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Abstract

A well-known implication of microeconomic theory is that sunk costs should have no effect on
decision making. We test this hypothesis with a human-subjects experiment. Students recruited
from graduate business courses, with an average of over six years of work experience, played the
role of firms in a repeated price-setting duopoly game in which both firms had identical capacity
constraints and costs, including a sunk cost that varied across experimental sessions over six different
values. We find, contrary to the prediction of microeconomic theory, that subjects’ pricing decisions
show sizable differences across treatments. The effect of the sunk cost is non—-monotonic: as it
increases from low to medium levels, average prices decrease, but as it increases from medium to
high levels, average prices increase. These effects are not apparent initially, but develop quickly
and persist throughout the game. Cachon and Camerer’s (1996) loss avoidance is consistent with
both effects, while cost-based pricing predicts only the latter effect, and is inconsistent with the
former.
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1 Introduction

One of the most fundamental concepts of microeconomic theory is marginal analysis—the model of
decision making involving the comparison of the costs and benefits of small changes in behavior. A
primary implication of marginal analysis for firm behavior is that firms should make their choices
based only on variable revenues and costs. Sunk costs—costs that are the same, irrespective of
firms’ decisions—by definition do not affect either variable revenues or variable costs; therefore, their
level is presumed not to affect firm decisions. Standard game-theoretic equilibrium concepts for
simultaneous—move games (e.g., Nash equilibrium) have the same implication. Changing the level of
a player’s payoffs—adding or subtracting a constant from all payoffs—has no effect on differences in
expected payoff between strategies (even mixed strategies), and thus has no effect on a player’s best—
response correspondence. As a result, for any game with a unique Nash equilibrium, this equilibrium
is invariant to any change in payoff levels. Even McKelvey and Palfrey’s (1995) “logit equilibrium”, in
which players need not play best responses, but rather play strategies with higher likelihood as their
expected payoff increases, is unaffected by changing the payoff levels.!

On the other hand, there is some empirical evidence suggesting that changes in payoff levels
might affect behavior. Kahneman and Tversky’s (1979) prospect theory includes the notion of “loss
aversion”, according to which losses—from whatever the decision maker considers to be the status
quo—weigh more heavily than equal-sized gains.? (See also Tversky and Kahneman (1991).) Such
effects have also been seen in strategic decision making. Cachon and Camerer (1996) found that
subject decisions in a coordination—game experiment were sensitive to changes in payoff levels when
these changes affected the signs of payoffs, such as positive payoffs becoming negative. They speculated
that subjects showed “loss avoidance”, which they defined to be a tendency to avoid choices that with
certainty yield negative payoffs in favor of alternatives that could yield positive payoffs. There are
also several empirical studies in the business literature examining the differential treatment of gains

and losses by firms.3

Logit equilibrium is only one of many possible specifications of McKelvey and Palfrey’s “quantal-response equilib-
rium”, albeit the most widely—used one. Other versions of quantal-response equilibrium are sensitive to payoff-level
changes.

2It should be noted that Kahneman and Tversky used hypothetical, not monetary, payments, so their results should
be viewed as suggestive, not conclusive. Some research has compared behavior under real incentives versus hypothetical
incentives; for example, Holt and Laury (2002) found that when payments are small, decision-making behavior is similar
under either monetary or hypothetical incentives, but as payments are scaled up, subjects become more risk averse under
monetary incentives but not under hypothetical incentives.

3For example, Burgstahler and Dichev (1997) find evidence consistent with firm-level loss aversion; specifically, fewer
firms report small accounting losses and more firms report small accounting gains relative to the numbers expected
under a smooth cross—sectional distribution of earnings. This finding is generally attributed to manipulating reported
accounting earnings in an effort to avoid reporting losses. Along these lines, Ball and Shivakumar (2006) find that
modeling negative accounting profits—by using an indicator variable consistent with prospect theory—improves the
intertemporal association between reported accounting income and realized cash flows. Also, see Hayn (1995) and
Freeman and Tse (1992) for additional evidence of prospect theory’s loss—aversion effects at the capital-market level.



The objective of this paper is to examine the effect of varying the level of sunk costs on pricing
behavior in a duopoly game with simple rules but a complex equilibrium. Even though both standard
microeconomic theory and standard game theory imply that differences in sunk—cost levels should
not have an effect, there are reasons to believe that they might, even beyond those reasons listed
above. Carmichael and MacLeod (2003) show theoretically that caring about sunk costs (in the sense
of conditioning behavior on them) can be rational in bargaining situations where there is a potential
holdup problem. Sunk costs can also affect firms’ prices if decision makers, rather than setting prices
by marginal analysis, use “cost—based pricing”—that is, if their prices are chosen based on average
total cost, rather than marginal cost. Under cost—based pricing, higher sunk costs mean higher average
total costs, and thus higher prices. While such behavior is normally considered to be at odds with
economic theory, cost—based pricing may be a useful heuristic, especially when marginal cost is difficult
to determine, as is often the case in real-life situations.* There is ample survey evidence that firms
actually do use cost—based pricing (see, for example, Govindarajan and Anthony (1983), Drury et
al. (1993), and Shim and Sudit (1995)). Finally, there is an extensive literature in psychology and
economics dealing with the “sunk—cost fallacy”, according to which individuals irrationally—from the
standpoint of microeconomic theory—fail to ignore sunk costs in their decision making. In psychology,
this literature dates back at least to Aronson and Mills (1959). (For a survey of early results, see Thaler

(1987); for a more recent experiment, see Friedman et al. (2007).)

In this paper, we report the results of a human—subjects experiment designed to examine the effect
of sunk costs on firms’ pricing behavior. Students recruited from graduate business courses, with an
average of over six years of business experience, took on the role of firms. Each played a thirty—round
price—setting game against one other firm. Within a pair of firms, both had identical, unchanging,
publicly—announced cost functions, including sunk costs that took on one of six different values. We
found, contrary to standard microeconomic theory, that pricing behavior varied substantially and
significantly with the level of the sunk cost. Contrary to the prediction of cost—based pricing, the
relationship between sunk—cost level and prices was not monotonic. At low levels, increasing the
sunk cost led to a decrease in average prices (the opposite of what cost—based pricing predicts),
but for higher levels, increasing the sunk cost led to an increase in average prices (as cost—based
pricing predicts). We find no evidence of a sunk—cost effect in the first round, but it develops quickly
and is apparent by the fifth round; it then persists throughout the experiment. Examination of

individual decisions shows that prices change over time and in response to results from past play;

41t is not even completely clear that cost-based pricing is inconsistent with rational behavior. Al-Najjar, Baliga, and
Besanko (2004) consider a theoretical price-setting oligopoly model with differentiated products, and discuss conditions
under which cost—based pricing can be found in equilibrium.



this is inconsistent not only with cost—based pricing, but also with other static theories such as Nash
equilibrium, competitive equilibrium, and tacit collusion. Edgeworth cycle theory (Edgeworth (1925))
does predict nonstationary prices, but not the sunk—cost effect. Loss avoidance (Cachon and Camerer
(1996)) is consistent with the non—monotonic effect of the sunk cost, but does not predict the observed
changes over time.

Pricing dynamics in industries with high fixed investment and capacity considerations (e.g., the
airline, car rental, electric power generation, and telecommunication industries) are complicated and
not well understood. Issues such as demand uncertainty (Gox (2002), Kruse et al. (1994)), the ability
to backlog demand and store inventory (Shang and Song (2003)), predatory pricing (Isaac and Smith
(1985), Harrison (1988)), hard versus soft capacity constraints (Gox (2002)), number of competitors
(Kruse et al. (1994)), and the financial health of competitors (Ciliberto and Schenone (2007)) have
all been shown to affect firms’ pricing behavior in these settings. Balakrishnan and Sivaramakrishnan
(2002) argue that pricing is only one part of a larger problem; therefore, jointly considering the
capacity—planning and product—pricing problems may be necessary to better understand these pricing
dynamics. With such factors in mind, our study is—in a sense—troublesome because we provide
evidence that sunk—cost magnitude represents yet another factor that can affect competitive pricing
decisions in these and other industries. That said, we highlight a paradox of decision making: irrelevant
data ought to be ignored when making business decisions, and sunk costs are the archetypal example
of irrelevant information (Garrison et al. (2006)). However, evidence that sunk costs can have non—

monotonic effects on pricing decisions may offer a useful piece to this relatively complicated puzzle.

2 The duopoly market

The experiment entailed repeated play of a two—player Bertrand—Edgeworth oligopoly stage game,
with subjects taking the role of firms. In each round of the game, a firm is able to produce up to
40 units of a homogeneous good at a constant marginal cost of $5. Production beyond 40 units is
impossible. In addition to the constant marginal cost, each firm incurs a sunk (unavoidable, even
when producing zero units) cost, which may be either $2000, $3000, $4000, $5000, $6000, or $7000 per
round. In each round of the game, the two firms first simultaneously and independently choose their
prices, which were restricted to whole-dollar amounts between $5 and $500. Next, each firm produces
and sells enough units of the good to meet its quantity demanded (subject to the capacity constraint
of 40 units). Consumers are automated; the quantity demanded for each firm is determined from the
two firms’ prices, along with a random component, as follows. For each multiple of $5 between $5 and

$500, there is exactly one potential customer with this reservation price (100 customers total). These



customers queue in one of six equally likely orders, shown in Appendix A. Each customer, in turn,
buys one unit of the good if it can buy at a price lower than or equal to its reservation price.® If so,
the customer buys from the lower—priced seller if that seller has units left to sell (that is, if that seller
has not yet sold its 40 units); otherwise, the customer buys from the higher—priced seller if that seller
has units left to sell. If both sellers choose the same price, each sells half the quantity demanded at
that price, up to their capacities.®

In order to keep the rules of the game simple, we forbid entry and exit in this market, and we
automate the firms’ second—stage production decisions, so that each firm’s quantity produced simply
equals the quantity demanded from that firm. Thus, the two stages of each round (pricing, then

production) collapse to a single stage, consisting only of the two firms’ pricing decisions.

Before discussing the theoretical predictions for this game, we note that the firms’ capacity con-
straints play an important role in the strategic environment. These capacity constraints are what
distinguish Bertrand—Edgeworth duopoly from standard Bertrand duopoly. In our setup, the two
firms’ products are perfect substitutes for each other. So, if neither firm had a capacity constraint, the
higher—priced firm would never be able to sell any units of output, which would make the incentive to
choose a low price extremely strong. Indeed, the only Nash equilibria of the no—capacity—constraints
analogue to our game have a very low price—either $5 or $6——chosen by both firms, irrespective of

any sunk cost.

Now, turning back to our game (with the capacity constraints), we show in Figure 1 some of the
economically-relevant features. The left panel shows a standard market diagram, with curves repre-
senting demand and supply, as well as joint marginal revenue (MR). Also shown are two benchmark
predictions for play in this game. A competitive equilibrium price is one at which the demand and
supply curves intersect; this happens over the interval (100,105]. Because we restrict prices to be
whole—dollar amounts, competitive equilibrium price choices by firms are $101, $102, $103, $104, and
$105. The collusive price—at which joint profits are maximized—is the price at which the marginal
revenue curve intersects the supply curve; this happens at a price of $255.7 In our experiment, no
communication between subjects is permitted, so that no formal or informal collusive agreements are
possible. However, because subjects in the experiment play repeatedly (with no definite final round;

see Section 3) against the same opponent, there also exist subgame perfect equilibria in which there

®Due to our specification of demand and costs, our restriction of prices to those between $5 and $500 should not make
much difference; prices below $5 earn a negative profit on every unit sold, and thus are weakly dominated by a price of
exactly $5, while prices above $500 guarantee no units sold, and thus are weakly dominated by a price of exactly $500.

5Thus, if the quantity demanded was an odd number, each firm will sell a fractional unit of the good. While odd—
sounding, this could be interpreted as each firm receiving its expected profit, given customers’ randomly choosing between
equal-priced sellers.

"Because of the capacity constraints, this collusive price is not the same as the monopoly price of $305.



is tacit collusion. If tacit collusion is perfectly successful, prices will be at the collusive level shown in

Figure 1: Characteristics of the Game
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Figure 1, irrespective of the sunk cost.

The right panel of Figure 1 shows the game’s best-response function. In addition to other ap-
plications, the best-response function can be used to find this game’s Edgeworth cycle. Edgeworth
cycle theory (Edgeworth (1925)) is a dynamic, non—equilibrium theory that assumes, roughly, that a
firm will play a myopic best response to its opponent’s previous-round strategy.® In our game, as is
typical in Bertrand oligopoly with homogeneous products, there is a wide range of prices (from $146
up to $306) to which the best response is a price one dollar lower. Also, the best response to $145 is
$245. So, the Edgeworth cycle lies between $145 and $245; the associated prediction is that, within
a pair of players, prices will slowly decrease from $245 to $145, jump back up to $245, and continue
over and over again in this way.”

As is typical for Bertrand—Edgeworth duopoly, this game has no pure-strategy Nash equilib-
rium. It has a symmetric mixed—strategy Nash equilibrium, the support of which is a subset of
{138,139, ..., 230}; this equilibrium is unaffected by the level of the sunk cost. The cumulative distri-

bution function for the Nash equilibrium is shown in Figure 2.19 Also shown is the resulting equilibrium

8The Edgeworth cycle tends to arise as a prediction in price-setting oligopolies when capacity constraints are present.
However, capacity constraints are not necessary. Maskin and Tirole (1988) found that Edgeworth cycles could emerge as
equilibrium behavior in a repeated Bertrand duopoly—without capacity constraints, but with firms making alternating
pricing decisions.

9Holt and Solis-Soberon (1992) discuss an important feature of the Edgeworth cycle: under certain conditions, its
support is the same as that of the Nash equilibrium mixed strategy. They also give an example illustrating that this
is not true in general. The game we use has a step—level demand function which violates one of the conditions they
mention, and indeed we will see that the Edgeworth cycle does not coincide with the support of the Nash equilibrium
mixed strategy (though they overlap substantially, neither is a subset of the other).

1%We are grateful to Ted Turocy for his work in finding this equilibrium.



expected price of approximately 160, as well as the competitive and collusive prices, for sake of com-
parison. In the Nash equilibrium, per-round expected gross profits (not including the sunk cost) are
approximately $5294 for each player, so that equilibrium expected per-round net profits are negative

when the sunk cost is 6000 or 7000, and positive otherwise. The predictions made by each of the four

Figure 2: Nash equilibrium c.d.f.
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theories mentioned above, as well as cost—based pricing (mentioned in the introduction) are shown in

Table 1.
Table 1: Predictions
Theory Mean Positive Changes Effect of sunk— Expected per—round profits
price(s) variance?  over time? cost increase (gross of sunk cost)
Competitive {101,...,105} Yes No None 3840-4000
equilibrium
Tacit 255 No No None 6250
collusion
Nash Only due to
equilibrium 158.92 Yes changing None 5293.78
realizations
Edgeworth — Yes Yes None —
cycle
Cost—based — No No Price —
pricing increase

Our design adds to a large body of experimental research on price—setting oligopoly. Much of
this research has examined various types of Bertrand oligopoly without capacity constraints (see Holt
(1995) for a survey). A typical finding in these experiments is weak support for the equilibrium
prediction, combined with frequent attempts to collude. Such attempts are often relatively successful
in duopoly experiments, but less so as the number of firms is increased.

When capacity constraints are present, on the other hand, subjects’ choices of prices often do not



converge to a single value (or even a stationary frequency distribution), so that all static solution
concepts perform poorly.!’ As a result, there have been attempts to use dynamic theories such as
the Edgeworth cycle to describe the way prices change over time. A common result from these
attempts is that prices exhibit dynamics consistent with the most general qualitative predictions of
Edgeworth cycle theory (slow decreases, then a quick rise once prices reach a low point), but attempts
to use it to make more specific quantitative predictions do not seem to work. Isaac and Smith (1985)
perform an experiment in which they look for predatory pricing in a duopoly where one firm has
a cost advantage and “deep pockets” (a higher cash balance to start the experiment).!? In a few
sessions, they find price dynamics consistent with an Edgeworth cycle, but most of their sessions
produce behavior consistent with what they call “dominant firm equilibrium”: a simultaneous—move
analogue to Stackelberg equilibrium. Millner, Pratt, and Reilly (1990) look for contestable market
outcomes in a duopoly experiment with an avoidable fixed cost and everywhere—-decreasing average
cost. They find that the price dynamics in a few of their sessions are consistent with an Edgeworth
cycle, but many more are consistent with a slightly different dynamic theory: that of Coursey et al.’s
(1984) “unstable prices hypothesis”. The “unstable prices hypothesis” predicts dynamics similar to
the Edgeworth cycle; the only difference is that when prices reach the bottom of the cycle, one firm
drops out, after which the other raises price to (or toward) the monopoly level, so that the firm that
had exited soon re-enters—whereas in the Edgeworth cycle, neither firm exits. (In our experiment,
exit is not possible, so there is no difference between the unstable prices hypothesis and the Edgeworth
cycle.) Cason, Friedman, and Wagener (2005) look at an experimental six—firm Bertrand—Edgeworth
oligopoly, in which consumers have positive search costs (somewhat weakening the incentive for firms
to cut prices). They find that subject behavior is not perfectly described by the Edgeworth cycle, but

some features of dynamics are consistent with a weak version of the Edgeworth cycle.

Our design also adds to a small but growing strand of experimental research on the effects of varying
the level of payoffs in games. We do not present an extensive literature review here; one can be found
in Feltovich, Iwasaki, and Oda (2008). Rather, we limit our focus here to experimental work looking

specifically at markets in which sunk costs are present.'® Kachelmeier (1996) considered double-

M An exception is found in Kruse (1993), who found prices either consistent with or converging toward the Nash
equilibrium predictions in two versions of a Bertrand-Edgeworth duopoly experiment.

121 ike our experiment and the rest of the experiments discussed in this section, they had subjects assume the role of
firms, while consumer behavior was automated.

BThere has also been some research into the effects of avoidable costs, which are fixed at all positive levels of output,
but can be avoided if the firm produces zero output. In addition to Millner, Pratt, and Reilly (1990), mentioned above,
Van Boening and Wilcox (1996) look at an experimental double-auction market in which firms have avoidable costs,
and find that the presence of avoidable costs leads to erratic price fluctuations and low efficiencies relative to typical
double-auction markets. Also, Cooper et al. (1993) and Van Huyck, Battalio, and Beil (1993) found that allowing
subjects to incur avoidable costs could affect which equilibrium was selected in coordination games, consistent with
forward—induction arguments.



auction markets with five buyers and five sellers. Sellers faced sunk costs that varied across sellers
within a round, and from round to round, in each market. Kachelmeier’s main treatment variable was
the format in which end—of-round accounting reports were given to sellers; a “historic cost” treatment
emphasized the sunk cost, while a “redemption value” treatment emphasized economic profit (hence
ignoring the sunk cost). The results were mixed: both buyers’ bids and sellers’ offers were significantly
higher when the sunk cost was emphasized than when it was not, but there was little difference in
transaction prices between the treatments. In all treatments, these prices tended to be within the
range of market—clearing prices. Waller, Shapiro, and Sevcik (1999) considered posted—offer markets
with five sellers (and automated buyers, like in our experiment). Like Kachelmeier (1996), Waller,
Shapiro, and Sevcik varied the way sellers’ costs were framed: an “absorption costing” treatment
emphasized the sunk cost, while a “variable costing” treatment did not. They found that except in
the first round, there was no significant difference in sellers’ offers between the treatments; in both,
offers converged reasonably quickly to market—clearing levels.

The results of Kachelmeier and Waller, Shapiro, and Sevcik suggest that it might be very difficult
in any experiment to find evidence of an effect from varying sunk costs. However, the strong tendency
toward competitive pricing in both experiments may have been at least partly due to the way the
experiments were designed. The double auction, used by Kachelmeier, has repeatedly been shown
experimentally to lead to prices close to their competitive levels, even with relatively small numbers of
buyers and sellers, and under weak assumptions about the amount of information and level of cognitive
abilities they have (see Holt (1995) for a survey). The posted—offer market used by Waller, Shapiro,
and Sevcik shows less tendency than the double auction to push prices to competitive levels (again,
see Holt (1995)), but even so, their specific version of the market—with five sellers in each market, as
compared to the two in our design—could be expected to facilitate rapid price convergence.'* Thus,
it is quite possible that in both of these studies, the effects of the particular market institutions they
use may have overwhelmed any potential tendency by subjects to choose any prices other than the
competitive price. In contrast, our experimental design offers a wide range of rationalizable pricing
choices, thus allowing the possibility for sunk costs to have a persistent effect on competitive prices.

The experimental designs most closely related to ours are those of Kruse et al. (1994) and Offerman

and Potters (2006). Kruse et al. consider a four—firm Bertrand-Edgeworth oligopoly. Firms’ costs

MMany researchers have found a qualitative difference in competitive behavior between markets with a very small
number of sellers (two or three) and markets with only a few more sellers. In the empirical industrial organization
literature, Bresnahan and Reiss (1991) look at a large number of geographically—separated markets in several industries,
and find that once three sellers are present in a market, prices are essentially competitive. In the experimental 10
literature, Isaac and Reynolds (2002) find that four—firm posted—offer markets produce prices close to competitive levels,
but when only two firms are present, prices are significantly higher. (See also Dufwenberg and Gneezy (2000), mentioned
above.) In the theoretical IO literature, Selten (1973) demonstrates that firms are substantially more likely to behave
competitively in markets with five or more firms than in markets with fewer firms.



are similar in nature to those we use, and demand is roughly hyperbolic. They do not vary the
sunk—cost level, but instead vary firms’ capacities and the amount of information firms have about
demand and other firms’ costs. They compare the experimental data to the predictions of competitive
equilibrium, tacit collusion, mixed—strategy Nash equilibrium, and the Edgeworth cycle. Neither
competitive equilibrium nor tacit collusion characterize the data, though they find some support for a
weak form of tacit collusion in which prices are between the competitive equilibrium price and collusive
price. Nash equilibrium fares badly in its point predictions, though it correctly predicts the direction
in which prices change when firms’ capacities change. They find more support for Edgeworth cycle
theory, but like Cason, Friedman, and Wagener (2005), support becomes weaker as they strengthen
the demands they make on the theory. (Firms’ prices tended to move in the direction of the best
response to opponents’ previous round prices, but they didn’t actually choose best responses.)
Offerman and Potters (2006) conducted experimental monopoly and Bertrand duopoly (with dif-
ferentiated products) markets in which the right to enter the market is auctioned off beforehand. As
controls, they had another duopoly treatment in which subjects didn’t bid to enter the market, but
rather were required to pay a fixed entry fee, as well as a third treatment (for both monopoly and
duopoly), in which subjects didn’t have to pay at all to enter. Offerman and Potters found that prices
in the duopoly games were higher when subjects had a positive fixed cost—whether it was from paying
the entry fee (and thus a true sunk cost) or from winning the auction (so that it was an avoidable
cost)—than when there was no fixed cost. Consistent with cost—based pricing, they also found that
average prices tended to rise as the fixed cost increased. However, they found no effect of sunk costs
on pricing in the monopoly games, so they concluded that subjects weren’t simply using cost—based
pricing techniques; rather, more subjects were willing to attempt tacit collusion in duopoly when sunk

costs were present.

3 Experimental procedures

The experimental sessions were conducted at the University of Houston in 1999 and 2000 using pen
and paper. (The monitor used a computer to make calculations, and to print out the feedback given to
subjects at the end of each round.) Subjects were mainly University of Houston MBA students, along
with a few business—college Ph.D. students, recruited from graduate business classes. No economics
graduate students took part in the experiment. Subjects had an average of 6.3 years of work experience.
No subject participated in more than one experimental session. Four subjects took part in each session,
so that there were always two duopoly games taking place. This allowed us to maintain a measure

of subject anonymity, as subjects would not be able to identify which of the other three subjects in



the session was their opponent. All subjects in a session had the same sunk—cost level, which did not
change from round to round; we therefore will refer to our treatments as SC2000, SC3000, SC4000,
SC5000, SC6000, and SC7000. Each subject played the duopoly game 30 times against the same

opponent, though the number of rounds was not told to the subjects.!®

At the beginning of an experimental session, each subject was seated and given written instructions.
A sample copy of the instructions can be found in Appendix A; note that these instructions provide
plenty of context to subjects, rather than describing the game in abstract terms. Instructions were
also given orally in an effort to make the rules of the experiment common knowledge. After the

instructions were read and any questions answered, no communication was allowed between subjects.

Subjects started the experiment with a lab—money balance that depended on the treatment, as
described in Note 16 below. At the beginning of a round (which was called a “day” in the experiment),
subjects were asked to write their choice of price for that round on a slip of paper. As already
mentioned, prices were restricted to whole-dollar amounts between $5 and $500. After all four subjects’
slips were collected by the monitor, one of the players was chosen to roll a die to determine the order
of customers from the six shown in Appendix A. Quantities and profits were then calculated, and
each subject received a slip of paper with the following information: own price, opponent price, own

quantity and profit for the round, and total profit up to that round. The next round would then begin.

After the last round of play, subjects were paid in cash. A subject’s payment was determined by
her final lab-money balance, which was equal to her initial balance plus the (possibly negative) sum
of her profits in all rounds. This final balance was converted into US dollars at an exchange rate that

had been announced at the beginning of the session.'® Sessions lasted between 75 and 90 minutes.

5Because subjects were not told how many rounds there would be, there is the possibility of supergame effects in our
experiment, particularly due to the repeated play against the same opponent. For example, as long as the probability of
continuing the game for an additional round is high enough, the collusive outcome can be sustained as a subgame perfect
equilibrium. However, subjects were told publicly that the session would last no more than 90 minutes, so they could
not have thought the game was infinitely repeated, and it is likely that they had some idea of when the last round would
be—or at least an upper bound on when it would be. This should be enough to eliminate supergame effects, though
they may still be possible if subjects’ upper bounds are not common knowledge, depending on the nature of their beliefs
about each other. Even if subjects did treat the game as infinite (or act as though they do), it should be noted that the
size of the incentive for any particular type of supergame play is unaffected by the level of sunk costs.

16 We did not pay subjects a showup fee per se, but in order to roughly equalize the expected earnings of subjects (for
university human subjects approval), we varied across treatments the initial lab-money balances and the exchange rate
between lab money and real money. In order to avoid confounding the effects of changes in the sunk—cost level with those
of changes in the initial balance and/or exchange rate, we also varied these within some treatments. Subjects in the 2000
cell received either a zero initial balance and an exchange rate of 5000 experimental dollars=1 US dollar, or an initial
balance worth $10 in real money and a rate of 10000 experimental dollars=1 US dollar. Subjects in the 3000 and 4000
cells received a zero initial balance and an exchange rate of 5000 experimental dollars=1 US dollar. Subjects in the 5000
cell received an initial balance worth $15 in real money and a rate of 5000 experimental dollars=1 US dollar. Subjects
in the 6000 cell received an initial balance worth either $20, $25, or $30, and a rate of 5000 experimental dollars=1 US
dollar. Subjects in the 7000 cell received an initial balance worth $25 and a rate of 5000 experimental dollars=1 US
dollar. In Section 4.2, we show some evidence that variation in the initial balance does not seem to affect behavior. We
also note that our design allows for subjects to earn negative amounts, even including the initial balance. In the event,
all subjects had positive earnings, though there remains the possibility that limited liability (our lack of ability to collect
money owed by subjects earning negative amounts) may have affected behavior in some way.
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Subjects earned an average of roughly $19.00 for participating in each session, with a high amount of

variance: earnings for individual subjects ranged from about $5 to about $35.

4 Experimental results

Six sessions were conducted with each sunk-cost level, for a total of 36 sessions with 144 subjects.!”
We look first at treatment—wide aggregates in Section 4.1, then at more disaggregated behavior in

Sections 4.2 and 4.3.

4.1 Aggregate behavior

Some of the main qualitative features of subject behavior in this experiment can be seen in Figure 3.
This figure shows, for each treatment, the mean choice of price over each 5-round block, aggregated

over all subjects in that treatment. Several features of the data are immediately apparent from this

Figure 3: Average choice of price (5—round averages and all-round averages)
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figure, all of which cast doubt on the ability of any of the static models—tacit collusion, competitive
equilibrium, Nash equilibrium, and cost—based pricing—to characterize subject behavior in this exper-
iment. First, we see that in each treatment, mean prices tend to decline over time, from between 220
and 260 in the first five rounds, to between 180 and 220 in the last five, depending on the sunk—cost
level. (Static models, of course, predict stationary behavior.) The decrease in price choices over time
can be detected easily by nonparametric statistical tests. For each treatment, average price choices
are significantly higher in the first five rounds than in the last five (two—tailed Wilcoxon signed-ranks
test, individual—pair data, p < .01 for the SC2000, SC5000, and SC6000 treatments, p < .05 for the

other treatments), and prices decrease significantly over the six five-round blocks (two—tailed Page

"The raw data are available from the corresponding author upon request.
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test for ordered alternatives, individual-pair data, p < .02 for the SC3000 treatment, p < .002 for

each of the other treatments).!®

Second, the point predictions of these three models also fare badly as descriptions of aggregate
behavior in the experiment. Thirty—round mean price choices vary across treatments from just under
200 to just under 230—Iess than the collusive price level of 255, but well above the mixed—strategy Nash
equilibrium price level of just under 160, let alone the competitive price level of at most 105. (However,
the decreases in average price over time mentioned above could be considered weak evidence in favor
of Nash equilibrium or competitive equilibrium as an asymptotic prediction.) Differences between
average price choices according to Nash equilibrium and those from the observed data are significantly
different at the 1% level (Wilcoxon signed-ranks test, individual-pair data) for the experiment as a
whole (72 pairs), as well as for each treatment (12 pairs each). Differences between observed price
choices and those implied by either tacit collusion or competitive equilibrium are also significant at

the 0.1% level for each treatment and the entire experiment.

Third, Figure 3 suggests that the sunk—cost level has a substantial effect on price choices, and that
this effect is U-shaped; as the sunk cost increases from 2000 to 5000, price choices decrease (left panel),
while from 5000 to 7000, price choices increase (right panel). This effect is even more apparent in
Figure 4. The left panel of this figure shows the 30-round treatment—wide mean price choices for each

treatment, as well as each individual subject’s 30-round mean price choice. The right panel of this

Figure 4: Average choices of price (left) and average transaction prices (right)—all rounds
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¥Because there was no strategic interaction and no communication across pairs of subjects, even in the same exper-
imental session, it seems reasonable to consider data from subject pairs to be independent of data from other subject
pairs. Price choices from an individual subjects, on the other hand, are not independent of those from the other subject
in the pair. The subject pair is thus the smallest statistically independent unit. See Siegel and Castellan (1988) for
thorough descriptions of the nonparametric statistical tests used in this paper. Critical values for the robust rank—order
test statistic used later in this section are from Feltovich (2005).
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figure does the same for the mean transaction prices for each treatment and each individual subject.
The mean transaction price is a weighted average of price choices, where the weighting for each price is
proportional to the quantity sold at that price (since lower prices tend to sell more units, this measure
tends to weigh lower prices more heavily compared to mean price choices). The collusive and Nash
equilibrium prices are also shown in both panels, for comparison. (The competitive prices would be
well below the bottom of the figure.) Note that only one subject averages below the Nash equilibrium
expected price, though a few others are close. Also, only a few subjects consistently choose prices at
or above the collusive level (left panel), and those who do sell very few units (right panel). No subject
chooses prices that average anywhere close to the competitive prices. (In fact, fewer than 1% of price
choices overall are at or below the highest competitive equilibrium price of 105, and only about 1.6%
are at or below 130.)

Nonparametric statistical tests verify that sunk—cost levels do affect mean prices. The null hypoth-
esis that sunk cost has no effect on average price choices can be easily rejected when session—level data
are used (Kruskal-Wallis one-way analysis of variance, p < .01), and the rejection is even stronger
when data from individual pairs are used (p < .001). Of course, however, these tests show only that
prices are not the same in all treatments, not that the U—shaped relationship suggested by Figure 4
is the correct alternative.

Figure 3 shows that in all treatments, there is a substantial amount of variation in prices over
time. One might wonder if the U—shaped relationship between sunk costs and prices may actually be
due to differences in early-round behavior that go away as subjects become more experienced in this
strategic environment. To address this possibility, we report in Figure 5 average price choices and
transaction prices for only the last five rounds of each treatment. (Using the last ten rounds instead
of the last five rounds gives results that are broadly similar.) As the figure shows, the U-shaped
relationship between sunk costs and prices continues to hold even when we look only at late rounds
of play, and we can reject the null hypothesis that sunk cost has no effect on average price choices in
these rounds (Kruskal-Wallis one—way analysis of variance, individual-pair data, p < .001).

One might also wonder if the effect of sunk costs on prices is due entirely to introspection at the
beginning of the session. As Figure 3 shows, differences in prices across treatments are already present
by round 5, suggesting that they might even be present in round 1. Table 2 shows that this is not

the case. Except for the SC2000 treatment, mean first—round price choices are essentially the same

Table 2: Mean round—1 price choices

SC2000 SC3000 SC4000 SC5000 SC6000 SCT000
258.67  238.29  242.08 238.25 249.88  243.50
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Figure 5: Late-round average price choices and average transaction prices (rounds 26-30)
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across the board. A Kruskal-Wallis one-way analysis of variance fails to reject the null hypothesis
that sunk cost has no effect on first-—round price choices in these rounds (individual data, p > .10).
Even pairwise tests between the one apparent outlier (SC2000) and the other treatments find no
significant differences (two-tailed robust rank—order tests, individual data, p > .20 for all pairwise
comparisons).! On the other hand, a Kruskal-Wallis test on round-5 prices does find a significant
difference (individual-pair data, p < .01), suggesting that even though the sunk cost has no apparent

effect on initial choices, its effect develops quickly.

Because subjects’ choices systematically deviate from the Nash equilibrium prediction for this
game, it is worth considering whether these deviations cause them to suffer lower payoffs than they
would have earned had they all been playing equilibrium strategies. Figure 6 suggests that, by and
large, this is not the case; indeed, the opposite seems to be true. This figure shows the mean per-round
profit for every subject over the 30 rounds of the experimental session, as well as the average over all
subjects in each treatment. Also shown are the Nash equilibrium and tacit—collusion levels of profit
for each treatment. Depending on the sunk—cost level, between 67% and 100% of individual subjects
earn profits greater than the Nash equilibrium expected profit, and between 71% and 92% earn profits
less than they would under tacit collusion, with between 42% and 79% strictly in between these levels.
If we look at treatment—wide mean profits (aggregated over all subjects under a given sunk—cost

level), we see that these are always strictly between the Nash equilibrium and tacit—collusion levels.

9Tn round 1, individual choices are independent of each other, even within a matched pair; thus our tests use individual—
rather than pair-level data. Using pair-level data, there are still no significant differences at the 10% level. We also
note here that caution is needed when taking failure to reject a null hypothesis to imply rejection of the alternative
hypothesis, so we stop short of concluding that there is no systematic difference in first-—round prices, though the very
high p—values suggest that such a conclusion might be warranted here. Nevertheless, in our later parametric statistical
analysis (Section 4.2), we continue to allow for the possibility that later behavior is associated with first-round choices.
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Indeed, even if we aggregate only to subject—opponent pairs, we find that all but six pairs collectively
earns more than the equilibrium profit, and all but four pairs earn less than the tacit—collusion profit.
Nonparametric tests on pair—level data confirm that profits are significantly more than in equilibrium
and significantly less than tacit—collusion levels (Wilcoxon signed-ranks test, p < .01 for each sunk—cost
level and for the entire experiment). These results suggest the possibility that deviations from Nash
equilibrium are not random mistakes, but rather attempts to tacitly collude, though these attempts

are only partially successful.

Figure 6: Average per—round profits—all rounds
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In order to make meaningful statistical comparisons of profits across treatments, we look at gross
profits—before subtracting the sunk cost. Not surprisingly, average gross profits are highest when
average prices are highest—when sunk cost is either 2000 or 7000. We can reject the null hypothesis
of equal profits across treatments (Kruskal-Wallis one-way analysis of variance, individual-pair data,
p < .001). Pairwise comparisons show that profits are higher in the SC2000 treatment than in
the SC5000 and SC6000 treatments (two-tailed robust rank—order test, individual-pair, p < 0.10),
and higher in the SC7000 treatment than in the SC3000, SC4000, SC5000, and SC6000 treatments
(p < 0.01, p < 0.05, p < 0.001, and p < 0.001 respectively). We find no significant differences in any

other pairwise comparisons of profits.
4.2 Sunk—cost effect—parametric statistical analysis

In an effort to look more rigorously at the effect of the sunk—cost level on prices, we next examine
the results of regressions using individual subjects’ current—round price choices as the dependent
variable. We include the sunk—cost level on the right—hand side in one of two ways: first, as five

indicator variables taking on the value of one when the sunk—cost level is 2000, 3000, 4000, 6000, and
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7000 respectively (we leave out 5000 to avoid perfect collinearity with the constant term), and zero
otherwise; second, as two continuous variables, one for the sunk cost itself and one for the square of
the sunk cost. We also include variables for the initial lab-money balance (per round, so as to be
comparable with the sunk cost) and its square, and one for the round number. Finally, as Figure 3
suggested that initial price choices might at least partly explain the variation in later price choices,
we included the subject’s first—round price choice on the right—hand side of some of our regressions.
Since price choices were restricted to be no lower than 5 and no higher than 500, we use a Tobit
model.?’ However, since there were so few choices near these endpoints—there were no price choices
below 50, and only one above 450—OLS regressions we ran gave nearly the same results. Also, in
order to address possible heterogeneity across subjects, we included individual-subject random effects
in the model. The results are shown in Table 3. We report coefficients and standard errors for each

right—hand-side variable, and log likelihoods for each regression.

Table 3: Current price choices—Tobit regressions with random effects (standard errors in parentheses)

Dependent variable: p: Model 1 Model 2 Model 3 Model 4
(rounds 1-30)  (rounds 1-30)  (rounds 2-30) (rounds 2-30)
constant 224.310*** 312.054*** 203.882*** 292.424***
(10.948) (17.084) (13.099) (18.693)
SC2000 treatment 33.356*** — 33.270*** —
(9.071) (8.964)
SC3000 treatment 21.742* — 25.414** —
(11.952) (11.830)
SC4000 treatment 7.238 — 10.008 —
(11.952) (11.823)
SC6000 treatment 27.365* — 24.608* —
(14.618) (14.471)
SC7000 treatment 33.964** — 32.164** —
(13.934) (13.784)
sunk cost/1000 — —33.797** — —32.826***
(8.632) (8.548)
(sunk cost/1000)?2 — 3.567*** — 3.448%**
(1.053) (1.042)
initial balance/1000 5.876 -3.160 7.078 -2.909
(8.655) (4.742) (8.552) (4.686)
(initial balance/1000)2 -1.867 0.838 -1.863 0.835
(2.221) (1.256) (2.194) (1.241)
round —1.538%** —1.538%** —1.508*** —1.508***
(0.077) (0.077) (0.077) (0.079)
P1 — — 0.069*** 0.069**
(0.028) (0.028)
—In(L) 22624.004 22625.551 21753.269 21754.879
Bayesian info. crit. 45340.09 45318.07 43606.58 43584.79
Akaike info. crit. 45270.01 45267.10 43530.54 43527.76

* (R FERY Coefficient significantly different from zero at the 10% (5%, 1%) level.

These results have several noteworthy features. First, we note that because neither Model 1 nor
Model 2 is nested in the other, we cannot use a straightforward likelihood-ratio test to compare
them; the same is true for Models 3 and 4. Also, Models 3 and 4 use a different sample from that of

Models 1 and 2 (rounds 2-30 in the former versus all rounds in the latter), so these also cannot be

20We note that our experiment also restricted prices to take on only whole-dollar amounts, so price is not really a
continuous variable. However, 496 prices were possible, so continuity is probably a reasonable approximation.
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compared with likelihood—ratio tests. However, we can use “information criteria” that, like likelihood—
ratio tests, reward goodness—of—fit but punish free parameters. The Bayesian (also known as Schwarz
(1978)) Information Criterion and the Akaike (1974) Information Criterion are the most commonly
used; their formulas are BIC = —2-In(L)+In(N)-k and AIC = —2-In(L) + 2k, respectively, where
In(L) is the maximized log likelihood, N is the sample size, and k is the number of free parameters
of the model.?! The values for these criteria are shown in the table for all four models. Both criteria
favor the models with the sunk cost and its square over the models with indicator variables for the
treatments, and Model 4 performs best of all four models (though it turns out that all four models by
and large yield similar implications).

We look next at the effect of the sunk cost. In Models 1 and 3, the sunk—cost—level indicator
variables are used. Taken as a group, they are jointly significant (x? = 23.52, df = 5, p < 0.001
in Model 1, x? = 23.23, df = 5, p < 0.001 in Model 3). In Models 2 and 4, the sunk—cost level
and its square are used. In both models, the coefficient of the sunk—cost level itself is significant and
negative, while the coefficient of its square is significant and positive. The two variables’ coefficients
are jointly significantly different from zero (x? = 19.96, df = 2, p < 0.001 in Model 2, x? = 19.54,
df = 2, p < 0.001 in Model 4), and their signs imply that price and sunk cost have the U-shaped
relationship seen in Figure 4. Using the values from Model 4—the best—fitting model as found above—
the coefficients for the sunk cost and its square imply a point estimate for the price-minimizing sunk—
cost level of $4761 and a 95% confidence interval of (4092,5429). (Using Model 2 instead of Model 4
lowers the point estimate to $4738 and narrows the confidence interval to (4092,5383).)

Estimates of the size of the effect of the sunk—cost level based on Models 2 and 4 are shown
in Table 4; these estimates are given relative to a sunk cost of 5000 (for which prices are lowest

on average). These numbers suggest that the effect of the sunk cost on price choices is not only

Table 4: Point estimates and 95% confidence intervals for effect of sunk—cost
level on price choices (vs. sunk cost=5000)

Sunk—cost (lower endpoint, point estimate, upper endpoint)
level Model 2 Model 4
2000 (+14.26, +26.48, +38.72) (+13.97, +26.08, +38.18)
3000 (+3.54, +10.52, +17.50)  (+3.59, +10.49, +17.39)

4000 (-2.34, +1.70, +5.73) (-2.19, +1.80, +5.78)
5000 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
6000 (-1.63, +5.44, +12.51) (-1.89, 4+5.10, +12.09)

7000 (+0.16, +18.01, +35.86) (-0.66, +17.09, +34.74)

statistically significant, but also economically relevant; for example, a sunk cost of 2000 leads to an

21The BIC is equivalent to Klein and Brown (1984)’s “minimum-prior—information” posterior-odds criterion.
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increase in price of over 10% relative to a sunk cost of 5000, and a sunk cost of 7000 leads to an
increase nearly as large.

Finally, we look at the remaining variables in our regressions. For both models, the coefficient
for the round number is negative and significant, consistent with the declines over time observed in
Figure 3. Also, the coefficient for the first-round price (in Models 3 and 4) is positive and significant,
implying a positive correlation between decisions made in the first round and decisions made in later
rounds.?? However, even when differences in first-round decisions are taken into account, the sunk—
cost level continues to have an effect. Lastly, the coefficients for the initial lab—money balance and
its square are not significantly different from zero in either model, nor are they jointly significant (2
ranges from 0.45 to 0.83 across the four models, df = 2, p > 0.66). On the face of it, this may seem
strange; the initial balance plays the same role in subjects’ payoffs as the sunk—cost level, in that both
affect the level of subjects’ payoffs, but not the marginal costs or benefits they face. We speculate
that subjects frame the initial balance and the sunk—cost level differently, possibly due to the different
way in which these features are presented to the subjects. The initial balance is told to the subjects
before play begins, but no mention of it is made during the 30 rounds of the session. In contrast, the
sunk—cost level is presented to the subjects over and over, in their feedback at the end of each round,
part of which is the subject’s profit, which of course depends on the sunk cost. This difference in
presentation between the initial balance and the sunk—cost level may lead to a difference in salience
between them, causing subjects to ignore the size of the initial balance during the experiment, while

taking the sunk—cost level into account in their choosing of prices.??

4.3 Individual behavior

The previous sections give plenty of evidence that the static models—competitive equilibrium, tacit
collusion, and Nash equilibrium—fail to adequately characterize the experimental data. We have seen
mixed evidence for Edgeworth cycle theory: on one hand, average price choices decrease over time
through the interval of Edgeworth cycle prices (as Edgeworth cycle theory predicts); on the other
hand, prices also vary as the sunk—cost level changes (as it does not). In this section, we look further
at the extent to which Edgeworth cycle theory describes the experimental data. In order to do so,

we concentrate on individual decision making: specifically, how price choices depend on results from

22We are agnostic as to the explanation for this correlation. One possibility is that the initial choices of the subject
or the opponent have some effect on later choices, through inertia or through positive feedback. A second possibility
is that subjects vary in some unobservable characteristic, not picked up by the random effects, that affects the level
of their price choices, such as “cooperativeness” or “aggressiveness”; and such variation affects first-round prices and
later-round prices in the same way. Still other explanations may exist.

ZThere is evidence that in corporate settings, profit presentation does affect behavior in seemingly irrational ways.
For example, Graham, Harvey, and Rajgopal (2005) survey 400 senior executives and report that 78% would sacrifice
long—term economic value in order to smooth reported accounting profits over time.
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recent rounds.

Some suggestive evidence is found by simply looking at the way subjects adjust their prices in
response to their opponents’ previous—round prices. It is worth pointing out the similarity between
Edgeworth cycle theory and Selten and Stoecker’s (1986) “direction learning theory”. When a game
has a one-dimensional strategy space, direction learning theory predicts that when a player changes
strategy from one round to the next, the change will be in the direction of the best response. Many
games’ strategy sets do have at least a partial linear ordering.?* Even in games for which determining
the best response to an opponent’s previous—round strategy is impossible—because of imperfect ob-
servability of opponent strategies—or prohibitively difficult, for computational reasons, it may still be
comparatively easy to know the direction of this best response, relative to the player’s own previous—
round strategy. In many cases, the direction of the best response depends on whether the outcome of
the game from the player’s standpoint could be characterized as a “success” or a “failure”.?’

Table 5 takes a first look at how subjects’ price choices depend on aspects of the previous round’s
result. This table consists of two transition matrices. The range of allowable prices is partitioned into
eight intervals: the second through fifth intervals make up the Edgeworth cycle, and these, along with
the sixth and seventh, are the prices that are best responses to some opponent prices. (Notice that
these seven intervals are of approximately equal size.) We then classify each pair of previous-round
price and current-round price according to which intervals the two prices lie in. The top matrix in
Table 5 consists of those pairs where the subject’s previous—round price was lower than the opponent’s
previous—round price; in the bottom matrix, the subject’s previous—round price was higher than the
opponent’s previous—round price.

In Table 5, there are apparent differences between entries in the top sub—table and corresponding
entries in the bottom sub—table, so it does seem beneficial to break down price choices according to
whether the subject’s price was greater or less than the opponent’s price. The data in this table
are consistent with direction learning theory and Edgeworth cycle theory. Almost regardless of what
price a subject chose in a particular round, if it was less than the opponent’s price (top sub-table),

that subject’s price in the following round was likely to be either in the same interval or the next—

24Besides Selten and Stoecker, who used it to describe behavior in a repeated Prisoners’ Dilemma (where pure strategies
were ordered according to the first round they chose to defect), direction learning theory has been used by Selten and
Buchta (1999), Kagel and Levin (1999), and Giith et al. (2003) for auctions, by Selten, Abbink, and Cox (2002) for
lemons—market problems, by Nagel and Tang (1998) for the centipede game, and by Grosskopf (2003, 2004) for the
ultimatum game and a variant of the ultimatum game. We also note here that the results in this section are consistent
with other models of behavior, such as imitation of successful strategies; see, for instance, Offerman, Potters, and
Sonnemans (2002) and Apesteguia, Huck, and Oechssler (2007).

25 As an example, in Selten and Stoecker’s (1986) repeated Prisoners’ Dilemma, “success” was when a player defected
first, and “failure” when her opponent defected first. After a success, it is likely (though not certain) that a higher
payoff would have been earned by waiting longer to defect, while after a failure, a better payoff may have been earned by
defecting sooner. So, direction learning theory predicts that after success, the player will defect later, while after failure,
she will defect earlier.
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Table 5: Distribution of current price conditional on previous-round prices, rounds 2-30 (in %)

Previous— Current-round price (when own previous-round price was lower than opponent’s)
round price N  5-144 145-170 171-195 196-220 221-245 246270 271-305 306-500
5-144 103 21.4 25.2 9.7 19.4 1.0 8.7 9.7 4.9
145-170 314 7.3 46.2 21.3 11.2 2.9 5.1 3.8 2.2
171-195 531 0.6 7.5 53.9 24.5 5.1 4.7 2.6 1.1
196220 538 0.4 2.2 11.7 48.9 16.5 11.0 6.3 3.0
221-245 223 0.4 0.4 3.1 19.3 51.6 14.4 9.9 0.9
246-270 156 1.3 0.0 2.6 9.0 9.6 43.7 24.4 9.6
271-305 59 1.7 0.0 5.1 6.8 1.7 20.3 44.1 20.3
306-500 7 0.0 0.0 0.0 0.0 0.0 0.0 57.1 42.9

Previous— Current-round price (when own previous-round price was higher than opponent’s)
round price N  5-144 145-170 171-195 196-220 221-245 246270 271-305 306-500
5-144 4 75.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0
145-170 94  10.6 52.2 14.9 7.4 2.1 9.57 3.2 0.0
171-195 272 1.5 26.8 52.9 10.3 2.2 2.2 1.8 2.2
196220 407 2.5 10.6 28.3 42.8 4.2 6.6 3.9 1.2
221-245 299 2.0 2.0 11.4 33.1 35.1 9.7 4.7 2.0
246-270 362 1.4 4.7 10.2 25.1 20.7 27.1 7.2 3.6
271-305 302 3.0 5.6 7.0 17.5 12.3 25.8 23.2 5.6
306-500 191 0.5 3.1 5.2 15.2 8.4 18.3 22.0 27.2

Note: Boldface entries correspond to the two most frequent intervals in each row.

higher interval. On the other hand, if the subject’s price turned out to be more than the opponent’s
price (bottom sub—table), that subject’s price in the following round was typically either in the same
interval or the next—lower interval. These two intervals make up between two—fifths and four—fifths of
all following-round choices, depending on the current-round price and whether it was higher or lower
than the opponent price.

We next use parametric statistics in order to look more closely at the factors that influence subjects’
round-to—round price changes. First, we run OLS regressions with individual-subject random effects
on the entire data set, with the price change (p; — p;—1) as our dependent variable. As before, we
use the round number, the sunk cost, and the square of the sunk cost as right-hand-side variables.?6
We also include several aspects of subjects’ previous results: the subject’s own previous—round price
(pt—1), her lagged price change (p;—1 — pt—2), indicators for her having chosen a lower price than her
opponent in the previous round (“Lower”) or the same price as her opponent (“Same”), and a variable
equal to the difference between that and the best response to her opponent’s previous—round price
(pt—1 — BR(pf_1)). The coefficient of this last variable will capture adjustment of the subject toward
a myopic best response, though of course the actual best response may be different if the opponent is
expected to change his price from one round to the next.

In addition, we define six new variables, meant to capture the effect on subjects’ price changes of
losses incurred in the previous round. We consider the possibility that subjects’ price changes depend

at least partly on whether they earned positive or negative profits in the previous round; thus, we

26Using sunkcost indicator variables instead of the sunk-cost level and its square results in no substantial changes in
the coefficients and significance of other variables.
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include the indicator variable “Loss”, which takes a value of one if the subject earned a negative profit
in that round (inclusive of the sunk cost), as well as the product of this indicator with the subject’s
own previous—round price. To guard against the possibility that any significant coefficients for these
variables are due to a spurious correlation, we create two similar variables: “Loss+”, which takes a
value of one if the subject earned a profit less than 1000 in the previous round, and “Loss—", with a
value of one if the subject earned a profit less than —1000 in the previous round. Finally, we include
the products of each of these variables with the subject’s previous-round price. If subjects do treat
gains and losses differently, the two “Loss” variables will have a significant effect, but the “Loss+”

’ variables will not.

and “Loss—
Results of regressions using four combinations of these variables are shown in Table 6. Again, we

report coefficients and standard errors for each variable, as well as log likelihoods for each model. Note

Table 6: Price changes—OLS with random effects, rounds 3-30 (standard errors in parentheses)
Dependent variable: p; — ps—1 Model 5 Model 6 Model 7 Model 8

constant 134.480*** 132.917***  101.035"**  98.479***
(13.341) (12.941) (8.021) (7.342)
sunk cost/1000 —16.064***  —16.583"** — —
(4.707) (4.661)
(sunk cost/1000)? 1.810*** 1.837** — —
(0.518) (0.511)
round —0.726""" —0.726™"" —0.713"**  —0.714™**
(0.086) (0.086) (0.087) (0.087)
Pt—1 —0.427*** —0.420"*" —0.416™*  —0.410™"*
(0.032) (0.029) (0.032) (0.029)
Pt—1 — Pt—2 —0.062"*" —0.062"*" —0.062"**  —0.062"**
(0.015) (0.015) (0.015) (0.015)
pt—1 — BR(pf_1) —0.175**" —0.174*** —0.180"**  —0.181**"
(0.022) (0.022) (0.022) (0.022)
“Lower” 7.729*** 8.235™** 7.913** 8.157***
(pe—1 < pf_1) (2.766) (2.713) (2.745) (2.796)
“Same” 3.361 4.542** 3.811 4.620"*"
(pt—1 = pi_1) (2.426) (2.233) (2.341) (2.199)
“Loss” (ITs—1 < 0) 21.223" 24,827 20.454* 25.782*
(12.177) (6.954) (12.173) (6.906)
Loss - pt—1 —0.105* —0.125"** —0.103* —0.128"**
(0.056) (0.028) (0.056) (0.028)
“Loss+” (ITs—1 < +1000) -3.424 — -2.660 —
(9.077) (9.034)
Loss+ - pr—1 —-0.0004 — -0.003 —
(0.043) (0.043)
“Loss—” (II;—1 < —1000) 5.343 — 8.966 —
(11.180) (11.132)
Loss— - pr—1 -0.017 — —0.028 —
(0.047) (0.046)
~In(L) 20686.912 20688.633 20692.960  20694.986

* (FF KEE): Coefficient significantly different from zero at the 10% (5%, 1%) level.

that Model 5 nests the other three models, while Model 8 is nested in the other three. Likelihood-ratio
tests choose Model 5 over either Model 7 (x? = 12.28, d.f. = 2, p ~ 0.002) or Model 8 (x? = 16.30,

d.f. = 6, p ~ 0.012), but not over Model 6 (x> = 3.44, d.f. = 4, p ~ 0.487). Similarly, Model 6 is
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preferred over Model 8 (x? = 12.94, d.f. = 2, p ~ 0.002), but Model 7 is not (x? = 4.05, d.f. = 4,
p =~ 0.399). Neither Model 6 nor Model 7 nests the other, but Model 6 beats Model 7 according to
either the Bayesian Information Criterion (41485.19 versus 41510.45) or the Akaike (1974) Information
Criterion (41403.27 versus 41415.92). We conclude that Model 6 outperforms the other three models;
however, as with the previous set of regressions, we report the results of all of them because they show

the robustness of our results.

As the table shows, the sunk—cost level has an effect not only on the levels of price choices (as
was seen in Table 3), but also on round-to-round changes in these prices. Indeed, this effect is
also U-shaped (with minimum at $4435 according to Model 6 and $4514 according to Model 8,
and 95% confidence intervals [3997,4874] and [4105,4924] respectively); that is, prices decrease most
sharply when the sunk—cost level is in the middle, with slower changes for low and high values.
Some support for the Edgeworth cycle hypothesis comes from the negative and significant coefficient
for pr—1 — BR(p$_,) (the difference between the subject’s own price and the best response to her
opponent’s price). We also see that price changes are affected negatively by both the level of the
previous—round price (p;—1) and last round’s price change from the round before (p._1 — p;—2), and
that beyond all of these effects, simply having had a price lower than (and in Models 6 and 8, the

same as), the opponent’s price has a significant effect on the price change.

In all four models, the “Loss” variable and its interaction with the previous—round price are
significant, both individually and jointly, suggesting that subjects do indeed update their price choices
differently based on whether they earned profits higher or lower than zero in the previous round. As

> variables

evidence that this relationship is not spurious, we also see that the “Loss+” and “Loss—
and their interactions with the previous-round price are insignificant, both individually and jointly,
in both Model 5 and Model 7 (the two in which they appear), so that they do not appear to update
prices based on whether profit was higher or lower than +1000 or —1000. In fact, the expressions
BLoss+ +BLoss+p,_y " Pt—1 a0d BLosst+ +BLoss+p,_, “Pt—1 (Where By is the coefficient of the variable Y')—

which represent the overall effect of the “Loss+” and “Loss—” variables on subjects’ price changes—are

not significantly different from zero at the 5% level in either of these models for any price in [5,500].

On the other hand, the expression B¢ + BLoss.p, ; - Pt—1 sometimes is significant. In particular,
according to Model 6—the best performing of these models as mentioned above—this expression is
significant and positive for p;_1 < 147 and significant and negative for p,_1 > 231, implying that (all
else equal) incurring a loss in the previous round makes a subject more likely to raise her current—round
price if her previous—round price was relatively low, and more likely to lower her current price if the

previous price was relatively high. A similar result holds according to Model 8; Br,oss + BLoss.p, 1 - Pt—1
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it is significant and positive for p;_; < 154 and significant and negative for p;_1 > 231. According to
Models 5 and 7, on the other hand, this expression is insignificant for all but relatively high, seldom

chosen prices (at least 360 according to Model 5 and 338 according to Model 7).

4.4 Loss avoidance: a parsimonious explanation?

Consistent with many other oligopoly experiments (see Section 2), price choices in our experiment
are well above the equilibrium prediction. However, the extent to which this is so varies with the
sunk—cost level; the non—-monotonic relationship we saw between the sunk—cost level and prices is the
main puzzle in our results. As mentioned before, this relationship is inconsistent with any of the static
theories discussed in Section 2, and the only dynamic theory we considered (Edgeworth cycle theory)
is silent as to whether sunk costs should have any effect on prices.

One possible explanation is that subjects are attempting to tacitly collude, and that the level of
the sunk cost affects how successful these attempts are. Another possibility is that subjects initially
choose prices more or less randomly, but slowly learn over time to choose prices more in line with
equilibrium, and the speed of this learning is somehow associated with the sunk—cost level. We do not
attempt to distinguish between these two possibilities here, but rather note that either is consistent
with prices declining over time from their relatively high starting levels, and in either case, there is
still the question of why the sunk—cost level has an effect.

As a small step toward a possible understanding of how a relationship between sunk—cost levels and
prices could arise, we begin by noting that the individual-level results in the previous section implied
that the subjects treated losses and gains differently in how they updated their behavior from round
to round. It therefore seems reasonable that part of the answer could come from loss avoidance. Loss
avoidance was proposed by Cachon and Camerer (1996) as a way of explaining subjects’ differential
treatment of gains and losses in coordination games; Rydval and Ortmann (2004) and Feltovich,
Iwasaki, and Oda (2008) have found evidence of loss avoidance in Stag Hunt experiments.?” We
follow Feltovich, Iwasaki, and Oda in distinguishing between two types of loss avoidance. A decision
maker exhibiting certain—loss avoidance will avoid choices leading to certain negative payoffs in favor
of alternative choices that might lead to gains. Someone exhibiting possible—loss avoidance will avoid
choices leading to possible losses in favor of other choices yielding certain gains.

When the number of available opponent strategies in a game is small (as in Feltovich, Iwasaki,

2TTo be precise, Cachon and Camerer considered loss avoidance to be a model of players’ beliefs about other players:
they did not propose that players avoided losses themselves, but rather that they believed their opponents did so. Of
course, to the extent that players’ choices are influenced by their beliefs about opponents’ choices, loss avoidance would
still have an effect on the players’ own choices. We also note here that while loss avoidance is similar in spirit to Kahneman
and Tversky’s (1979) loss aversion, they are not identical; in particular, they sometimes make opposite predictions. See
Feltovich, Iwasaki, and Oda for a discussion of the distinction between these two concepts.
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and Oda’s and Rydval and Ortmann’s games, where it is two, or as in Cachon and Camerer’s games,
where it is seven), the question of which outcomes are “possible” and which are not is relatively
straightforward to answer, as it is probably reasonable to view any opponent strategy as being possible.
In that case, we could say that a player’s strategy leads to a possible loss (resp., gain) if there is any
opponent strategy for which the player’s payoff is negative (resp., positive) in the resulting outcome,
and a strategy leads to a certain loss (resp., gain) if for every opponent strategy, the player’s payoff is
negative (resp., positive). On the other hand, when the number of available strategies is large—as in
our game—it might be more realistic to expect that players view only some of the available opponent
strategies as being “possible” strategies. As a result, we generalize Feltovich, Iwasaki, and Oda’s
definitions of these phenomena slightly. Specifically, we consider the notion of certain— or possible—
loss avoidance with respect to a subset A of the strategy space; A will be the set of actions the
player believes her opponent will choose with positive probability. (Of course, A can be the entire
strategy set, in which case we revert to the original definitions.) An individual exhibiting possible-loss
avoidance with respect to A will avoid an action that, for some opponent action in A, will lead to a
loss, in favor of another action leading only to gains, as long as the opponent chooses an action in
A. An individual exhibiting certain—loss avoidance with respect to A will avoid an action that, for all
opponent actions in A, will lead to a loss, in favor of another action that for some opponent action in

A, will lead to a gain.

Under this definition, the set of price choices consistent with certain— or possible-loss avoidance in
a particular game will usually depend on which set of opponent actions A is considered to be possible.
Figure 7 shows, for each sunk—cost level, the mean of all price choices that are consistent with certain—
or possible-loss avoidance for four reasonable choices of A: (a) the entire set of prices, (b) the set of
prices in the Edgeworth cycle {145, 146, ..., 245}, (c¢) the set of prices in the support of the symmetric
Nash equilibrium (see Figure 2), and (d) the set of prices actually observed in the experiment at least
once. (Note that (a) corresponds to the definitions of certain— and possible-loss avoidance used by

Feltovich, Iwasaki, and Oda.)

Figure 7 illustrates two important distinctions between certain— and possible-loss avoidance. First,
for a given sunk—cost level, the set of prices consistent with certain—loss avoidance is usually (though
not always) larger than the set consistent with possible-loss avoidance. In particular, for the sunk—cost
levels used in the experiment, it is always possible to avoid certain losses, but for the higher sunk—cost
levels we used, there are no prices that provide safety from any possible loss. Second, certain— and
possible—loss avoidance have diverging implications for pricing decisions in this game: the mean of

price choices consistent with certain—loss avoidance increases as the sunk—cost level increases, while
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the mean price choice consistent with possible-loss avoidance (when such prices exist) decreases as

the sunk—cost level increases.

To see graphically why certain—loss avoidance implies a rise in prices as the sunk cost increases,

while possible-loss avoidance implies a fall, consider Figure 8, which shows, for each price that can

be chosen, the lowest and highest per-round payoffs (gross of the sunk cost) that can possibly be

obtained in the game, for some opponent choice and realization of the queue of customers. We can

Figure 8: Per-round payoffs possible in the game (gross of sunk cost)
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see that very low prices yield one payoff with certainty, while higher prices yield a range of possible

payoffs. (Intuitively, low prices result in the firm selling its entire capacity at that price, irrespective
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of the rival firm’s price; higher prices might yield a high profit if the rival’s price was higher, but could

yield a low or even zero gross profit if the rival firm undercut it.)

A player’s net payoff (including the sunk cost) is positive if the gross payoff is larger than the sunk
cost. So, if a player believes that the opponent might choose any of the allowable prices (as in panel
(a) of Figure 7), then possible-loss avoidance requires the player to choose a price such that the gross
payoff from that price is always more than the sunk cost; that is, the (price, sunk cost) pair must
lie below the lower envelope of the graph of (price, payoff) pairs in Figure 8. Prices higher than 300
are ruled out by possible-loss avoidance for any positive sunk cost, as is a price of 5. As the sunk
cost increases, the interval of prices consistent with possible—loss avoidance shrinks at both ends. For
sunk costs between 2000 and 4000, this interval shrinks more quickly at the right endpoint than at
the left endpoint (that is, the lower envelope of the graph of price—profit pairs is steeper on the left
than on the right), so the mean price consistent with possible-loss avoidance falls as the sunk cost

rises through these levels.

When the sunk cost increases beyond 4000, a player can no longer avoid possible losses, but she
can still avoid certain losses by choosing a price such that the gross payoff can be more than the sunk
cost (in Figure 8, the (price, sunk cost) pair must be below the upper envelope of the graph of (price,
payoff) pairs). As the sunk cost increases, the interval consistent with certain—loss avoidance shrinks
at both ends, but does so more quickly at the left endpoint than at the right endpoint. So, the mean

price consistent with certain—loss avoidance rises as the sunk cost rises.

Consequently, we can conjecture an explanation for the pattern of prices observed in the exper-
iment: subjects avoid prices leading to possible losses when they are able to do so, and when they
cannot, they avoid prices resulting in certain losses. This behavior would result in average prices
decreasing as the sunk cost increases through lower values, but increasing as the sunk cost increases
through higher values, consistent with what was seen in the data. (See, in particular, the middle two
panels of Figure 7, which are similar in some ways to Figures 4 and 5.) We acknowledge that this
explanation is not completely satisfactory, both because loss avoidance was not one of our sources of
predictions ex ante, and because of our ad hoc (though, we think, reasonable) way of combining the
two types of loss avoidance. We therefore stop short of claiming that loss avoidance is what is causing
the patterns we have seen. However, we do find the similarity between Figure 7 and the experimental

results suggestive.
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5 Conclusion

Standard microeconomic theory predicts that the level of sunk costs should have no effect on firms’
pricing behavior. We run an experiment to test this prediction. In our experiment, subjects play a
repeated Bertrand—Edgeworth duopoly game, in which sunk costs take on one of six possible values.
Neither Nash equilibrium nor any of the alternative models (tacit collusion, competitive equilibrium,
Edgeworth cycles, cost—based pricing) adequately characterizes observed pricing behavior in the ex-
periment. Contrary to all of these theories, we find that sunk—cost levels have a substantial (and
statistically significant) effect on prices. This effect is non—monotonic: as sunk costs increase up to a
point, average prices decrease, but thereafter, average prices increase. We also find that price choices
are nonstationary: the aggregate data show a decline in average prices over time in all treatments,
and examination of individual data shows that subjects adjust their prices in response to their recent
results.

Our research highlights a paradox of decision making applicable to a fairly wide range of industry
settings: “irrelevant data” such as sunk costs should be ignored when making decisions (Garrison et
al. 2006), but if sunk costs significantly affect the way competitors choose their prices, then these costs
are not irrelevant. We speculate that loss avoidance might be at least a partial cause of the particular
effect we find; however, further research would be required to test this conjecture. More generally, we
hope that our results will encourage other researchers to consider the effects of not only marginal costs
and benefits, but the overall levels of costs and benefits, when studying the decision—making behavior

of economic agents.
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Appendix A: Experiment Instructions
Introduction

The purpose of this business game is to investigate how people use
accounting information to set product prices. | hope that you find participating in
this research both fun and interesting. In addition, to make the game more realistic,
the amount of money you will earn for participating will depend upon the

decisions you make.

Ground rules

1. My commitment to you:

NO DECEPTION. This research will be conducted exactly as described. |
promise to relay all information about the experiment accurately and completely.

2. Your commitment to me:

DO NOT DISCLOSE PRIVATE INFORMATION. This is serious
research, and | am genuinely interested in the decisions you make. It is important
to avoid communicating private information (discussed later) with other
participants during the game. If you need clarification or explanation, please raise

your hand and | will answer your questions individually.



Basic Setting

This experiment investigates buying and selling a hypothetical product called a "widget."
Widgets are perishable goods that last only one day. In this experiment, buying and

selling widgets occurs over a sequence of "days."

All of you will be selling widgets. In order to produce widgets, you will rent a widget
machine. All widget machines can produce 40 widgets per day. Because widgets are
short-lived, you will produce and sell widgets on the same day (i.e., thereis no

"inventory".)

There are one hundred people who would each like to buy one widget. Each potential
customer will buy one widget if the price of widgets is low enough. Potential widget
customers are willing to pay different amounts for widgets. Graphically, customers are

willing to pay the following amounts for one widget each day:

Customer Demand

$500

$400

$300

$200
$100
$0

Willingness to Pay

Customer #

Sadly for you, the widget market is competitive. Another widget seller (your rival) also
wants to sell widgets to the one hundred potential customers shown above.



Buying and Selling Widgets

The rules of buying and selling widgets follow. Each day, you and your rival will

establish widget prices. Next, the 100 simulated buyers "line-up” to buy widgets. There

are six different orders in which buyers can arrive. Each day, buyer order is determined

by the roll of adie. Graphically, the six random orders are:

Order #2

Customer #

Order #4

Customer #

Order #6

Customer #

Order #1

mmmmm,
8 8 8 &
fed 01

ssaubul||Ipm

Customer #

Order #3

000000
55555

Aed 03 ssaubuljjipm

Customer #

Order #5

Red 031 ssaubuljjip




Asillustrated in the following example, buyer order isimportant.

Imagine sellers A and B set widget prices at $100 and $400, respectively. Next, imagine
a"one" isrolled indicating Demand Order #1. Asarule, buyersfirst purchase widgets
from the low-priced seller. The first buyer "inline" has the first opportunity to purchase
awidget from the low-priced seller.

Based on their order in line, buyers first deal with Seller A because she is the low-priced
seller. The first "willing" buyer is buyer #20 (solid red line, below). As seen below, each
subsequent buyer is willing to purchase a widget from Seller A. Seller A continues to
sell widgets until her widget machine reaches its 40-unit capacity (dotted red line,

below). Buyer #60 can not purchase from Seller A; however, Buyer #60 is unwilling to
purchase a widget from Seller B because Seller B's price is too high. No willing buyer
exists until buyer #80 (solid blue line, below). As seen below, each subsequent buyer is
willing to purchase a widget from Seller B.

Order #1
$500
& $400
o
. I
i TR
(7]
(D)
c
T A
e HHHHHHhHHIHIHH\HHH\HHH\HHHHHH\HHHHHHH\HHH\HH
$0 - ) _
Customer #

Customers # 20 through # 59 Customers # 80
purchase from Seller A. through #100
purchase from
Seller B.




Example Accounting Reports

If widget machines had a fixed rent cost of $ 3,000 per day and if variable material costs
were $5 for each widget produced and sold, then the following accounting reports would
describe each seller's profit.

Sdller A Seller B
Unit Sales Price $100 $ 400
Units Sold 40 21
Total Revenue $ 4,000 $ 8,400
Unit Variable Cost $ 5 $ 5
Units Sold 40 21
less Total Variable Costs $ 200 $105
Contribution Margin $ 3,800 $ 8,295
less Total Fixed Costs $ 3,000 $ 3,000
Profit $ 800 $ 5,295

Y our fixed costs may not be $3,000 per day. Y our actual fixed cost is private
information and will be provided shortly.

Regarding the preceding example, note that Seller B would have sold zero widgets if a

"two" were rolled.

Order #2

$500

$400

$300

$200

Willingness to Pay

$100

$0

Customer #

No remaining customers are
willing to pay Seller B's price
of $400 per widget.

Customers #1 through #40
purchase from Seller A.




Step-By-Step Procedural Review

Each experimental day, the following sequence occurs.
1. Sellers submit selling prices for their widgets.
2. A dieroll determines buyer order.

3. The computer automatically determines sales. Remember, customers
(buyers) purchase from the low-priced seller first. If selling pricesare
equal, customers are divided evenly between sellers.

4, Y ou receive arecord of your performance and your competitor's price.

S. Repeat Step #1.

M oney

The experimental money that you earn during the forthcoming "price-
setting days" will be converted to U. S. dollars. Y ou will be given
your conversion rate momentarily.

General Questions

If you have any general questions, please ask them at thistime. After
all general questions are answered, | will distribute your private
information sheet then we will begin a series of price-setting days.



At this point, please ask all questions individually
(i.e. don't ask questions out loud)

After each day of our game, you will receive a feedback report like the one below. The
following report indicates your identity. Y our identity and your competitor will be the
same throughout this game (Player A vs. B; Player 1 vs. 2).

Player 1 Day# 0 Performance Report
Total Revenue: $ Your Sales Price: $
Units Sold:
Total Variable Costs: $ Unit Variable Costs: $
Contribution Margin: $
less Total Fixed Costs: $
Profit: $
Your cumulative $
Profit is:
Your Opponent's $
sales price was:
MY NEXT SALES PRICE IS: $

The preceding feedback report is blank because nothing has happened yet. After the first
day, information on this report will be completed.

Admittedly, the first day of play may seem confusing. The only information that you
have to make a pricing decision is the information discussed in the preceding directions
and the following:

Your Fixed Rent Cost is$2,000 per day.
Your Opponent's (i.e. Player 2's) Fixed Rent Cost is $2,000 per day.

The experimental money that your earn will be converted to U.S. dollarsat therate
of 5,000 experimental dollars= U.S. $1.

Although information may seem limited at this point, please respond to the following
guestion before we begin: What is the lowest price you would feel comfortable charging
for one widget?

$

Note: Your response to this question does NOT restrict you in any way during the
upcoming price-setting days. At this point, I am only interested in the lowest price you
would feel comfortable charging based upon what you know right now.





