan and K. Larson. Mechanism design for abstract argumentation. In
Proceedings of AAMAS 2008, 2008.

20. R. Riveret, H. Prakken, A. Rotolo, and G. Sartor. Heuristics in argumentation: A
game theory investigation. In Besnard et al. [4], pages 324–335.

21. R. Riveret, N. Rotolo, S. G, H. Prakken, and B. Roth. Success chances in argument
games:a probabilistic approach to legal disputes. In Proceedings of the 20th An-
niversary International Conference on Legal Knowledge and Information Systems
(Jurix 2007), pages 99–108, Amsterdam, The Netherlands, 2007.

22. C. E. Shannon. Programming a computer for playing chess. Philosophical Maga-
zine, 41:256–275, 1950.


