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Abstract. We formulate the generation of finite dimensional pointed Hopf algebras

by group-like elements and skew-primitives in geometric terms. This is done through a

more general study of connected and coconnected Hopf algebras inside a braided fusion

category C. We describe such Hopf algebras as orbits for the action of a reductive group

on an affine variety. We then show that the closed orbits are precisely the orbits of Nichols

algebras, and that all other algebras are therefore deformations of Nichols algebras. For

the case where the category C is the category G
GYD of Yetter-Drinfeld modules over

a finite group G, this reduces the question of generation by group-like elements and

skew-primitives to a geometric question about rigidity of orbits. Comparing the results

of Angiono Kochetov and Mastnak, this gives a new proof for the generation of finite

dimensional pointed Hopf algebras with abelian groups of group-like elements by skew-

primitives and group-like elements. We show that if V is a simple object in C and B(V )

is finite dimensional, then B(V ) must be rigid. We also show that a non-rigid Nichols

algebra can always be deformed to a pre-Nichols algebra or a post-Nichols algebra which

is isomorphic to the Nichols algebra as an object of the category C.

1. Introduction

One of the fundamental problems in the theory of finite dimensional pointed Hopf

algebras is to determine if such algebras are generated by group-like elements and skew-

primitives. This aims to generalize the following classical classification result of Cartier,

Milnor, Moore, and Kostant from the 1960s:

Theorem 1.1 (Cartier-Milnor-Moore-Kostant,60s). Let H be a cocommutative Hopf al-

gebra over an algebraically closed field K of characteristic zero. Then H is the crossed

direct product of a group algebra with the universal enveloping algebra of a Lie algebra.

In particular, H is generated by group-like elements and primitive elements.

This problem was studied thoroughly in case the group of group-like elements in the

Hopf algebra is abelian and the ground field has characteristic zero. In [AS10] An-

druskiewitsch and Schneider proved that such a Hopf algebra must be generated by group-

like elements and skew-primitives, and gave a complete classification of such algebras in

case the group of group-like elements does not have prime divisors which are ≤ 7. This

was done by the lifting method and by a deep study of the structure of the possible Nichols

algebras arising in the category of Yetter-Drinfeld modules over an abelian group. The

Nichols algebras correspond to the universal enveloping algebras in the above theorem. In

[He09] Heckenberger classified all Yetter-Drinfeld modules V for which the Nichols algebra

B(V ) is finite dimensional, as part of a wider classification of Nichols algebras with finite

root systems. In [Ang13] Angiono described these Nichols algebras explicitly in terms

of generators and relations and proved that all finite dimensional connected graded Hopf
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algebras in the category of Yetter-Drinfeld modules over a finite abelian group are Nichols

algebras. Using the above results Angiono and Garcia-Igelsias gave in [AG19] a complete

classification of finite dimensional pointed Hopf algebras with abelian groups of group-like

elements. For more classification results, including the case where the group of group-like

elements is non-abelian, see [AnSa19] and the survey [And14].

The starting point of these classification results is the following: let G be a finite group

and let H be a finite dimensional pointed Hopf algebra over an algebraically closed field

K of characteristic zero, whose group of group-like elements is isomorphic to G. The fact

that H is pointed implies that the coradical filtration H0 = KG ⊆ H1 ⊆ · · · ⊆ Hn = H

of H is a Hopf algebra filtration. This implies that grH := ⊕ni=1Hi/Hi−1 is a graded Hopf

algebra. Moreover, if grH is generated by group-like elements and skew-primitives then H

is generated by group-likes and skew-primitives as well. The inclusion H0 → grH splits,

and by a result of Radford we can write grH ∼= R#KG where R is a graded Hopf algebra

in the category of Yetter-Drinfeld modules over G, GGYD. The comultiplication of R as a

Hopf algebra in G
GYD is different from the comultiplication of elements of R in the Hopf

algebra H. The skew-primitive elements become primitive elements in R. The original

question then boils down to whether or not R is generated by primitive elements, and not

just skew-primitives.

In [AS10, AS00] Andruskiewitsch and Schneider studied both the Hopf algebra R and

the dual Hopf algebra R∗, proved that finite dimensionality implies that certain relations

among the elements of these Hopf algebras must hold, and concluded that both R and R∗

are generated by primitive elements. This means that the algebra R is in fact the Nichols

algebra B(V ) where V = P(R) is the set of primitive elements in R.

Andruskiewitsch and Schneider then also address the questions of the reconstruction

of the original algebra H out of grH, and for what objects V of G
GYD the algebra B(V )

is finite dimensional. The key-point in proving that any finite dimensional pointed Hopf

algebra is generated by group-like elements and skew-primitives is to prove that all Hopf

algebras R in G
GYD arising from the above construction are Nichols algebras.

In this paper we study a more general problem by using a different, geometric, method.

Instead of looking at the category G
GYD we look at a general braided fusion category C.

For every object B in C we will construct an affine variety XB, whose points represent

the structure constants of connected coconnected Hopf algebras (these notations will be

explained in Sections 2 and 5). The group ΓB := AutC(B) acts on XB, and the orbits

correspond to isomorphism types of Hopf algebras. We will prove the following:

Theorem 1.2. Let R be a connected coconnected finite dimensional Hopf algebra in C

such that R ∼= B as objects of C. The orbit OR of R ∈ XB is closed if and only if the

algebra R is isomorphic to a Nichols algebras. In particular, all the orbits of ΓB in XB

are closed if and only if all the connected and coconnected Hopf algebras in C that are

isomorphic to B as objects of C are Nichols algebras.

If R1 and R2 are two algebras in XB, we say that R1 specializes to R2 if OR2 ⊆ OR1 .

We also say in this case that R1 is a deformation of R2. It is known that, for the action of

an algebraic group on an affine variety, every orbit contains a closed orbit in its closure.
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The theorem above thus implies that every algebra in XB is a deformation of a Nichols

algebra.

We thus focus our attention on studying deformations of finite dimensional Nichols

algebras B(V ), as such deformations are the possible obstructions to the generation by

skew-primitives and the coradical (see Theorem 1.7).

Definition 1.3. The Hopf algebra R ∈ XB is called rigid if R ∈ OR′ for some R′ ∈ XB

implies that R ∼= R′.

The ultimate goal will thus be to prove that B(V ) is rigid whenever it is finite dimen-

sional, as this will imply that all the algebras in XB are Nichols algebras and are therefore

generated by primitive elements. We will prove the following result:

Theorem 1.4. Assume that V is simple in C and that B(V ) is finite dimensional. Then

B(V ) is rigid.

Since our aim is to prove that all orbits in XB are closed, it is worthwhile asking how

do hypothetical non-closed orbits in XB look like. To state the next result, recall that a

pre-Nichols algebra in a braided monoidal category C is a graded Hopf algebra in C which

is generated by primitive elements (though not all the primitive elements are necessarily of

degree 1). Thus, a pre-Nichols algebra R is a quotient of the Hopf algebra T (V ) for some

V ∈ C which also projects onto the Nichols algebra B(V ). Dually, a post-Nichols algebra

is a Hopf subalgebra of the graded-dual Hopf algebra of T (V ) that contains B(V ∗). Post-

and pre-Nichols algebras are graded-dual to each other (see Section 2.3 of [AARB17]).

Theorem 1.5. Assume that B(V ) is finite dimensional and not rigid. Then there is

either a finite dimensional pre-Nichols algebra R such that P(R) = V ′ ( V and such that

B(V ) ∈ OR, or a finite dimensional pre-Nichols algebra R such that P(R) = V ′ ( V ∗ and

such that B(V ∗) ∈ OR.

Summarizing Theorem 1.2 and 1.5, we get the following result:

Theorem 1.6. Let C be a braided fusion category. The following conditions are equivalent:

(1) For every object B ∈ C, all the orbits of the action of ΓB = AutC(B) on XB are

closed.

(2) All finite dimensional Nichols algebras in C are rigid.

(3) All finite dimensional pre-Nichols algebras in C are Nichols algebras.

(4) Every connected and coconnected Hopf algebra R in C is isomorphic to B(P(R)).

In case the category C is the category A
AYD of Yetter-Drinfeld modules over a finite

dimensional semisimple Hopf algebra A, the bosonization process, which produces from

a Hopf algebra R in C a Hopf algebra R#A in V ecK , gives the following result:

Theorem 1.7. Let A be a finite dimensional semisimple Hopf algebra. The following are

equivalent:

(1) For every B ∈AA YD the orbits of ΓB in XB are closed.

(2) All finite dimensional Nichols algebras in A
AYD are rigid.

(3) Every Hopf algebra H in which the coradical is a Hopf algebra isomorphic to A is

generated by the zeroth and first levels of its coradical filtration.
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(4) Every connected and coconnected Hopf algebra R in A
AYD is isomorphic to a Nichols

algebra.

For A = KG where G is a finite group the second statement says that every finite dimen-

sional pointed Hopf algebra H with G(H) = G is generated by group-like elements and

skew-primitives.

The study of deformations of Hopf algebras was initiated by Gerstenhaber and Schack

in [GS90]. Du, Chen and Ye studied deformations of graded Hopf algebras in [DCY07].

Angiono, Kochetov and Mastnak studied deformations of Nichols algebras in [AKM15].

Deformations were also studied by Makhlouf in [M05]. The deformations in the above

papers are deformations by a parameter λ. We will show that our notion of rigidity, at

least for Nichols algebras, is equivalent to the rigidity of Angiono, Kochetov and Mastnak.

In [AKM15] the authors gave a proof that all Nichols algebras of diagonal type are rigid.

Theorem 1.7 above provides a new proof for the generation of pointed Hopf algebras with

an abelian group of group-like elements by skew-primitives and group-likes. In Section

4 of [Ang13] Angiono proved this result by ruling out the existence of finite dimensional

pre-Nichols algebras which are not Nichols algebras. The proof in this paper follows from

the rigidity result of [AKM15] which is based on the description of Nichols algebras from

[Ang13] by generators and relations, but not on the case by case study done in Section 4

of [Ang13].

This paper is organized as follows: in Section 2 we will give preliminaries about braided

fusion categories, Hopf algebras, and the results from the theory of algebraic groups and

geometric invariant theory which we will use here. In section 3 we will discuss in more

detail Hopf algebras in braided fusion categories, and prove the equivalence of the second

and third conditions of Theorem 1.7. In Section 4 we will give a description of braided

fusion categories using vector spaces and linear algebra. This will be used in Section 5

to show that the collection of all connected and coconnected Hopf algebras which are

isomorphic to a given object B of C form an affine variety XB. We will also construct

an action of ΓB := AutC(B) on this variety, and show that the orbits correspond to

isomorphism classes of Hopf algebras. In the end of Section 5 we will also give a proof of

Theorem 1.4. In Section 6 we will discuss filtrations of Hopf algebras and their relation to

geometric invariant theory. In Section 7 we will give a proof of Theorem 1.2 and 1.5. In

Section 8 we will explain the relations between the different notions of rigidity and give

a new proof, using the results of Angiono Kochetov and Mastnak, to the generation of

pointed Hopf algebras with abelian group of group-like elements by group-like elements

and skew-primitives.

2. Preliminaries

2.1. Braided fusion categories. We recall here briefly the definitions of fusion and

braided categories. (see [ENO05]). As stated in the introduction, we assume throughout

the paper that our ground field K is algebraically closed and of characteristic zero.

Definition 2.1. A fusion category C over K is an abelian category that satisfies the

following properties:
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(1) The category C is enriched over V ecK . This means that all hom-spaces in C are

finite dimensional K-vector spaces.

(2) The category C is semisimple. This means that every object in C can be written

uniquely as a direct sum of simple objects.

(3) The category C is monoidal. This means that we have a functor⊗
: C× C→ C (2.1)

together with associativity isomorphisms

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) (2.2)

for every three objects X, Y, Z of C satisfying the usual pentagon axiom, and there

is a unique object, up to isomorphism, 1, such that the functors

X 7→ 1⊗X and X 7→ X ⊗ 1 (2.3)

are both isomorphic to the identity functor.

(4) The number of isomorphism classes of simple objects in C is finite.

(5) The tensor unit 1 is a simple object in C.

(6) The category C is rigid. This means that every object X has a right dual X∗ and

a left dual ∗X. The right dual is defined uniquely up to an isomorphism by the

condition that there are maps evX : X∗⊗X → 1 and coevX : 1→ X⊗X∗ satisfying

some coherence conditions. The left dual is defined similarly. The semisimplicity

of a fusion category implies that left and right duals are isomorphic.

A fusion category is called braided if it is equipped with a natural isomorphism

σX,Y : X ⊗ Y → Y ⊗X (2.4)

for every two objects X, Y ∈ C such that for every X, Y, Z ∈ C the morphism

X ⊗ Y ⊗ Z
σX,Y ⊗1Z→ Y ⊗X ⊗ Z

1Y ⊗σX,Z→ Y ⊗ Z ⊗X (2.5)

is equal to the morphism

X ⊗ Y ⊗ Z
σX,Y⊗Z→ Y ⊗ Z ⊗X (2.6)

and the morphism

X ⊗ Y ⊗ Z
1X⊗σY,Z→ X ⊗ Z ⊗ Y

σX,Z⊗1Y→ Z ⊗X ⊗ Y (2.7)

is equal to the morphism

X ⊗ Y ⊗ Z
σX⊗Y,Z→ Z ⊗X ⊗ Y (2.8)

(to ease notations, we do not write here the associativity constraints). Notice that we do

not assume that σX,Y σY,X = 1Y⊗X . A category satisfying this extra assumption is called

symmetric.

One important example of a braided fusion category is the Drinfeld center of V ecG.

The objects in this category are vector spaces that admit a G-action and a G-grading.

The action and the grading should be compatible in the following sense: for g, h ∈ G we
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have g · Vh ⊆ Vghg−1 . This category is braided. The braiding is given by the following

formula:

V ⊗W → W ⊗ V (2.9)

v ⊗ w 7→ g · w ⊗ v for v ∈ Vg.
This is an example of a braided monoidal category that is also modular.

2.2. Algebras, coalgebras, and Hopf algebras inside monoidal categories. An

associative unital algebra inside a monoidal category C is defined as an object A of the

category together with morphisms m : A ⊗ A → A and u : 1 → A satisfying the

associativity relation

m(m⊗ 1A) = m(1A ⊗m)

and the unit axiom

1A = m(1A ⊗ u) = m(u⊗ 1A). (2.10)

A co-associative counital coalgebra is defined similarly, by changing the domain and

codomain of all the relevant morphisms. A Hopf algebra R inside a braided monoidal

category C is an object R of C equipped with the following maps

m : R⊗R→ R

u : 1→ R

∆ : R→ R⊗R (2.11)

ε : R→ 1 and

S : R→ R

such that the following conditions hold:

(1) (R,m, u) is an associative unital algebra.

(2) (R,∆, ε) is a coassociative counital coalgebra.

(3) ∆ and ε are algebra maps. This means that the diagrams

R⊗R⊗R⊗R
IdR⊗σR,R⊗IdR // R⊗R⊗R⊗R

m⊗m

((
R⊗R

∆⊗∆
66

m

++

R⊗R

R

∆

33

(2.12)

and

R⊗R
ε⊗ε
��

m // R

ε

��
1⊗ 1

m1 // 1

(2.13)

are commutative.
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(4) The map S is an antipode. This means that the two compositions

m(S ⊗ IdR)∆ : R→ R and m(IdR ⊗ S)∆ : R→ R (2.14)

are equal to uε.

Notice that algebras and coalgebras can be defined in any monoidal category, whereas the

definition of a Hopf algebra requires the braiding in the category. If R is a Hopf algebra

inside a braided fusion category C, then the dual object R∗ is again a Hopf algebra, where

the multiplication is given by ∆∗ : R∗ → (R ⊗ R)∗ ∼= R∗ ⊗ R∗ and the other structure

maps are defined similarly as the dual of the structure maps of R, see Section 5 of [AS00]

and the preliminaries in [Z99].

Remark 2.2. Some of the Hopf algebras in this paper will actually be graded Hopf

algebras in the bigger category Ind(C), which contains infinite direct limits of diagrams in

C. To make it clear that a certain algebra is already contained in C we will say it is finite

dimensional. This is consistent with the notion of finite dimensionality when the category

is the category of Yetter-Drinfeld modules over some finite dimensional Hopf algebra.

We say that an associative algebra A inside a fusion category is connected if A/J(A) ∼=
1, the trivial algebra in C. Here J(A) is the Jacobson radical of A, and is defined as the

biggest nilpotent ideal in A. This definition makes sense in a general fusion category, and

not only for finite dimensional algebras over a field. Indeed, an ideal I of A is a subobject

of A for which the image of the restriction of the multiplication maps

I ⊗ A→ A and A⊗ I → A (2.15)

is contained in I. Nilpotency of the ideal means that for a big enoughN , the multiplication

map

I⊗N = I ⊗ I ⊗ I ⊗ · · · ⊗ I → A (2.16)

is the zero map. In a similar way, we define a coalgebra C to be coconnected, if its dual

algebra C∗ is connected. This is equivalent to the coradical of C, which is the largest

cosemisimple subcoalgebra of C, being isomorphic to 1.

Definition 2.3. A Hopf algebra is called (co)connected if it is (co)connected as a (co)algebra.

A Hopf algebra is called connected coconnected (or ccc) if it is both connected and co-

connected.

Among the ccc Hopf algebras the Nichols algebras play a prominent role (see [AS02]).

We recall now their definition.

Definition 2.4. (see Subsection 5.7. in [BB12]) For a given object V ∈ C the Nichols

algebra B(V ) is the unique Hopf algebra in Ind(C) that satisfies the following conditions:

(1) The Hopf algebra B(V ) is graded by the non-negative integers as a Hopf algebra.

(2) The zeroth component of the grading satisfies B(V )0 = 1.

(3) The first component of the grading satisfies B(V )1 = V , and B(V ) is generated

by V .

(4) The subobject of primitive elements of B(V ) is V . This subobject is defined for

any Hopf algebra as P(R) = Ker(∆− u⊗ 1− 1⊗ u).
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Remark 2.5. One of the fundamental and very difficult questions in the study of Nichols

algebras is to determine for which objects V ∈ C the Nichols algebra is finite dimensional.

The definition above gives us a concrete way to construct the Nichols algebra. Since

B(V ) is generated by V , and the elements of V are primitive in B(V ) we have a surjective

Hopf algebra map π : T (V ) → B(V ). The fact that B(V ) is graded and the elements

of V are of degree 1 implies that the map π is a graded map. The Hopf algebra B(V )

can then be constructed from T (V ) in the following way: we divide T (V ) first by the

Hopf ideal I1 of T (V ) generated by the primitive elements of T (V ) in degrees > 1. Then

in the quotient graded Hopf algebra T (V )/I1 we divide by the ideal I2 generated by the

primitive elements of degree > 1 in this algebra, and continue inductively. Notice that it

might happen that by dividing out I1 we get new primitive elements in T (V )/I1. This

is the reason we need to repeat this process. See also the introduction in [AG19]. An

equivalent definition is given by dividing out the kernel of the Woronowicz symmetriser,

see Subsection 5.7. in [BB12].

The Nichols algebra of V and of V ∗ are related in the following way: Recall that for

a graded Hopf algebra R = ⊕n≥0Rn in C, in which all the homogeneous components are

finite dimensional, the graded dual

S =
⊕
n≥0

(Rn)∗ (2.17)

is also a graded Hopf algebra. In case R itself is finite dimensional, this is the same as the

dual R∗. We claim the following (see also Lemma 5.5 in [AS00] and Proposition 3.2.20

in [AnGr99] for the case the category is the category of Yetter-Drinfeld modules over a

Hopf algebra):

Lemma 2.6. The graded dual of B(V ) is B(V ∗). In particular B(V ) is finite dimensional

if and only if B(V ∗) is finite dimensional.

Proof. Let S be the graded dual of B(V ). It holds that S0 = (B(V )0)∗ = 1 and S1 =

(B(V )1)∗ = V ∗. We first claim that P(S) = S1. Notice first that P(S) is a graded

subobject of S. Assume that S1 = V ∗ ( P(S). Let n be the minimal integer > 1 such

that W = P(S)n 6= 0. Then

〈W,V ·n〉 = 〈∆n−1W,V ⊗ V ⊗ · · · ⊗ V 〉 = (2.18)

n−1∑
i=0

〈εi ⊗W ⊗ εn−1−i, V ⊗n〉 = 0.

We have used here the primitivity of W to express ∆n−1 using ε, the fact that the mul-

tiplication in R is dual to the comultiplication in S and the fact that ε(V ) = 0. But the

above equation implies that 〈W,B(V )n〉 = 0 since B(V ) is generated by V . This implies

that W = 0, a contradiction.

We prove now that S is generated by V ∗. Assume that this is not the case. Let n be the

minimal integer > 1 such that (V ∗)·n ( Sn. Using semisimplicity, we can find a subobject

0 6= W ⊆ V ⊗n such that 〈(V ∗)·n,W 〉 = 0. A dual argument to the argument above shows
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that ∆(W ) ∈ S0 ⊗ Sn ⊕ Sn ⊗ S0. This follows from the fact that by the minimality of n,

it holds that Sm = (V ∗)·m for every m < n. This means that

〈∆(W ), Sm ⊗ Sn−m〉 = 〈∆(W ), (V ∗)·m ⊗ (V ∗)·(n−m)〉 = (2.19)

〈W, (V ∗)·m+n−m〉 = 〈W, (V ∗)·n〉 = 0.

Since S0 = 1 this already implies that W is primitive, which is a contradiction to

P(B(V )) = V . �

2.3. Actions of algebraic groups on affine varieties. We recall the following frame-

work and basic facts about actions of algebraic groups. Let Γ be a reductive algebraic

group acting algebraically on an affine variety X. This means that the map Γ×X → X

is given by a polynomial map. The following holds (see Section 8.3 in [Hu75] and Lemma

3.3 in [N78])

Proposition 2.7. All the orbits of Γ in X are locally closed. For a Γ-orbit O in X, it

holds that O\O is the union of orbits of smaller dimension. In particular, an orbit of

minimal dimension in O is closed.

Proposition 2.8. If W1 and W2 are two closed disjoint Γ-stable subsets of X, then there

is an element f ∈ K[X]Γ such that f(W1) = 1 and f(W2) = 0. In other words- we can

separate the subsets W1 and W2 by an invariant polynomial.

3. Finite dimensional Hopf algebras in braided fusion categories

Let H be a Hopf algebra in a braided fusion category C. We will use here of the coradical

filtration of H. It will be easier to define this filtration using the radical filtration of the

dual algebra (see also Chapter IX of [S69] and [AS98] for the case where H is a Hopf

algebra in V ecK).

• We define the radical J of H∗ as

∩M Ker(H →M ⊗M∗), (3.1)

where the intersection is taken over all simple H-modules M in C, and where

H →M ⊗M∗ is adjoint to the action map H ⊗M →M . Just like in the case of

finite dimensional algebras over a field, the ideal J is nilpotent.

• We define Hn = (H∗/Jn−1)∗ ⊆ (H∗)∗ ∼= H.

An equivalent definition of Hn is given inductively by

Hn = Ker(H
∆→ H ⊗H → (H/Hn−1)⊗ (H/H0), (3.2)

where H0 is the coradical of H, defined as the sum of all simple subcoalgebras of H. The

fact that Ja ·J b = Ja+b translates to the dual property ∆(Hn) ⊆
∑

a+b≤nHa⊗Hb. We say

that H∗ satisfies the Chevalley property (and that H satisfies the dual Chevalley property)

if the tensor product of semisimple H∗-modules (in C) is again semisimple. By considering

the action of the radical J , this is equivalent to saying that ∆(J) ⊆ J ⊗H∗ +H∗ ⊗ J .

When H satisfies the dual Chevalley property we get that ∆(Jn) ⊆
∑

a+b≤n J
a ⊗ J b

by using the Hopf axiom. Dualising, this implies that Ha ·Hb ⊆ Ha+b, and the coradical
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filtration thus gives us a Hopf filtration on H. This means that the associated graded

object

grH := ⊕Hn/Hn−1 (3.3)

is a graded Hopf algebra. We will say that H is coradically graded if H ∼= grH as Hopf

algebras. The grading gives a split surjection π : grH → H0 of Hopf algebras. Using the

process of Bosonization (or Radford-Majid biproduct) one can also write this algebra in

the form grH = R#H0 where R is a graded Hopf algebra in the category of Yetter-Drinfeld

modules over H0. As a vector space

R = {r ∈ grH|(1⊗ π)∆(r) = r ⊗ 1 ∈ grH ⊗H0} (3.4)

and R0 = 1. See [AS10] for the description of R as a Hopf algebra in H0
H0
YD.

The following lemma is the first step in proving Theorem 1.7:

Lemma 3.1. Let A be a finite dimensional semisimple Hopf algebra. The following con-

ditions are equivalent:

(1) Every finite dimensional Hopf algebra H in which the coradical H0 is isomorphic

to A is generated by the zeroth and first levels of its coradical filtration.

(2) Every coradically graded finite dimensional Hopf algebra H in which the coradical

H0 is isomorphic to A is generated by the zeroth and first levels of its coradical

filtration.

(3) Every coradically graded finite dimensional Hopf algebra R ∈AA YD in which R0 = 1

is generated by its primitive elements.

Proof. The first condition clearly implies the second one. On the other hand, if the

second condition holds and H is a Hopf algebra such that H0
∼= A, we can pass to the

associated graded Hopf algebra grH. Since this Hopf algebra is coradically graded the

second condition implies that it is generated by its zeroth and first terms of the coradical

filtration, and the same thus holds also for H (see Lemma 2.2. in [AS98]).

We next prove that the second and third conditions are equivalent. Indeed, if H is

coradically graded then the above discussion implies that H ∼= R#H0 where R is a

coradically graded Hopf algebra in A
AYD. It then holds that H is generated by its first

and zeroth terms of its coradical filtration if and only if the same holds for R. But this is

equivalent to R being generated by its primitive elements. �

Lemma 3.2. (see also Lemma 5.5 in [AS00]) Assume that R is a Hopf algebra inside a

braided fusion category C. If R is generated by P(R), and R∗ is generated by P(R∗), then

R is isomorphic to B(P(R)) (that is: R is a Nichols algebra).

Remark 3.3. This lemma also holds if one replaces the braided fusion category with a

finite braided tensor category.

Proof. Write P(R) = V and P(R∗) = W . Write π : T (V )→ R for the resulting surjective

Hopf-algebra map in Ind(C). Let p : T (V ) → B(V ) be the canonical surjection. We will

show that π splits via p.
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Assume that U ⊆ T (V ) is a primitive subobject of degree n > 1 (that is: U ⊆ P(T (V ))).

We will show that π(U) = 0. The primitivity of W implies that

〈W,V ·n〉 = 〈
n−1∑
i=0

εi ⊗W ⊗ εn−1−i, V ⊗n〉 = 0. (3.5)

So in particular 〈W,π(U)〉 = 0. Using now the primitivity of U (which also implies the

primitivity of π(U), since π is a Hopf-algebra morphism) we get

〈W ·m, π(U)〉 = 〈W⊗m,
m−1∑
i=0

1i ⊗ π(U)⊗ 1m−i−1〉 = 0 (3.6)

for every m. But this implies that π(U) is perpendicular to the subalgebra of R∗ generated

by W , which is R∗ itself. This means that π(U) = 0, so U ⊆ Ker(π).

This implies that the ideal I1 ⊆ T (V ) generated by primitive elements of degree > 1

is contained in Ker(π). We thus get a surjective Hopf algebra map π1 : T (V )/I1 → R.

Denote by I2 the ideal of T (V )/I1 generated by primitive elements of degree > 1 in this

algebra. By the same argument, I2 ⊆ Ker(π1). We define now inductively ideals In
and Hopf algebra surjections πn : T (V )/In → R such that In ⊆ T (V )/In−1 is the ideal

generated by all primitive elements of degree > 1. This is the same as the chain of ideals

which appears after Definition 2.4. The union of the inverse images of the ideals In inside

T (V ) is exactly the kernel of the surjection p : T (V ) → B(V ). We thus get a surjective

map

π : B(V )→ R (3.7)

which is injective on V . This map must be injective as well, due to the following reason:

assume that n is the minimal number such that A :=
⊕

i≤n B(V ) ∩ Ker(π) 6= 0. Then

by the fact that Ker(π) is a Hopf ideal and by considering the grading we get ∆(A) ⊆
A⊗ B(V ) + B(V )⊗ A and therefore ∆+(A) ∈ A⊗ B(V ) + B(V )⊗ A as well, where ∆+

is defined to be zero on 1 and ∆− 1⊗ Id− Id⊗ 1 on Ker(ε). It holds that

∆+(A) ⊆
⊕

i+j≤n,(i,j) 6=(0,n),(n,0)

B(V )i ⊗ B(V )j. (3.8)

By the minimality of n, π is injective on
⊕

i<n B(V )i, and so we get that ∆+(A) = 0,

but this contradicts the fact that all the primitive elements of B(V ) are concentrated in

degree 1. �

Lemma 3.4. Let R be a ccc Hopf algebra. The restriction of the pairing R⊗R∗ → 1 to

P(R)⊗ P(R∗) is non-degenerate if and only if R ∼= B(P(R)).

Proof. One direction follows from the fact that the graded dual of B(V ) is B(V ∗), see

Lemma 2.6. Assume, on the other hand, that the pairing is non-degenerate. By the

previous lemma, it will be enough to prove that R is generated by V = P(R). By a dual

argument, R∗ is generated by W = P(R∗), and we can use the Lemma 3.2 to finish the

proof.

Write J = Ker(ε) ⊆ R. Consider the surjective morphism R→ R/J2. By taking duals

we get an injective morphism (R/J2)∗ → R∗. We claim that (R/J2)∗ = Im(ε) ⊕ W .

The inclusion Im(ε) ⊕ W ⊆ (R/J2)∗ follows from the fact that ε(J2) = 0 and that
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〈W,J ·J〉 = 〈∆(W ), J⊗J〉 ⊆ 〈W ⊗ Im(ε) + Im(ε)⊗W,J⊗J〉 = 0. In the other direction,

the fact that ε(u) = 1 enables us to write (R/J2)∗ ∼= Im(ε)⊕Q where Q(Im(u)) = 0. We

claim that Q is contained in W . For this, let us write R = Im(u)⊕ J . We will show that

the morphism

∆− Id⊗ ε− ε⊗ Id : Q→ R∗ ⊗R∗ (3.9)

vanishes (where we consider here ε as a morphism 1 → R∗). We will do so by showing

that the evaluation of the image of this map on R⊗R is zero.

We write

R⊗R = Im(u)⊗ Im(u)⊕ J ⊗ Im(u)⊕ Im(u)⊗ J ⊕ J ⊗ J. (3.10)

Since Im(u) · Im(u) = Im(u), it holds that 〈∆(Q), Im(u) ⊗ Im(u)〉 = 〈Q, Im(u)〉 = 0.

Similarly. we can show that the pairings of Q⊗ Im(ε) and Im(ε)⊗Q with Im(u)⊗ Im(u)

vanish. For J ⊗ J we have that 〈∆(Q), J ⊗ J〉 = 〈Q, J · J〉 = 0 because Q ⊆ (R/J2)∗

It also holds that 〈(Id ⊗ ε)(Q), J ⊗ J〉 = 〈(ε ⊗ Id)(Q), J ⊗ J〉 = 0, so the pairing of the

image of the above morphism with that summand vanishes as well. For Im(u) ⊗ J we

have 〈∆(Q), Im(u) ⊗ J〉 = 〈Q, J〉, 〈(ε ⊗ Id)(Q), Im(u) ⊗ J〉 = ε(Im(u))〈Q, J〉 = 〈Q, J〉,
and 〈(Id⊗ ε)(Q), Im(u)⊗ J〉 = 〈Q, Im(u)〉〈ε, J〉 = 0. The case for J ⊗ Im(u) is similar.

So we know that (R/J2)∗ = Im(ε) ⊕ W . Assume that the pairing V ⊗ W → 1 is

non-degenerate. Consider the image V of V in J/J2. We claim that V = J/J2. For

this, we use the fact that R/J2 = Im(u) ⊕ J/J2 and (R/J2)∗ = Im(ε) ⊕W . If V is a

proper sub-object of J/J2, then by semisimplicity there is a proper subobject A ⊆ W

such that 〈A, V 〉 = 〈A, V 〉 = 0. But this contradicts the fact that the pairing V ⊗W → 1

is non-degenerate.

Finally, there is a version of Nakayama’s Lemma that holds here. The fact that the

image of V spans J/J2 implies that V generates R. Indeed, we can prove by induction that

V generates R/Jn for every n ≥ 2. If V generates R/Jn then in particular it generates

Jn−1/Jn. Since the multiplication induces a surjective morphism Jn−1/Jn ⊗ J/J2 →
Jn/Jn+1, we see that V generates R/Jn+1 as well. Since J is a nilpotent ideal we are

done. �

We are now ready to prove the equivalence of the third and fourth conditions of 1.7.

Proof. Lemma 3.1 and Lemma 3.2 show that the third condition of Theorem 1.7 is equiva-

lent to the statement that all finite dimensional coradically graded Hopf algebras R ∈AA YD

with R0 = 1 are Nichols algebras. If the fourth condition of Theorem 1.7 holds and all

the ccc Hopf algebras in A
AYD are Nichols algebras, this is in particular true for coradi-

cally graded Hopf algebras with R0 = 1, and the fourth condition thus implies the third

condition.

If on the other hand the third condition holds and R is a ccc Hopf algebra in A
AYD

then the Hopf algebra grR arising from the coradical filtration of R is a Nichols algebra.

This implies that R is generated by its primitive elements. Similarly, the dual R∗ is also

generated by its primitive elements, and by Lemma 3.2 R is a Nichols algebra. �
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4. Braided fusion categories by linear algebra

Let C be a braided fusion category. Write X1, . . . Xs for a set of representatives of the

isomorphism classes of simple objects of C. We would like to describe all the data encoded

in the structure of C as a braided fusion category using vector spaces and linear maps.

We begin with the hom-spaces, which are very easy to describe. Indeed, it holds that

HomC(Xi, Xj) =

{
0 if i 6= j

K · IdXi
if i = j

(4.1)

since C is a semisimple category, and the Xi are non-isomorphic simple objects. Every

object of C is isomorphic to a direct sum of simple objects. Instead of writing an object

of C as
⊕

iX
⊕ai
i we will use the isomorphic object⊕

i

Ui ⊗Xi (4.2)

where Ui are plain vector spaces. Notice that the fact that C is a K-linear category means

that taking tensor products of objects in C with vector spaces makes sense.

The hom-spaces in C are then given by

HomC(
⊕
i

Vi ⊗Xi,
⊕
j

Uj ⊗Xj) =
⊕
i

HomK(Vi, Ui) (4.3)

We describe next the tensor product and the associativity constraints. Assume that

[Xi] · [Xj] =
∑
k

Nk
i,j[Xk] (4.4)

in the Grothendieck ring of C. For every three indices i, j, k ∈ {1, . . . s} fix a vector space

V k
i,j of dimension Nk

i,j. We can then write

Xi ⊗Xj
∼=
⊕
k

V k
i,j ⊗Xk. (4.5)

Notice that (⊕
i

Ui ⊗Xi

)
⊗
(⊕

j

Wj ⊗Xj

) ∼= ⊕
i,j,k

Ui ⊗Wj ⊗ V k
i,j ⊗Xk. (4.6)

For i, j, k ∈ {1, . . . s} we then have

(Xi ⊗Xj)⊗Xk
∼=
⊕
a

V a
i,j ⊗Xa ⊗Xk

∼=
⊕
a,b

V a
i,j ⊗ V b

a,k ⊗Xb (4.7)

while on the other hand

Xi ⊗ (Xj ⊗Xk) ∼=
⊕
c

Xi ⊗ V c
j,k ⊗Xc

∼=
⊕
c,b

V b
i,c ⊗ V c

j,k ⊗Xb. (4.8)

The associativity constraints

αi,j,k : (Xi ⊗Xj)⊗Xk → Xi ⊗ (Xj ⊗Xk) (4.9)

are then given by a family of linear maps

αa,b,ci,j,k : V a
i,j ⊗ V b

a,k → V b
i,c ⊗ V c

j,k (4.10)
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that combine to give linear isomorphisms⊕
a

V a
i,j ⊗ V b

a,k

∼=→
⊕
c

V b
i,c ⊗ V c

j,k (4.11)

for every i, j, k, b. The Pentagon axiom then translates into a list of axioms that says

that certain sums of compositions of the linear maps αa,b,ci,j,k are equal. More precisely,

for every i, j, k, l ∈ {1, . . . s} writing the pentagon diagram for the tensor product of

Xi ⊗Xj ⊗Xk ⊗Xl gives us that for every a, b, c ∈ {1, . . . s} the composition

V a
i,j ⊗ V b

a,k ⊗ V c
b,l

αa,b,d
i,j,k−→

⊕
d

V b
i,d ⊗ V d

j,k ⊗ V c
b,l

αb,c,e
i,d,l−→

⊕
d,e

V c
i,e ⊗ V d

j,k ⊗ V e
d,l

αd,e,f
j,k,l−→

⊕
e,f

V c
i,e ⊗ V c

j,f ⊗ V
f
k,l (4.12)

is equal to the composition

V a
i,j ⊗ V b

a,k ⊗ V c
b,l

αb,c,f
a,k,l−→

⊕
f

V a
i,j ⊗ V c

a,f ⊗ V
f
k,l

αa,c,e
i,j,f−→

⊕
f,e

V c
i,e ⊗ V t

j,f ⊗ V
f
k,l. (4.13)

Assuming that X1 = 1 is the tensor unit, the unit axioms for the monoidal category C

can be translated as saying that V j
1,i and V j

i,1 are zero if i 6= j, are one dimensional in case

i = j, and that there are distinguished bases li ∈ V i
1,i and ri ∈ V i

i,1 such that for every

i, j, k ∈ {1, . . . s} it holds that

αi,k,ji,1,j : V i
i,1 ⊗ V k

i,j → V k
i,j ⊗ V

j
1,j (4.14)

sends ri ⊗ v to v ⊗ li for v ∈ V k
i,j.

The rigidity of the category can be described in this language in the following way:

for every i ∈ {1, . . . s} there is a unique ī ∈ {1, . . . s} such that V 1
i,̄i and V 1

ī,i are one-

dimensional, and V 1
i,j = 0 for j 6= ī. The evaluation

evi : Xī ⊗Xi → X1 (4.15)

is then given by a linear isomorphism which we denote by the same symbol evi : Vī,i → K

and the coevaluation X1 → Xi⊗Xī is then given by a linear isomorphism coevi : K → Vi,̄i.

The rigidity axioms translate again to equality between compositions of linear maps. The

equality between the composition

Xi → (Xi ⊗Xī)⊗Xi → Xi ⊗ (Xī ⊗Xi)→ Xi (4.16)

and IdXi
translates to the equality

K → V 1
i,̄i ⊗ V

i
1,i → V i

i,1 ⊗ V 1
ī,i → K = K

IdK→ K (4.17)

where the first map sends 1 to coevi⊗ li, the second map is α1,1,i
i,̄i,i

and the third map sends

ri ⊗ v to evi(v) ∈ K.

The braided structure is given by maps σXi,Xj
: Xi ⊗Xj → Xj ⊗Xi. This is the same

as a collection of linear isomorphisms

σki,j : V k
i,j → V k

j,i, (4.18)

which should satisfy the axioms arising from the braid relations.
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The introduction of the vector spaces V k
i,j here and the linear maps αa,b,ci,j,k and σki,j can

be seen as a way to “introduce coordinates” on the category C. We use here the fact

that as an abelian category, C is very simple to understand on the level of objects and

morphisms. The additional braided monoidal structure is described using linear algebra.

This will be used later on in the construction of the variety XB. This should be seen as

more of an auxiliary result, and will not play a dominant role in the sequel.

5. The variety XB and the action of the group

Usually, when one speaks of “a Hopf algebra R inside the braided fusion category C” it

is understood that R is an object of C that is equipped with structure maps which are not

written explicitly. We will take here a different approach. We will fix an object B inside

our braided fusion category C, and ask what are all the possible Hopf algebra structures

one can give on that object.

A Hopf algebra is given by morphisms

m : B ⊗B → B,

u : K → B,

∆ : B → B ⊗B (5.1)

ε : B → K and

S : B → B

which satisfy some axioms. We can thus think of a Hopf algebra as a point in the affine

space

AN = HomC(B ⊗B,B)⊕ HomC(K,B)⊕ HomC(B,B ⊗B)

⊕ HomC(B,K)⊕ HomC(B,B). (5.2)

We will write a point in this space as (m,u,∆, ε, S). Notice that not all points in this

affine space will define Hopf algebra structure, and not all Hopf algebras will be ccc. We

write

XB ⊆ AN (5.3)

for the subset of all points (m,u,∆, ε, S) which define a ccc Hopf algebra structure on B.

For t = (m,u,∆, ε, S) ∈ XB we write (B, t) for the Hopf algebra B with structure given

by t. When we will say “R is a Hopf algebra in XB” we will mean that R = (B, t) and

t ∈ XB. We will also write R ∈ XB.

Write ΓB = AutC(B). When no confusion will arise we will write Γ = ΓB. The group

Γ acts on the different direct summands in An by conjugation. The action of Γ on B⊗B
is the diagonal one, and on K is the trivial one. This induces a linear action of Γ on AN .

We claim the following:

Lemma 5.1. The action of Γ on AN stabilizes the subset XB. Two points (m1, u1,∆1, ε1, S1)

and (m2, u2,∆2, ε2, S2) in XB define isomorphic Hopf algebras if and only if they lie in

the same Γ-orbit. The stabilizer of (m,u,∆, ε, S) in Γ can be identified with the group of

automorphisms of the Hopf algebra that this tuple defines.
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Proof. Write ti = (mi, ui,∆i, εi, Si) for i = 1, 2. The Hopf algebra axioms can be phrased

as equalities between certain linear maps. Associativity of the multiplication, for example,

is the equality

m(1B ⊗m)αB,B,B = m(m⊗ 1B) (5.4)

as morphisms in HomC((B ⊗ B)⊗ B,B). If γ : B → B is an automorphism in C, and if

γ(t1) = (t2) then we have that

m2(1B ⊗m2)αB,B,B = γm1(γ−1 ⊗ γ−1)(1B ⊗ γm1(γ−1 ⊗ γ−1))αB,B,B =

γm1(1B ⊗m1)αB,B,B(γ−1 ⊗ γ−1 ⊗ γ−1) (5.5)

where we used the naturality of α and the definition of the action of γ. On the other

hand a similar calculation gives us

m2(m2 ⊗ 1B) = γm1(m1 ⊗ 1B)(γ−1 ⊗ γ−1 ⊗ γ−1). (5.6)

This shows that if γ(t1) = t2 then m1 is associative if and only if m2 is associative.

Similarly, all the other Hopf algebra axioms are valid for t1 if and only if they are valid for

t2. So if γ(t1) = t2 then t1 defines a Hopf algebra if and only if t2 does. Moreover, t1 will

define a ccc Hopf algebra if and only if Ker(ε1) is a nilpotent ideal in B with respect to the

multiplication m1 and Ker(u∗1) is a nilpotent ideal in B∗ with respect to the multiplication

∆∗1. For the same reason as above, this happens if and only if Ker(ε2) is a nilpotent ideal

with respect to the multiplication m2 and Ker(u∗2) is a nilpotent ideal in B∗ with respect

to the multiplication ∆∗2. In other words, Γ stabilizes the subset XB of AN .

We will think of the equation γ(t1) = t2 as saying that γ defines an isomorphism

between (B, t1) and (B, t2). Indeed, γm1(γ−1 ⊗ γ−1) = m2 can be rephrased as saying

that the diagram

B ⊗B
γ⊗γ //

m1

��

B ⊗B
m2

��
B

γ // B

(5.7)

is commutative. Similar statements hold for u,∆, ε and S. This implies that if γ(t1) = t2
then t1 and t2 define isomorphic Hopf algebras. On the other hand, if t1 and t2 define

isomorphic Hopf algebras on B, take an isomorphism γ : (B, t1)→ (B, t2) between these

Hopf algebras. Then by the same calculations as above we get that γ(t1) = t2. So the

orbits of Γ in XB are in one to one correspondence with isomorphism classes of ccc Hopf

algebras which are isomorphic to B as an object of C. Finally, the equality γ(t) = t for

t ∈ XB just means that γ : (B, t)→ (B, t) is an automorphism. �

The rest of this section will be devoted to prove the following claim:

Lemma 5.2. The subset XB is an affine sub-variety of AN . The group Γ is isomorphic

to a direct product of general linear groups, and the action of Γ on AN is algebraic.

Proof. The proof of the lemma will be based on analyzing objects and morphisms in the

category C. We begin by writing B as

B =
⊕
i

Bi ⊗Xi (5.8)
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where Xi are representatives of the isomorphism classes of simple objects of C and Bi are

vector spaces. By Equation 4.3 this already gives us an isomorphism Γ ∼=
∏

i GL(Bi). We

choose a basis {ei1, . . . eidi} for Bi.

A Hopf algebra structure on B will be given by maps m : B ⊗ B → B, u : 1 → B,

∆ : B → B ⊗B, ε : B → 1 and S : B → B. By writing tensor products using the spaces

V k
i,j from Section 4 we see that the morphism m is given by⊕

i,j

Bi ⊗Bj ⊗Xi ⊗Xj →
⊕
k

Bk ⊗Xk. (5.9)

Rewriting the first object using the vector spaces V k
i,j gives us⊕

i,j,k

Bi ⊗Bj ⊗ V k
i,j ⊗Xk →

⊕
k

Bk ⊗Xk. (5.10)

This means that m is equivalent to a collection of linear maps

mk
i,j : Bi ⊗Bj ⊗ V k

i,j → Bk. (5.11)

Similarly, the morphism u is equivalent to a map

u1 : K → B1, (5.12)

the morphism ∆ is equivalent to a collection of maps

∆i,j
k : Bk → Bi ⊗Bj ⊗ V k

i,j, (5.13)

the morphism ε is equivalent to a map

ε1 : B1 → K (5.14)

and the antipode S is equivalent to a collection of linear maps

Si : Bi → Bi. (5.15)

We rewrite now the affine variety AN as

AN =
⊕
i,j,k

HomK(Bi ⊗Bj ⊗ V k
i,j, Bk)⊕HomK(K,B1)⊕

⊕
i,j,k

HomK(Bk, Bi ⊗Bj ⊗ V k
i,j)⊕HomK(B1, K)⊕

⊕
i

HomK(Bi, Bi). (5.16)

This description of AN shows us that the action of AutC(B) =
∏

i GL(Bi) on it is

algebraic. Indeed, it is simply given by pre- and post-composing of linear maps.

A choice of bases for Bi and for V k
i,j for all i, j, k will give us a basis for AN . This

enables us to describe the structure we have at hand, the tuple t = (m,u,∆, ε, S), as a

collection of numbers, the structure constants of t. Indeed, using the bases for Bi and V k
i,j

we can describe the different structure maps as linear maps between vector spaces with

given bases, and these are just given by matrices of scalars.

We explain now why the subset XB is in fact an affine variety. The idea is to show that

all the Hopf algebra axioms can be expressed using polynomial equations. We will also

show that the property of being ccc can be described using polynomial equations.

We begin with proving this for the associativity. The proof for the other Hopf algebra

axioms is similar. The associativity axioms says that m(m ⊗ 1B) = m(1B ⊗ m)αB,B,B.
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Writing this using the maps αa,b,ci,j,k : V a
i,j⊗V b

a,k → V b
i,c⊗V c

j,k and mk
i,j we get that associativity

is equivalent to the commutativity of the diagram

Bi ⊗Bj ⊗Bk ⊗ V a
i,j ⊗ V b

a,k

∑
c α

a,b,c
i,j,k //

ma
i,j

��

⊕
cBi ⊗Bj ⊗Bk ⊗ V b

i,c ⊗ V c
j,k

mc
j,k

��

Ba ⊗Bk ⊗ V b
a,k

mb
a,k

��

⊕
cBi ⊗Bc ⊗ V b

i,c

mb
i,c

��
Bb

= // Bb

(5.17)

where we simplified the morphisms by writing αa,b,ci,j,k instead of 1Bi⊗Bj⊗Bk
⊗ αa,b,ci,j,k and

similarly for the other morphisms. The linear map ma
i,j goes from Bi ⊗ Bj ⊗ V a

i,j to Ba,

but it is clear how to get a linear map from it as shown in the diagram. If we write now

the linear maps mk
i,j and αa,b,ci,j,k in terms of the bases of Bi and V k

i,j we get a set of quadratic

polynomials on the structure constants whose vanishing is equivalent to the associativity

of m. To state this more precisely, let us write Bi = span{eir}r and V a
i,j = span{vai,j,r}r.

The map αa,b,ci,j,k : V a
i,j ⊗ V b

a,k → V i,c
b ⊗ V c

j,k can be written as

vai,j,r1 ⊗ v
b
a,k,r2

7→
∑
s1,s2

αa,b,c,r1,r2i,j,k,s1,s2
vbi,c,s1v

c
j,k,s2

(5.18)

and the multiplication map ma
i,j can be written as

eir1 ⊗ e
j
r2
⊗ vai,j,r3 7→

∑
r4

ma,r1,r2,r3
i,j,r4

ear4 . (5.19)

We consider now the basis element eir1 ⊗ e
j
r2
⊗ ekr3 ⊗ v

a
i,j,r4
⊗ vba,k,r5 . The commutativity of

the above diagram is then equivalent to the vanishing of the quadratic polynomials∑
r6

ma,r1,r2,r4
i,j,r6

mb,r6,r5,r3
a,k,t −

∑
s1,s2,s3

αa,b,c,r4,r5i,j,k,s1,s2
mc,r2,r3,s2
j,k,s3

mb,r1,s3,s1
i,c,t , (5.20)

where t ∈ {1, . . . , dim(Bb)}. The scalars αa,b,c,r1,r2i,j,k,s1,s2
depend only on the fusion category,

and we can consider them as constants. We thus get quadratic polynomials on the set of

variables ma,r1,r2,r3
i,j,r4

. For similar reasons the other Hopf algebra axioms can be written as

well as polynomials in the structure constants.

It is left to show that being ccc is a closed condition for Hopf algebras. For this, write

n =
∑

i dimK(Bi). We claim the following:

Lemma 5.3. An ideal J of (B, t) is nilpotent if and only if Jn = 0.

Proof. One direction is clear. For the other direction, if J is nilpotent, the sequence of

ideals J ) J2 ) J3 · · · is strictly monotonic decreasing until it stabilizes at zero. Thus,

the sequence da := dim HomC(⊕iXi, J
a) satisfy

n > d1 > d2 > . . . (5.21)

and this sequence of numbers stabilizes at zero. This implies that if J is nilpotent its n-th

power must already be zero. �
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By definition, a Hopf algebra (B, t) is ccc if it is connected and coconnected. We will

show that being connected is a closed condition. The fact that coconnectedness is a

closed condition follows from a dual argument. By definition of connectedness, (B, t) is

connected if the ideal Ker(ε) is nilpotent. This is equivalent to Ker(ε)n = 0 by the above

lemma. It holds that the map

P = 1B − uε : B → B (5.22)

is a projection on Ker(ε) (this holds in any Hopf algebra, and follows from the fact that

ε ◦ u = Id1). The nilpotency of Ker(ε) is thus equivalent to the fact that the map

B⊗n
P⊗n

−→ B⊗n
mn−1

−→ B

is the zero map. But again, this can be written as a polynomial equation using the

structure constants of u, ε and m. The subset XB is thus a closed subvariety of AN , and

the action of Γ on it is algebraic. The theory of algebraic groups and geometric invariant

theory can thus be applied in our setting (see the results in Subsection 2.3). �

Definition 5.4. If R1 and R2 are two Hopf algebras in XB, we say that R2 is a special-

ization of R1 and write R1  R2 if OR2 ⊆ OR1 .

Remark 5.5. We have used here a slightly heavy categorical language, in order to con-

struct the variety XB in the most general way possible. If, for example, the category C

is G
GYD there is a way around this: we can fix only the dimension of B as a vector space,

and consider also the action and coaction of KG as part of the structure of B, instead of

something that is given a-priori, as we have done here. Describing the isomorphism type

of B as an object in C can then be done by declaring what the trace of the operations of

the elements of D(G), the Drinfeld double of G, on B, should be. The construction here

relies heavily on the fact that the category we are working in is semisimple. Indeed, the

semisimplicity gives us an easy classification of the object of the category and their au-

tomorphism groups. See also [AA18] for the study of Nichols algebras in non-semisimple

braided monoidal categories.

Remark 5.6. The Hopf algebras in G
GYD which one encounters in the study of pointed

Hopf algebras are usually graded. We study here ccc Hopf algebras and not graded

algebras for two reasons. Firstly, being connected and coconnected is a conditions which

can be described by polynomial equations. If we consider instead the variety of all graded

Hopf algebras we will get something which is too rigid, and we will not be able to see the

specializations in the orbits of XB. Secondly, all finite dimensional graded Hopf algebras

with R0 = 1 are automatically ccc. Indeed, this follows from the fact that if R =
⊕

i≥0Ri

then the Jacobson radical is
⊕

i≥1Ri, and the quotient is isomorphic to 1. The same

holds for the dual.

Remark 5.7. The map R 7→ R∗ gives us an isomorphism of varieties XB
∼= XB∗ which

commutes with the action of AutC(B) ∼= AutC(B∗). In particular, if R1, R2 ∈ XB then

R1  R2 if and only if R∗1  R∗2 in XB∗ .

The following lemma will be useful for the proof of Theorem 1.4.

Lemma 5.8. Assume that R R′. Then P(R) is isomorphic to a subobject of P(R′).
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Proof. The object of primitive elements in R is the same as the kernel of the map

TR = ∆− u⊗ 1R − 1R ⊗ u : R→ R⊗R

We can write this map as the direct sum of maps Bi ⊗ Xi → ⊕j,kBj ⊗ Bk ⊗ V k
i,j ⊗ Xi.

Such a map is thus equivalent to a collection of maps (TR)i : Bi →
⊕

j,k Bj ⊗ Bk ⊗ V k
i,j.

For every linear map L and any natural number m the condition that rank(L) ≤ m is a

Zariski closed condition. This implies that for every i it holds that

rank((TR′)i) ≤ rank((TR)i) (5.23)

and therefore

dim(Ker(TR′)i) ≥ dim(Ker((TR)i). (5.24)

This gives us the desired result. �

Proof of Theorem 1.4. If R B(V ) then P(R) is isomorphic to a subobject of P(B(V )) =

V . Similarly R∗  B(V )∗ ∼= B(V ∗) by Lemma 2.6 and Remark 5.7 so P(R∗) is isomorphic

to a subobject of P(B(V ∗)) = V ∗. Since V is simple, V ∗ is simple as well, and it follows

that P(R) = 0 or V and P(R∗) = 0 or V ∗. The option P(R∗) = 0 is not possible, since this

would imply that J/J2 = 0 where J is the Jacobson radical of R, and R must then be the

trivial algebra. In a similar way, P(R) = 0 is impossible. We are left with the situation

where P(R) = V and P(R∗) = V ∗. But this already implies that P(R) ⊗ P(R∗) → 1 is

a non-degenerate pairing, which implies by Lemma 3.4 that R is a Nichols algebra, as

desired. �

6. Filtrations of Hopf algebras

As we have seen in previous sections, understanding specializations is fundamental to

understand ccc Hopf algebras. Using the Hilbert-Mumford criterion, we will show that if

OR1 ⊆ OR2 and OR1 is closed, the specialization R2  R1 follows from a filtration on R2,

in a way which we will describe now. Let R = (B, t) be a ccc Hopf algebra in C.

Definition 6.1 (see also [M05]). A Hopf algebra filtration on R is a chain of C-subobjects

of R

· · ·R−2 ⊆ R−1 ⊆ R0 ⊆ R1 ⊆ · · ·
such that the following properties hold:

Ri = R for i >> 0,

Ri = 0 for i << 0,

∀i, j : m(Ri ⊗Rj) ⊆ Ri+j,

∀k : ∆(Rk) ⊆
∑
i+j=k

Ri ⊗Rj, (6.1)

ε(R−1) = 0,

Im(u) ⊆ R0,

∀i : S(Ri) ⊆ Ri.

We will denote the filtration by (Ri).
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Lemma 6.2. Every Hopf algebra filtration (Ri) of R determines a Z-graded Hopf algebra

grR with the same underlying object B, defined as follows:

(1) As an object of C,

R = ⊕i∈ZRi/Ri−1.

(2) The unit u ∈ grR is the image of u in R0/R−1.

(3) The counit ε : grR → K is given by ⊕Ri/Ri−1 → R0/R−1
ε→ K where ε here is

the map which is induced from ε, since ε(R−1) = 0.

(4) The condition on the antipode S implies that it defines a collection of induced maps

Si : Ri/Ri−1 → Ri/Ri−1. The antipode S of grR is
∑

i Si.

(5) The condition on m implies that we have an induced map mi,j : Ri/Ri−1 ⊗
Rj/Rj−1 → Ri+j/Ri+j−1 for every i, j ∈ Z. We define m =

∑
i,jmi,j.

(6) The condition on ∆ implies that we have an induced map ∆i,j : Ri+j/Ri+j−1 →
Ri/Ri−1 ⊗Rj/Rj−1 for every i, j ∈ Z. We define ∆ =

∑
i,j ∆i,j.

Proof. We first claim that, as objects of C, we can write R as R = ⊕i∈ZTi where Ri =

⊕j≤iTj where Ti are subobjects of R in C. This follows from the semisimplicity of C

together with the conditions on the filtration Ri. Indeed, take i << 0 for which Ri = 0.

Define Tj = 0 for all j ≤ i. Then choose Ti+k inductively to be a direct sum complement

of Ti+k−1 in Ri+k. Notice that this implies that Tj ∼= Rj/Rj−1 for every j ∈ Z, and that

B ∼= R ∼= ⊕Tj ∼= ⊕Rj/Rj−1
∼= grR as objects of C.

All the structure maps of grR are well defined due to the condition the structure maps

of R satisfy. �

For the next lemma, recall that XB ⊆ AN . We can consider the orbit OgrR inside AN .

Lemma 6.3. Let (Ri) be a Hopf algebra filtration of the ccc Hopf algebra R. Then

OgrR ⊆ OR. In particular, OgrR is also contained in the closed subset XB of AN , and as a

result grR is also a ccc Hopf algebra.

Proof. We use the C-objects Ti constructed in the previous lemma. We write all the

structure maps of R in terms of the direct sum decomposition R = ⊕iTi. The conditions

on the filtration gives us

m =
∑
i+j≥k

mk
i,j,∆ =

∑
i+j≤k

∆i,j
k ,

u =
∑
i≤0

ui, ε =
∑
i≥0

εi (6.2)

S =
∑
i≥j

Sji

where

mk
i,j : Ti ⊗ Tj → Tk, ∆i,j

k : Tk → Ti ⊗ Tj,
ui : K → Ti, εi : Ti → K, and (6.3)

Sji : Ti → Tj.

Using the identification R ∼= ⊕iTi ∼= ⊕iRi/Ri−1
∼= grR we see that the multiplication in

grR is given by
∑

i,jm
i+j
i,j , the comultiplication is given by

∑
i,j ∆i,j

i+j, the unit by u = u0,

the counit is ε0, and the antipode is
∑

i S
i
i . We thus see that in passing from R to grR we
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“deleted” all the parts of the structure maps that are of positive degree and stayed only

with maps of degree zero (maps of negative degree do not appear here at all). Here the

degree of a map Ti1 ⊗ · · · ⊗ Tir → Tj1 ⊗ · · · ⊗ Tjm is i1 + i2 + · · ·+ ir − j1 − j2 − · · · − jm.

We use this idea to prove that the orbit of grR in AN is in the closure of the orbit of

R. This will already imply that grR is a ccc Hopf algebra, because OR ⊆ XB, and XB is

closed in AN . To prove this, we will use a one-parameter subgroup of Γ. That is: a group

homomorphism φ : Gm → Γ = AutC(B). We define φ as follows

φ(λ) =
∑
i∈Z

λ−iIdTi . (6.4)

We claim that φ(Gm)(R) contains grR in its closure. Since φ(Gm) is a subgroup of Γ this

will be enough. To prove this write

φ(λ)(R) = (B, tλ) = (B,mλ, uλ,∆λ, ελ, Sλ). (6.5)

We get

mλ =
∑
i+j≥k

λi+j−kmk
i,j, ∆λ =

∑
i+j≤k

λk−i−j∆i,j
k

uλ =
∑
i≤0

λ−iui, ελ =
∑
i≥0

λiεi (6.6)

Sλ =
∑
i≥j

λi−jSji .

This description shows us that limλ→0 φ(λ)(R) exists, since in all the above expression λ

appears only with non-negative powers. Taking the limit λ→ 0 gives us limλ→0 φ(λ)(B, t) =

(B,m′, u′,∆′, ε′, S ′) where

m′ =
∑
i,j

mi+j
i,j = m,∆′ =

∑
i,j

∆i,j
i+j = ∆

u′ = u0 = u, ε′ = ε0 = ε (6.7)

S ′ =
∑
i

Sii = S

This shows us that the limit point is exactly the structure constants of grR. We are

done. �

Remark 6.4. If R ∈ XB and φ : Gm → Γ is any one-parameter subgroup for which

limλ→0 φ(λ)(R) exists, then we get a filtration on R by setting

Ti = Ker(φ(λ)− λ−i) ⊆ R for a generic λ

Ri = ⊕j≤iTj.
The fact that limλ→0 φ(λ)(R) exists implies, by the same argument as above, that (Ri) is

a Hopf algebra filtration. We thus see that the isomorphism classes of ccc Hopf algebras

which appear on the boundary of R by the action of a 1-parameter subgroup are exactly

the ccc Hopf algebra arising from R by a Hopf algebra filtration. Moreover, by the Hilbert-

Mumford criterion if OR′ ⊆ OR and OR′ is closed, then there exists a one-parameter

subgroup φ : Gm → Γ such that R′ = limλ→0 φ(λ)(R) (see Theorem 1.4. in [K78]). This
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implies that in order to understand specializations, and especially specializations to ccc

Hopf algebras with closed orbits, we need to study Hopf algebra filtrations.

We finish this section with two filtrations which are canonically associated to any ccc

Hopf algebra: the radical and the coradical filtration. They are dual to one another, in

a way which we shall explain below. As was explained in the introduction, the coradical

filtration of a Hopf algebra (not necessarily a ccc one) is used in a fundamental way in

the classification of non-semisimple Hopf algebras. The use of both filtrations together

will play an important role in studying closure of orbits in this paper.

For the radical filtration, let J = Ker(ε) be the Jacobson radical of R. We claim the

following:

Lemma 6.5. The filtration Ri = J−i for i < 0 and Ri = R for i ≥ 0 is a Hopf algebra

filtration.

Proof. Since J is a nilpotent ideal, the condition Ri = 0 for i << 0 holds. It is clear that

the condition Ri = R for i >> 0 holds as well (it holds, in fact, for i = 0). The fact that

J i ⊆ J j when j ≤ i implies that Ri ·Rj ⊆ Ri+j. The condition u ∈ R0 is immediate, and

the condition ε(R−1) = 0 follows from the fact that J = Ker(ε). For the condition on ∆,

notice that ∆(J) ⊆ J ⊗ R + R ⊗ J . For any i, j ≥ 0 the braiding σ : R ⊗ R → R ⊗ R
satisfies σ(J i ⊗ J j) = J j ⊗ J i. A direct calculation implies that ∆(Jk) ⊆

∑
i+j=k J

i ⊗ J j,
which is what we wanted to prove. �

We write Rgra for the graded Hopf algebra arising from R via the radical filtration.

We recall here also the definition of the dual filtration, the coradical filtration, from

Section 3: We define Ri = 0 for i < 0, R0 = Im(u) and

Rn = Ker
(
R

∆n−1

→ R⊗n → (R/R0)⊗n
)

for n > 0. (6.8)

Again, a direct verification, using the fact that the dual algebra is connected, reveals the

fact that this is a filtration of Hopf algebras as well. We write Rgrc for the graded Hopf

algebra associated to this filtration. We thus see that R Rgra and R Rgrc for every

ccc Hopf algebra R in XB. The two filtrations are dual to one another in the following

sense: For i ∈ Z let Ri be the i-th level of the coradical filtration, and let Xi ⊆ R∗ be

defined as

Xi = Ker(R∗ → R∗−i). (6.9)

Then it holds that (Xi) is the radical filtration on R∗. This duality induces isomorphisms

(Rgra)
∗ ∼= (R∗)grc and (Rgrc)

∗ ∼= (R∗)gra.

7. A proof of Theorem 1.2 and 1.5

In this section we prove that a ccc Hopf algebra in XB has a closed orbit if and only

if it is isomorphic to a Nichols algebra. Let R be a Hopf algebra in XB. Recall the

associated graded Hopf algebras Rgra and Rgrc from Section 6. We know that R  Rgra

and R Rgrc. In particular, if the orbit of R is closed we get that R ∼= Rgrc and R ∼= Rgra.

The following proposition shows that if OR is closed then R is a Nichols algebra.
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Proposition 7.1. Assume that the Hopf algebras Rgra and Rgrc are isomorphic as Hopf

algebras. Then R is a Nichols algebra.

Proof. Assume that the two Hopf algebras are isomorphic. Write Rgra =
⊕n

i=0 Ai where

Ai = J i/J i+1 (for the sake of simplicity, we use here positive grading instead of the

negative grading from Section 6 for the radical filtrations). Then the algebra Rgra is

generated by A1. The object A1 is primitive, since ∆(A1) ⊆ A1 ⊗ A0 + A0 ⊗ A1 and

A0
∼= R/J ∼= 1. This implies, in particular, that Rgra is generated by the subobject of

primitives. The algebra Rgrc = ⊕mi=0Ci has all primitives in degree 1. Since it is isomorphic

to the algebra Rgra, it is also generated by C1. This implies that Rgrc is a graded Hopf

algebra which is generated in degree 1 and has all its primitive elements in degree 1. By

Definition 2.4 this implies that Rgrc is a Nichols algebra. It follows that R is generated

by primitive elements. By a dual argument, and by using the fact that (Rgra)
∗ ∼= (R∗)grc

and (Rgrc)
∗ ∼= (R∗)gra we get that R∗ is also generated by its primitive subobject. Lemma

3.2 gives us the desired result. �

This finishes the proof that if OR is closed then R is a Nichols algebra, because the fact

that R  Rgrc and R  Rgra together with the closure of OR implies that Rgrc
∼= R ∼=

Rgra. Next, we will show that if R is a Nichols algebra then OR is closed. Assume that

this is not the case and let R = B(V ) be a Nichols algebra with a non-closed orbit. The

closure OR is the union of the orbit of R with orbits of smaller dimension. An orbit of

minimal dimension in OR is closed. It follows that R  R′ for some R′ ∈ XB with OR′

closed. But we already know that this implies that R′ is a Nichols algebra.

Write R′ = B(V ′). Then we have B(V )  B(V ′). By 5.8 we know that this implies

that P(B(V )) = V is isomorphic to a subobject of P(B(V ′)) = V ′. Since R � R′ the

object V must be isomorphic to a proper subobject of V ′. Write V ′ = V ⊕ V ′′. The

split inclusion of objects in C, V → V ′ → V , induces a split inclusion of Nichols algebras

B(V ) → B(V ′) → B(V ). This implies that B(V ) � B(V ′) because then B(V ′) properly

contains B(V ), and this contradicts the fact that R and R′ are isomorphic to the same

object of C. This finishes the proof of Theorem 1.2

Recall that Γ = AutC(B). The proof of Theorem 1.2 gives us a description of the

irreducible components of XB:

Theorem 7.2. Let B ∈ C. For every V ∈ C such that B(V ) ∈ XB write XV = {R|R ∈
XB and R  B(V )}. Then the subsets XV are stable under the action of Γ and are

exactly the connected components of XB.

Proof. The fact that XV is stable under Γ is immediate. Notice that for dimension

considerations the number of objects V such that B(V ) ∈ XB is finite. We denote these

objects by V1, V2, . . . Vm. We claim now that the dimension of the invariant subalgebra

K[XB]Γ is finite. Indeed, if R B(V ) then continuity considerations imply that f(R) =

f(B(V )) for every f ∈ K[XB]Γ. Consider the following homomorphism of algebras

φ : K[XB]Γ → Km (7.1)

f 7→ (f(B(V1)), . . . , f(B(Vm))),
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where Km is an algebra by the operations of pointwise addition and multiplication. If

f ∈ Ker(φ) then f vanishes on the orbit of every Nichols algebra, and since f is invariant

under the action of Γ, the continuity of f implies that it vanishes on every Γ-orbit, so

f = 0. This implies that φ is injective. Since B(Vi) � B(Vj) when i 6= j and OB(Vi)

and OB(Vj) are closed and disjoint Proposition 2.8 implies that for every i 6= j there is a

function fij ∈ K[XB]Γ such that fij(B(Vi)) 6= fij(B(Vj)). Since φ is an algebra map the

image of φ is a unital subalgebra of Km. The only unital subalgebra of Km that separates

the points {1, . . . ,m} is Km itself, and so φ is surjective and an isomorphism. We thus

see that all the XVi are closed, since XVi is the zero set of the polynomial 1 − φ−1(ei)

(where {ei} is the standard basis of Km).

We next claim that XVi is connected for every i. Indeed, assume that XVi = Y1 t Y2

with Y1 and Y2 closed and nonempty. Take y1 ∈ Y1. Then Oy1 = Γ · y1 is connected,

contained in XVi and intersects Y1, so Oy1 ⊆ Y1. But then OB(Vi) ⊆ Oy1 ⊆ Y1. By a

similar argument OB(Vi) ⊆ Y2 and this is a contradiction. �

Due to the last theorem, we can focus our attention on the different subvarieties XV .

These subvarieties are stable under the action of Γ. The conditions in Theorem 1.6 then

boil down to the statement that if B(V ) is finite dimensional, then the variety XV has a

single orbit under the action of Γ. We finish with a proof of Theorem 1.5:

Proof of Theorem 1.5. Assume that B(V ) is not rigid. In other words, assume that there

are non-closed orbits in XV . Take a non-closed orbit OR of minimal dimension in XV .

We will prove that such an orbit is the orbit of a pre-Nichols algebra or a post-Nichols

algebra. For this consider the Hopf algebras Rgra and Rgrc. If both these Hopf algebras

are isomorphic to R, then R ∼= Rgra
∼= Rgrc, which implies that R itself is a Nichols algebra

by Proposition 7.1. This is a contradiction. If both these algebras are non-isomorphic to

R, then from the fact that Rgrc, Rgra ∈ OR it follows that the dimensions of the orbits

ORgra and ORgrc are smaller than the dimension of OR. By the minimality condition on

R, this implies that Rgrc
∼= Rgra

∼= B(V ). But by Proposition 7.1 again, this implies that

R itself is a Nichols algebra, which leads again to a contradiction.

We thus see that either R ∼= Rgra and R � Rgrc, or R � Rgra and R ∼= Rgrc. Assume

first that R ∼= Rgra and R � Rgrc. Since R ∼= Rgra, R has a grading R = ⊕Ri such that

the Jacobson radical J satisfy J i = ⊕j≥iRj for every i ≥ 1. The grading implies that R1,

which generate R as an algebra, is a primitive object. But this already implies that R is

a pre-Nichols algebra, as it lies between T (R1) and B(R1). Notice that it is impossible

that R1
∼= V . Indeed, if this was the case then from dimension considerations the fact

that R projects onto B(R1) would imply that R ∼= B(R1) = B(V ), contradicting the fact

that the orbit of R is not closed. By Lemma 5.8 it follows that R1 is isomorphic to a

subobject of V . We thus see that it must be a proper subobject.

This shows that if R ∼= Rgra then R is a pre-Nichols algebra. If R ∼= Rgrc then by

duality of the radical and coradical filtrations we get that R∗ is a pre-Nichols algebra.

This finishes the proof of Theorem 1.5 and also of 1.6 �
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8. Different notions of rigidity

In this paper we call a ccc Hopf algebra R rigid if any Hopf algebra that specializes

to it is isomorphic to it. There are other notions of rigidity, using deformations by a

one-parameter family. We will explain here the relations between them.

In [AKM15] and [DCY07] a deformation of a graded bialgebra (not necessarily a finite

dimensional one) B = ⊕i≥0B(i) by a parameter λ is defined as a pair (mλ,∆λ) such that

mλ =
∞∑
i=0

m(i)λ
i and ∆λ =

∞∑
i=0

∆(i)λ
i (8.1)

where m(i),∆(i) are maps of degree −i, m(0) = m and ∆(0) = ∆, and (mλ,∆λ, u, ε) defines

a bialgebra structure on B for every λ. (Bialgebra deformations of Hopf algebras are

automatically Hopf algebras as well. Due to the uniqueness of the antipode, we do not

need to consider it as part of the deformation data). It is shown that this is the same

as a filtered Hopf algebra U that satisfies grU ∼= B. In [AKM15] and [DCY07] a graded

Hopf algebra B is called rigid if it has no non-trivial deformations. We will call it here

deformation rigid. We claim the following:

Lemma 8.1. A finite dimensional Nichols algebra B(V ) is rigid with respect to Definition

1.3 if and only if both B(V ) and B(V ∗) are deformation rigid.

Proof. Remark 5.7 implies that B(V ) is rigid if and only if B(V ∗) is rigid (with respect to

Definition 1.3). To prove the first direction it will thus be enough to show that if B(V ) is

rigid with respect to Definition 1.3 then it is deformation rigid.

Assume that (mλ,∆λ) is a one-parameter deformation of B(V ). Using the grading

B(V ) = ⊕B(V )i we have a one-parameter family φ : Gm → AutC(B) which sends λ to

the automorphism which acts on B(V )i by the scalar λ−i. We then have that

(mλ,∆λ) = φ(λ) · (m1,∆1) and (m0,∆0) = lim
λ→0

λ · (m1,∆1). (8.2)

Since B(V ) is rigid, any algebra specializing to it is isomorphic to it. So we get a Hopf

algebra isomorphism Ψ : B(V ) ∼= (B,m1,∆1, u, ε, S1) where S1 is the uniquely defined

antipode.

Next, we claim that B(V )1 consists of primitive elements with respect to the comul-

tiplication ∆1 (and therefore, with respect to ∆λ for every λ ∈ K× as well). Indeed,

by grading consideration we have that ∆1|B(V )1 = ∆(0) + ∆(1), where ∆(0) = ∆. The

map ∆(1) : B(V )1 → B(V )0 ⊗ B(V )0 = 1 ⊗ 1 = 1 must be zero since otherwise this will

contradict the fact that ε(B(V )1) = 0. This implies that the isomorphism Ψ will map

B(V )0 to B(V )0 and B(V )1 to B(V )1. Without loss of generality we can assume that

Ψ|B(V )1 = IdB(V )1 (recall that both B(V ) and the deformed algebra have the same under-

lying object B). Since B(V )n is the image of B(V )⊗n1 → B(V ) with respect to the iterated

multiplication m, and since
⊕

i≤n B(V )i contains the image of B(V )⊗n1 → B(V ) under the

iterated multiplication m1, we get that Ψ preserves the filtration B(0) ⊆ B(1) ⊆ · · · of B

given by B(n) =
⊕

i≤n B(V )i. But this already implies that the deformation (mλ,∆λ) is

trivial with respect to the definition in Section 2.3 of [AKM15].

In the other direction, assume that B(V ) and B(V ∗) are deformation rigid. By Theorem

1.6 we know that if B(V ) is not rigid then there is a pre-Nichols Hopf algebra R such that
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R  B(V ) or R  B(V ∗). Since both B(V ) and B(V ∗) are deformation rigid, we can

assume without loss of generality that the first case holds. The algebra R is generated by

its primitive elements, and therefore admits a filtration

R(0) ⊆ R(1) ⊆ · · ·

where R(n) =
∑n

i=0 P(R)i. This can easily be seen to be a Hopf algebra filtration of R.

The associated graded object is then B(V ) with its usual grading. Since we assumed that

B(V ) is deformation rigid we get that R ∼= B(V ), which is a contradiction. �

We recall here Theorem 6.2 from [AKM15]. This result relies on the classification result

from [Ang13].

Theorem 8.2. Assume that B(V ) is finite dimensional and that the braiding on V is of

diagonal type. Then B(V ) is deformation rigid.

This theorem, combined with Theorem 1.6 gives a new proof for the generation of

pointed Hopf algebras with abelian groups of group-like elements by group-like elements

and skew-primitives. Indeed, the above theorem implies that all the finite dimensional

Nichols algebra in G
GYD for G abelian are rigid, and therefore by Theorem 1.6 all finite

dimensional ccc Hopf algebras in G
GYD are Nichols algebras, and every Hopf algebras

H such that H0 = KG with G abelian is generated by group-like elements and skew-

primitives.
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