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Abstract: Chronic Obstructive Pulmonary Disease (COPD) is a highly heterogeneous condition 20 

projected to become the third leading cause of death worldwide by 2030. To better characterize this 21 

condition, clinicians have classified patients sharing certain symptomatic characteristics, such as 22 

symptom intensity and history of exacerbations, into distinct phenotypes. In recent years, the growing 23 

use of machine learning algorithms, and cluster analysis in particular, has promised to advance this 24 

classification through the integration of additional patient characteristics, including comorbidities, 25 

biomarkers, and genomic information. This combination would allow researchers to more reliably 26 

identify new COPD phenotypes, as well as better characterize existing ones, with the aim of 27 

improving diagnosis and developing novel treatments. Here, we systematically review the last decade 28 

of research progress, which uses cluster analysis to identify COPD phenotypes. Collectively, we 29 

provide a systematized account of the extant evidence, describe the strengths and weaknesses of the 30 

main methods used, identify gaps in the literature, and suggest recommendations for future research.  31 

Keywords: chronic respiratory disease, subtypes, statistical analysis   32 

Introduction 33 

Chronic Obstructive Pulmonary Disease (COPD) is a group of lung diseases, such as emphysema, 34 

chronic bronchitis, and asthma, that cause breathing difficulties due to inflammation of the lungs and 35 

narrowing of the airways. Typical symptoms of COPD include breathlessness, a persistent cough with 36 

phlegm, frequent chest infections, and wheezing. Its main causes are smoking, which accounts for 37 

almost 90% of cases, occupational exposure to dust and fumes, and air pollution [1]. COPD 38 

represents one of the most common respiratory diseases, and it is projected to become the third 39 

leading cause of death worldwide by 2030 [2], principally because of difficulties in early, accurate 40 

diagnosis.  41 

To better characterize COPD and improve diagnosis, the extant research has identified 42 

different patient phenotypes (i.e., the common clinical characteristics shared by patients affected by 43 

COPD). These phenotypes are usually assessed through clinical examinations, generally following 44 

the recommendations provided by the Global Obstructive Lung Disease initiative (GOLD) [3]. 45 

Specifically, GOLD classifies COPD patients into four phenotype-like categories according to a 2x2 46 

matrix structured along the dimensions of symptoms and history of exacerbations (Table 1).  47 

[Table 1 about here] 48 
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Whilst beneficial in guiding clinical practice, this and other forms of COPD classification are 49 

often in need of stronger statistical support with respect to their predictive ability regarding clinically 50 

meaningful outcomes, such as mortality and response to treatment [4]. For instance, a large 51 

prospective study (n=12,108 patients) recently showed that COPD patients receiving maintenance 52 

therapy were similarly distributed across the four GOLD phenotypes when compared to patients who 53 

received a target treatment [5]. Likewise, the proportion of comorbidities and rate of exacerbations 54 

reported across the COPD groups were similar for both cohorts, suggesting a limited discriminatory 55 

ability of these phenotypes [5].  56 

To address this issue, research has increasingly called for the integration of other 57 

determinants, such as physiological characteristics (e.g., age, body mass index, waist circumference) 58 

[6-16,18], comorbidities (e.g., diabetes, cardiovascular diseases) [6,8,10,13,16,17,19], pulmonary 59 

function tests [7,8,11-16,19],biomarkers [6,19], and genetic variants [7], as valuable information to 60 

facilitate a more comprehensive characterization of the distinctive biological nature of COPD 61 

phenotypes, thereby promising to improve their predictive ability for clinically relevant outcomes. In 62 

particular, with sustained progress in applying machine learning algorithms to medicine, research has 63 

recently begun to put forward the powerful method of clustering – a machine learning method, which 64 

allows researchers to find structures in the data so that the elements of the same cluster (i.e., a 65 

phenotype) are more similar to each other than to those from different clusters [20], with the aim of 66 

integrating patients’ information and identifying patterns of association that can characterize COPD 67 

phenotypes more precisely.  68 

Yet, at present, there is still little evidence-based information available that both systematizes 69 

current knowledge on cluster analysis for COPD phenotype characterization and pinpoints the core 70 

benefits and limitations of the different approaches. Here, we aim to tackle this gap by reviewing the 71 

last decade of research, which uses cluster analysis to identify clinically meaningful COPD 72 

phenotypes. In the following sections of this article we describe our search strategy, synthetize the 73 

characteristics of the articles retrieved (e.g., study design, population, phenotypes’ features), and 74 

provide recommendations aimed at improving the use and performance of these methods in future 75 

research and clinical practice. 76 



2 
 

Search strategy and selection criteria 77 

In keeping with PRISMA guidelines, we conducted our search through a systematic consultation of 78 

the Medline PubMed, Cochrane Library, Scopus, and Web of Science (Figure 1) databases. 79 

[Figure 1 about here] 80 

We also hand-searched the reference lists of the retrieved articles. Additionally, we searched articles 81 

in leading pulmonary and respiratory medicine scholarly outlets to specifically include journals such as 82 

The Lancet Respiratory Medicine and The American Journal of Respiratory and Critical Care 83 

Medicine, among others.  84 

Briefly, we tailored the search to probe for overarching concepts and relations pertaining to the 85 

domains of machine learning and COPD phenotypes. Specifically, we searched for studies that used 86 

cluster analysis to identify COPD phenotypes by using the MeSH keywords “COPD”, “phenotypes”, 87 

“cluster analysis”, “clustering” and “machine learning” as well as their possible variants and 88 

combinations. Moreover, we aimed to search for articles in which the COPD phenotypes reported 89 

were validated by clinically meaningful outcomes, eg, mortality, exacerbations, and response to 90 

therapy. We also searched for ongoing registered studies relevant to our research question, including 91 

NOVELTY [21], SPIROMICS [22] and the BigCOPData [23] project, which, whilst informative to the 92 

overall picture, were not individually retained in our analysis because their final results have yet to be 93 

fully disclosed. 94 

Our search resulted in 117 articles published mainly in English and covering the period between 2003 95 

and 2019. After excluding duplicates, we screened 113 papers to select unambiguous publications of 96 

relevant research. Hereby, 65 articles were excluded because they were not relevant to COPD 97 

phenotypes and/or machine learning methods, while 34 studies were excluded because the COPD 98 

phenotypes reported had not been validated with clinically meaningful outcomes.  99 

Fourteen studies that satisfied our inclusion/exclusion criteria were retained in this review. Next, we 100 

present the entire body of retrieved studies, focusing in particular on the population characteristics, 101 

study design, sample size, the derived COPD phenotypes, and the clinical outcomes against which 102 

the phenotypes were validated of the articles respecting our inclusion criteria (Table 2). Moreover, we 103 

highlighted important inputs that we appreciated from the studies excluded from our systematic 104 

analysis, as well as specific phenotypes observed in the Evaluation of COPD Longitudinally to Identify 105 

Predictive Surrogate End-points (ECLIPSE) [24] study. 106 
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[Table 2 about here] 107 

Findings   108 

Studies respecting inclusion criteria for review  109 

Populations  110 

The sample size varied considerably across studies, spanning from 65 [18] to 30,961 patients [6].The 111 

majority of the retrieved works involved multi-centre, observational cross-sectional cohorts across the 112 

world (e.g., Italy, France, Spain, Belgium, United Kingdom, Korea, Japan, New Zealand, China). Data 113 

were collected from university hospitals, tertiary care, and pulmonary rehabilitation settings. This 114 

variability may explain the high variation in sample sizes. For instance, the largest study [6] (ie, 115 

CALIBER) covered a longitudinal cohort for a period of 18 years. This cohort comprised the data of 116 

electronic health records from three UK national resources: the Clinical Practice Research Datalink 117 

(CPRD), the Hospital Episode Statistics (HES), and information on cause-specific mortality from the 118 

Office for National Statistics (ONS). The second largest study [7] was based on the Genetic 119 

Epidemiology of COPD (COPDGene) and aimed to investigate the genetic factors responsible for 120 

COPD development. Moreover, similar to CALIBER [6], Burgel et al [8] combined three national 121 

COPD cohorts from France and Belgium as well as one independent cohort from the COPD Cohorts 122 

Collaborative International Assessment (3CIA) initiative. Two other relatively large studies, each with 123 

over 1,000 patients, were carried out in Asia. One was based on the Korean COPD subgroup multi-124 

centre cohort [9] and the other one [10] included out-patients of universities’ pulmonary clinics and 125 

referral hospitals in 13 Asian cities.  126 

Importantly, despite the diverse ethnic backgrounds of the populations of these studies, the identified 127 

COPD phenotypes were rather consistent across studies, including elements of asthma-COPD 128 

overlaps, comorbidities, and obesity, amongst others. 129 

Clinical Outcomes 130 

A core characteristic shared among the reviewed studies is that all COPD phenotypes were validated 131 

by clinically meaningful outcomes, such as exacerbations, health-related quality of life, mortality rate, 132 

and responses to therapy. These phenotypes were cross-validated in a large (n=2,746) three-year 133 

observational multi-centre international study – the Evaluation of COPD Longitudinally to Identify 134 
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Predictive Surrogate End-points (ECLIPSE) [24]. In this study, a cross-sectional analysis of the 135 

baseline data showed that patients with COPD had more frequent comorbidities, especially 136 

cardiovascular ones, when compared to controls [25]. It also showed that males with COPD were 137 

more susceptible to cardiovascular comorbidity than females; moreover, in Pikoula et al [6], patients 138 

with comorbid cardiovascular disease and diabetes were characterized by high hospital admission 139 

rates for acute exacerbations of COPD (AECOPD) and were reported as being more likely to die of 140 

cardiovascular disease.  141 

Building on these results, subsequent works [26,27] identified phenotypes of patients with frequent 142 

(i.e., two or more per year) exacerbations as well as patients with a rapid decline in their lung function. 143 

The latter evidence [27] was further extended by a five-year longitudinal study that classified patients 144 

into three groups: fast decline, slow decline, and stable patterns [28]. The latter work showed that the 145 

only factor significantly associated with a fast decline of FEV1 (Forced Expiratory Volume in 1 146 

second) was the severity of the emphysema. Moreover, 25% of the cohort was represented by the so-147 

called “asthma-COPD overlap,” or ACO, in which patients are characterized by having more 148 

exacerbations and more frequent comorbidities than in other rapid-decline COPD types [29].  149 

Features of COPD Phenotypes 150 

We found substantial heterogeneity in both the numbers and features of phenotypes presented in the 151 

literature. The number of COPD phenotypes identified varied from two to five, the most frequently 152 

reported being three [10,11,13-15] and five [6,8,16,17,19].   153 

Intriguingly, the features pertaining to the three most reported phenotypes varied across studies. For 154 

instance, phenotypes were characterized by patients having frequent exacerbations and a fast decline 155 

in lung function and in quality of life [10], but also by patients of a young age with fewer symptoms 156 

and exacerbations [11], or patients with severe respiratory disease but a low rate of comorbidities and 157 

older patients with a high rate of comorbidities (e.g., cardiovascular diseases and diabetes) but lower 158 

airway limitation and less obesity [12,13].    159 

Two studies [14,15] reported similar phenotypes with respect to COPD severity. Peters et al [14] 160 

identified three phenotypes in which patients were characterized by moderate COPD and a low 161 

impact on overall health status, moderate COPD with a high impact on health status, or severe COPD 162 

with a moderate impact on health status. Similarly, the three phenotypes identified by Garcia-163 
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Aymerich et al [15] were characterized by moderate, severe, and systemic COPD; the latter 164 

phenotype also had a high rate of cardiovascular comorbidities.  165 

When four phenotypes were reported, they also differed in terms of the severity of symptoms. 166 

Specifically, Yoon et al [9] clustered patients both according to their COPD severity (ie, mild, 167 

moderate, severe) and by identifying the ACO phenotype. A related work [7] classified patients 168 

according to the severity of emphysema (i.e., minimal, moderate, severe). Moreover, two studies 169 

[12,13] emphasized the distinction of two key population groups: a younger group of patients with 170 

moderate to severe respiratory disease but few comorbidities, and an older group with mild to severe 171 

airflow limitations but a high rate of cardiovascular comorbidities. 172 

In those articles that identified five phenotypes, the reported features were more homogeneous than 173 

those identified in studies reporting fewer phenotypes. For instance, almost every study reported 174 

similar comorbidities, namely cardiovascular and metabolic diseases (e.g., diabetes), obesity, and 175 

ACO, as possible confounding factors. In Burgel et al [8], the derived phenotypes confirmed other 176 

existing findings [12,13], suggesting the identification of an older group of patients with a high rate of 177 

cardiovascular comorbidities and diabetes but with less severe respiratory impairments. Similarly, 178 

Chen et al [16] acknowledged a group of young patients with mild airflow obstructions, few symptoms, 179 

and infrequent severe exacerbations vis-à-vis older patients with more symptoms, frequent severe 180 

exacerbations, and a high mortality rate.         181 

Overall, the diversity of phenotypes and populations presented in the current literature should not be 182 

surprising. Indeed, as we explain in the following, this scenario is largely due to an overarching limited 183 

reliance on statistical support in validating COPD with clinically meaningful outputs. Confirming our 184 

argument, for instance, a large study [30] carried out across ten independent cohorts from different 185 

populations in North America and Europe clearly showed that when identical methods were 186 

implemented for 17,146 individuals with COPD using common COPD-related characteristics, the 187 

reproducibility of COPD phenotypes across studies was rather modest. 188 

Studies excluded from the systematic analysis  189 

Ninety-nine studies were excluded either because a) they were irrelevant to COPD phenotypes or 190 

machine learning methods under study or b) the reported COPD phenotypes were not validated 191 

against clinical meaningful outcomes (Table 3). 192 

     [Table 3 about here]  193 
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 194 

Twenty one of those studies identified between two [31] and nine [32] phenotypes; however the 195 

number of phenotypes most frequently reported were either three [33, 34, 35, 36], four [37, 38, 39, 40, 196 

41, 42, 43, 44] or five [45, 46, 47, 48, 49, 50, 51]. The works were predominantly observational – 12 197 

were cross-sectional [31, 33, 36, 38, 39, 40, 41, 42, 47, 48, 49, 51], six prospective [34, 43, 44, 45, 198 

46, 50], two retrospective [32, 37] and one randomised placebo controlled clinical trial [35]. Reported 199 

samples were comprised between 75 [36] and 3,144 [32] patients. In these studies, there was a 200 

remarkable heterogeneity among the reported phenotypes. For instance, when three phenotypes 201 

were reported, patients were characterized as either being young with few symptoms and mild airway 202 

limitation, or older and highly symptomatic with severe airway limitation or as a combination of both 203 

[34]. Moreover, de Torres et al. [34] showed that these phenotypes remained stable in most of the 204 

patients over a two years follow-up period.   205 

In studies with four phenotypes patients were characterized by the severity of the disease, i.e., 206 

patients with mild to moderate disease, moderate to severe emphysema, mild to increased dyspnoea, 207 

low to high exacerbation risk or even an overlap of asthma and COPD [38, 39, 41].  In one of these 208 

studies, Bafadhel et al [43] classified patients into four biologic clusters: a) bacterial-predominant, b) 209 

viral-predominant, c) eosinophilic-predominant and d) patients with limited changes in their 210 

inflammatory profile. 211 

In clusters of five phenotypes patients were characterized not only by the severity of the disease [45, 212 

48] but also by the presence of comorbidities [46] as well the asthma and COPD overlap syndrome 213 

[47, 48, 49]. We also observed a reported distinction between female patients with high body mass 214 

index, asthma, COPD, and symptom scores but no inflammation, and male patients with asthma and 215 

COPD with high eosinophil counts and low use of oral corticosteroids [47]. Another salient difference 216 

was shown between younger-onset asthma patients with severe symptoms and elderly patients with 217 

high frequency of comorbidities and concomitant COPD [50].     218 

A list of all potential phenotypes along with their groupings is displayed in the Appendix. Although this 219 

list is not exhaustive, it summarizes the most frequently reported phenotypes of the reviewed studies.             220 
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Methods 221 

Study design 222 

Generally speaking, the retrieved research based on observational studies [6-8] highlights the 223 

advantage of capturing large cohorts of patients with COPD as well as the opportunity to showcase 224 

“real-life” outputs from clinical practice. Moreover, and in contrast to controlled experiments such as 225 

clinical trials in which patients are selected homogeneously to satisfy certain inclusion and exclusion 226 

criteria, an observational study allows researchers to appreciate the patients’ heterogeneity, which is 227 

a defining feature of COPD. Hence, the analysis of and outputs from such studies advance 228 

knowledge with respect to sample representativeness, covering actual COPD populations from 229 

different geographical settings.  230 

On the other hand, the results coming from observational studies may lead to the emergence of 231 

unstable phenotypes, in turn making treatment decisions more complex. Similarly, because 232 

observational studies are generally carried out in university hospitals, tertiary care centres or 233 

rehabilitation settings, they tend to cover only severe COPD patients and may not be fully 234 

representative of the wider COPD population.      235 

Validation 236 

Across the reviewed studies, we acknowledge that the derived COPD phenotypes were often 237 

validated both internally (i.e., from the same population in terms of clinically meaningful outcomes 238 

such as exacerbations, mortality, and response to therapy) and externally on a different population 239 

(e.g., including the rapid lung function decline or the asthma-COPD overlap phenotype in the 240 

ECLIPSE cohort). This procedure offers strong reliability as it provides evidence for the 241 

generalizability and robustness of the results. 242 

Data reduction and clustering 243 

Most of all, from our analysis of the literature, we can appreciate the recurrent use of statistical 244 

techniques aiming to reduce the size of the data and group patients with similar characteristics into 245 

distinct clusters. These approaches have the immediate advantage of utilizing all available 246 

information, yet in practice they “operationalize” phenotypes as if they were mathematical constructs 247 

and as a result they may not always be closely relevant to the medical condition.   248 
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As such, issues such as the handling of missing data or the choice of variables feeding the analysis 249 

become paramount features to ensure the consistency of phenotype identification in progressing with 250 

COPD research.  For instance, while the analysis of common features already offers a moderate 251 

concordance in determining COPD phenotypes [30], their robustness and reproducibility using an 252 

extended or diverse list of variables remains to be determined.  253 

We argue that one of the first steps needed to overcome the issue of ensuring the reproducibility and 254 

alignment of COPD phenotypes is situated, at least to some extent, in the variety of statistical 255 

methods used to derive them (Table 4). 256 

[Table 4 about here] 257 

Most of the reviewed literature used data reduction methods to select the variables to include in the 258 

cluster analysis [6-8,10-13,16]. These methods vary from Principal Components Analysis (PCA) [52] 259 

to Multiple Correspondence Analysis (MCA) [53] – a method similar to PCA yet using categorical data 260 

– and factor analysis. PCA, MCA, and factor analysis [54, 55] share the characteristic that they 261 

reduce data dimensionality to identify a small number of clinically relevant variables able to explain 262 

most of the variations occurring in COPD patients’ data. Whilst these approaches are beneficial to 263 

summarize data with a few variables without losing information, the interpretation of the derived 264 

variables within a clinical context is rarely straightforward due to their intimate mathematical nature. 265 

Other studies [9,14,15,17,19]
 
selected variables on either data availability and/or clinical expertise, 266 

i.e., by including a priori available variables deemed to be relevant to COPD alone. For instance, 267 

Chubachi et al [17] used only comorbidity data, while others used either a combination of lung 268 

function and demographic data (i.e., age, BMI, smoking status) [9,12,14,16,18] or a combination of 269 

lung function, demographic, comorbidity, and biomarker data [6,8,10,19]. Thus far, only a few articles 270 

combined all the above information with imaging and/or genetic data [7,11,13,15]. The variability in 271 

the choice of variables can thus lead to the unpredictability of the characteristics of the derived 272 

phenotypes. 273 

Noticeably, seven works used hierarchical analysis [8,10,11-13,17,19], which is a method in which 274 

each cluster is part of a larger cluster and they are all connected to each other like a tree (or 275 

dendrogram), whereby the number of clusters is determined by visual inspection [56]. Four studies 276 

[7,9,15,18] used k-means clustering, a method that splits the data into mutually exclusive clusters and 277 

in which the number of clusters needs to be specified in advance. Finally, two studies [6,16] used a 278 
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combination of hierarchical and k-means clustering, and one [14] used a combination of hierarchical 279 

and discriminant analysis, a technique that discriminates the categories of a dependent variable (e.g., 280 

symptoms) and evaluates the accuracy of this classification.  281 

 Missing values 282 

We note that regardless of the method used, an important aspect of these cluster analysis 283 

approaches is the handling of missing values. Indeed, most of the reviewed studies failed to address 284 

this issue. Research tended to use non-missing data to form COPD clusters without considering 285 

which phenotypes might have been formed if patients with missing data had been included in the 286 

analysis or if only a portion of them had been excluded. Only two studies [6,15] considered alternative 287 

methods for assessing the impact of excluding patients on the formation of COPD phenotypes. 288 

Pikoula et al [6] performed a sensitivity analysis by excluding all patients with a diagnostic code for 289 

asthma and identified four clusters. Notably, the atopic cluster did not present a strong enough 290 

discriminant ability to form a separate cluster. Thus, atopic patients were categorized as belonging to 291 

either the anxiety/depression or the not-comorbid phenotype. Garcia-Aymerich [15] instead 292 

considered the use of multiple imputation when implementing the cluster analysis [57], allowing 293 

simulated values to replace the missing ones and thereby enabling the use of data from all patients. 294 

 295 

Discussion 296 

There are several implications of clinical and medical relevance in using machine learning methods to 297 

extract data from different sources, such as radiology, imaging or genetics, to identify clinically 298 

relevant COPD phenotypes. In sum, these  include a better understanding of the natural history of the 299 

disease, the opportunity to more accurately identify high risk patient profiles, the prospect of early 300 

diagnosis and target treatments specific to certain phenotypes - along with the limitation of potentially 301 

adverse effects of unnecessary treatments, and the ability to make better and more precise 302 

predictions of treatment outcomes, thereby improving the prognosis of the disease and optimizing the 303 

use of health care resources.    304 

Building on the evidence emerging from this review, we can identify several recommendations for 305 

future research using cluster analysis to identify COPD phenotypes; these are summarized in Table 5. 306 
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These strategies include the use of large samples to make clinically meaningful associations and the 307 

handling of missing data to assess the robustness of the results. 308 

[Table 5 about here] 309 

Moving forward, in keeping with Bourbeau et al. [58], we suggest that regardless of the clustering 310 

method chosen, COPD-derived phenotypes should be validated both internally and externally. This 311 

aspect is central because clustering methods are data-driven techniques, thus the derived clusters 312 

might be subject to spurious groupings.  313 

As such, best practices in deriving COPD phenotypes include the utilization of prospective 314 

longitudinal data, which allows the assessment of variability and stability of features over time, as well 315 

as the use of cohorts from different settings to obtain the full spectrum of COPD phenotypes. The 316 

former recommendation implies carrying out large observational longitudinal cohort studies with at 317 

least a 3-year follow-up, as currently seen in the CALIBER [6] and ECLIPSE [24] studies. The latter 318 

proposal suggests using cohorts from different populations and settings to fully capture the 319 

heterogeneity of COPD. In this respect, we also envision the benefit of analysing cohorts including 320 

genetic information, such as COPDGene [7] or the UK Biobank database [59]. The immediate 321 

advantages of using such databases will be the opportunity to analytically and jointly assess patients’ 322 

clinical characteristics (eg, lung functionality), comorbidities, and biomarker data to strengthen the 323 

robustness of the COPD phenotypes as well as to better understand the underlying biological 324 

mechanisms of the condition. 325 

Ensuring clarity in the choice of variables used for identifying COPD phenotypes is another crucial 326 

recommendation for research using cluster analysis. This selection should always be evidence-based 327 

through experts’ opinions and/or published works to avoid choosing variables that might not be 328 

clinically relevant [58]. At the same time, we recognize that this approach may lead to previously 329 

unidentified patient characteristics being overlooked. Thus, we suggest that a reasonable compromise 330 

moving forward would be to use available evidence alongside clustering analysis. As such, the 331 

combination of hierarchical, k-means clustering, and clinical judgment appears to be the most suitable 332 

approach to specify the correct number of clusters leading to the identification of novel COPD 333 

phenotypes. 334 
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Conclusions 335 

This article reviewed research published in the last decade on COPD phenotypes identified using 336 

cluster analysis and validated with clinically meaningful outcomes. To the best of our knowledge, this 337 

is one of the first works addressing such a systematization of the COPD literature. Moreover, it puts 338 

forward key recommendations to improve the study design, variables selection, external validation, 339 

and handling of missing data of prospective studies. 340 

Finally, we believe that future research should be tasked with further investigating COPD 341 

phenotype(s) whose characteristics have not yet been fully explored. For instance, the “fast decliner” 342 

phenotype [10,26,27], characterized by young patients with COPD with a fast decline in their lung 343 

function, as well as the cardiovascular comorbidity [6,13,25] characterized by differences in age, sex 344 

and high rates of hospital admission for AECOPD represent promising issues which are still largely 345 

unaddressed. Whichever the phenotype, we are hopeful that the insights presented here will soon 346 

enable research to better characterize additional patient determinants of COPD phenotypes and 347 

explore their association with responses to therapy while possibly developing more targeted 348 

treatments. 349 
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Table 1. 2019 GOLD classification of COPD phenotypes 

 Symptoms 

Moderate/severe exacerbation history mMRC 0-1 and CAT<10 mMRC≥2 and CAT≥10 

≥2 or ≥1 leading to hospital admission C D 

0 or 1 not leading to hospital admission A B 

mMRC, modified Medical Research Council dyspnea questionnaire; CAT, COPD assessment test 
 
Table 2. Summary of studies using clustering analysis to identify COPD phenotypes used in the systematic analysis 
 

First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

Yoon et al. 
(2019) [9] 

1,195 Korea COPD 
subgroup study 
(KOCOSS), 
retrospective 
observational 
multi-centre 
longitudinal cohort  

Patients with COPD 
evaluated at 6-month 
intervals by 
experienced 
pulmonologists at 
university hospitals 

1. Putative asthma-
COPD overlap 

2. Mild COPD 
3. Moderate COPD 
4. Severe COPD 

Acute exacerbation 

Pikoula et al. 
(2019) [6] 

30,961 CALIBER1, 
observational 
prospective 
longitudinal cohort  

Patients who a) were 
35 years or older, b) 
had been registered 
for at least one year 
in primary care 
practice, c) had at 
least one diagnostic 
code of COPD  

1. Anxiety/depression 
2. Severe airflow 

obstruction and 
frailty 

3. Cardiovascular 
disease and 
diabetes 

4. Obesity/atopy 
5. Low prevalence of 

comorbidities 

Rate of severe or 
moderate acute COPD 
exacerbations, 
respiratory and 
cardiovascular related 
mortality 

Kim et al. 
(2018) [10] 

1,676 The Asian 
Network for 
Obstructive Lung 
Disease (ANOLD) 
international 
multi-centre 

Patients of Asian 
ethnicity, over 40 
years old with 
FEV1/FVC < 0.7 
assessed at 
pulmonary clinics 

1. Worse lung function 
but fewer symptoms 

2. Worse lung function 
with more symptoms 
and most frequent 
exacerbations, 

Exacerbations and 
quality of life 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

observational 
cross-sectional 
prospective 
cohort   

faster FEV1 decline 
and greatest SGRQ 
decline 

3. Mild severity but 
higher BMI 

Kim et al. 
(2017) [11] 

272 COPD in dusty 
areas (CODA) 
observational 
longitudinal 
prospective 
cohort 

Patients over 40 
years old with 
FEV1/FVC < 0.7 
living near cement 
plants who were 
evaluated at 
enrolment and at a 1-
year follow-up at 
university hospitals 

1. Younger patients 
with fewer 
symptoms and 
exacerbations and 
mild airflow 
obstruction 

2. Patients with 
additional symptoms 
and moderate 
airflow obstruction 
and more 
exacerbations 
requiring 
hospitalization 

3. More female 
patients, additional 
symptoms and mild 
airflow obstruction 
and modest 
frequency of 
exacerbations 
requiring 
hospitalization  

Exacerbations and 
quality of life 

Burgel et. al 
(2017) [8] 

2,409 Three 
French/Belgian 
COPD cohorts: a) 
the initiatives 
BPCO 
observational 

Patients with stable 
COPD assessed at 
university hospitals 

1. Older patients with 
high rates of 
cardiovascular 
comorbidities and 
diabetes, but less 
severe respiratory 

3-year all-cause 
mortality 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

multi-centre 
prospective cross-
sectional cohort, 
b) the CPHG2 
prospective 
observational 
cohort, c) the 
Leuven 
observational 
cross-sectional 
cohort. An 
independent 
cohort (the 3CIA3 
initiative) was also 
used for 
validation.  

disease 
2. Moderate to severe 

respiratory disease 
and low rate of 
comorbidities 

3. Older patients with 
high prevalence of 
comorbidities and 
obesity 

4. Very severe 
respiratory disease 
with low rates of 
cardiovascular 
comorbidities and 
diabetes 

5. Mild respiratory 
disease and low 
rates of 
comorbidities 

Peters et al. 
(2017) [14] 

619 Two interventional 
cohorts: a) 1-year 
follow-up 
treatment as 
usual (TAU), b) 
12-week 
pulmonary 
rehabilitation (PR) 
program     

Two groups of 
patients: 160 out-
patients with COPD 
treated as usual 
(TAU) and 459 
patients with 
pulmonary 
rehabilitation (PR) at 
a university medical 
centre 

1. Moderate COPD, 
low impact on health 
status (adaptive 
phenotype) 

2. Severe COPD, 
moderate impact on 
health status 
(adaptive) 

3. Moderate COPD, 
high impact on 
health status (non-
adaptive) 

Response to treatment 
(TAU vs PR) 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

Chubachi et al. 
(2016) [17] 

311 The Keio COPD 
Comorbidity 
Research (K-
CCR) 
observational, 
prospective 
cohort 

COPD patients with 
complete 
comorbidities data 
with a 2-year follow-
up assessed at Keio 
University and its 
affiliated hospitals 

1. Less comorbidity 
2. Malignancy 
3. Metabolic and 

cardiovascular 
4. Gastroesophageal 

reflux disease 
(GERD) and 
psychological 

5. Underweight and 
anaemic 

Health-related quality 
of life (e.g. SGRQ, 
CAT, SF-36) 

Fingleton et al. 
(2015) [19] 

389 A 3-phase cross-
sectional study; 
phase 1 (sample 
selection), phase 
2 (phenotyping), 
phase 3 
(interventional 
study to assess 
treatment 
responsiveness)   

Patients with 
symptoms of 
wheezing and 
breathlessness in the 
last 12 months who 
completed phase 2 
with no missing data  

1. Moderate to severe 
atopic asthma 

2. Asthma-COPD 
overlap 

3. Obese/comorbid 
4. Mild atopic asthma 
5. Mild intermittent  

Response to treatment 
(inhaled β-agonist, 
antimuscarinic, 
corticosteroid) 

Chen et al. 
(2014) [16] 

332 Observational 
prospective 
longitudinal cohort  

Men with COPD 
diagnosed at 
university hospital 

1. Young patients with 
mild airflow 
obstruction, few 
symptoms and 
infrequent severe 
exacerbations 

2. Older patients with 
mild airflow 
obstruction, few 
symptoms, 
infrequent severe 
exacerbations but 
higher mortality 

3. Older patients with 

Mortality 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

moderate 
respiratory disease, 
dyspnoea, history of 
severe 
exacerbations and 
underweight 

4. Patients with severe 
airflow obstruction, 
many symptoms 
and infrequent 
severe 
exacerbations 

5. Patients with severe 
airflow obstruction, 
many symptoms 
and frequent severe 
exacerbations and 
high mortality 

Castaldi et al. 
(2014) [7] 

8,288 The Genetic 
Epidemiology of 
COPD 
(COPDGene) 
study 
observational 
cross-sectional 
prospective 
cohort 

Former and current 
smokers with or 
without COPD  

1. No/mild obstruction 
and minimal 
emphysema 

2. Mild upper zone 
emphysema 
predominant 

3. Airway disease 
predominant 

4. Severe emphysema 

Exacerbations, 
dyspnoea, COPD-
associated genetic 
variants 

Altenburg et 
al. (2012) [18] 

65 An interventional 
prospective 
cohort  

Patients with COPD 
participating in a 
pulmonary 
rehabilitation (PR) 
program at a 
university medical 
centre  

1. Worse lung function, 
quadriceps force but 
better response to 
exercise training 

2. Better lung function 
and exercise 
capacity but less 

Improvement in 
exercise capacity 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

response to 
exercise training 

Burgel et al. 
(2010) [12] 

322 The initiatives 
BPCO 
observational 
multi-centre 
prospective cross-
sectional cohort 

Patients with stable 
COPD assessed at 
17 pulmonary units in 
university hospitals 

1. Young patients with 
severe respiratory 
disease 

2. Older patients with 
mild airflow 
limitation and mild 
comorbidities 

3. Young patients with 
moderate to severe 
airflow limitation, 
few comorbidities 

4. Older patients with 
moderate to severe 
airflow limitation and 
high prevalence of 
cardiovascular 
comorbidities  

All-cause mortality 

Burgel et al. 
(2012) [13] 

527 Two cohorts: the 
Leuven 
observational 
cross-sectional 
cohort (374 
patients) and the 
NELSON 
randomized lung 
cancer screening 
study (153 
patients)  

Stable COPD 
patients assessed at 
university hospitals’ 
COPD outpatient 
clinics 

1. Young patients with 
severe respiratory 
disease and low 
prevalence of 
cardiovascular 
comorbidities 

2. Older patients with 
less severe airflow 
limitation, obese, 
high prevalence of 
diabetes and 
cardiovascular 
comorbidities 

3. Mild to moderate 
airflow limitation, 

All-cause mortality 
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First author 
and year of 
publication 

Sample size (i.e., 
number of 
patients) 
contributing to 
cluster analysis  

Name of cohort 
and study 
design  

Population 
characteristics and 
setting(s) 

COPD phenotypes 
identified 

Clinical outcome(s) 
used for validation 

absent or mild 
emphysema and 
dyspnoea, normal 
nutritional status, 
limited comorbidities  

 

Garcia-
Aymerich et al. 
(2011) [15] 

342 An observational, 
prospective cross-
sectional cohort 

COPD patients 
hospitalized due to 
COPD exacerbation 
in teaching hospitals 

1. Severe respiratory 
COPD 

2. Moderate 
respiratory COPD 

3. Systemic COPD 
(high prevalence of 
cardiovascular 
comorbidities) 

Hospitalizations and 
all-cause mortality 

1
CALIBER: A database of electronic health records from three national sources; The Clinical Practice Research Datalink (CPRD), Hospital 

Episode Statistics (HES), and cause-specific mortality from the Office for National Statistics (ONS) 
2
CPHG: The French College of General Hospital Respiratory Physicians  

3
3CIA: COPD Cohorts Collaborative International Assessment  

4
NZRHS: New Zealand Respiratory Health Survey  
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Table 3. Summary of studies excluded from the systematic analysis 
First author and year of 
publication 

Type and purpose of study Main findings COPD phenotypes Reason for exclusion 

Pascoe et al. (2019) [60] 

A randomized parallel group 
clinical trial aimed to model the 
relationships between 
eosinophil counts, smoking 
and treatment response to 
inhaled corticosteroids (ICS), 
and their interactions, including 
outcomes other than 
exacerbations. 

Results showed that 
assessment of blood 
eosinophil count and 
smoking status has the 
potential to optimize ICS 
use in clinical practice in 
patients with COPD and a 
history of exacerbations. 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 

Sivapalan et al. (2019) 
[61] 

A randomized controlled non-
inferiority trial aimed to 
determine whether an 
algorithm based on blood 
eosinophil counts could safely 
reduce systemic corticosteroid 
exposure in patients admitted 
to hospital with acute 
exacerbations of COPD 

Results showed that 
eosinophil-guided therapy 
was non-inferior compared 
with standard care for the 
number of days alive and 
out of hospital, and 
reduced the duration of 
systemic corticosteroid 
exposure, 

 
Not applicable 

Not relevant to COPD 
phenotyping 

van Geffen et al. (2019) 
[62] 

A systematic review and meta-
analysis aimed to evaluate the 
effects of volume reduction in 
the treatment of severe 
emphysema 

Results showed that lung 
volume reduction in 
patients with severe 
emphysema on maximal 
medical treatment has 
clinically meaningful 
benefits 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Sun et al. (2019) [63] 

A cross-sectional study 
designed to detect proteins 
that were differentially 
abundant in COPD frequent 
exacerbators and assess 
whether those expression 
profiles are unique among 
COPD patients 

Bioinformatics analyses of 
proteome indicated that the 
immune network for IgA 
production and the 
phenylalanine metabolism 
pathway were associated 
with frequent 
exacerbations 

 
Not applicable 

Not relevant with the 
machine learning 
methods under study 

Pichl et al. (2019) [64] 

A retrospective observational 
study investigated the 
treatment effect of riociguat 
and analysed the effect of 

Data showed that riociguat 
may be beneficial for 
treatment of PH-COPD 

 
Not applicable 

Not relevant with the 
machine learning 
methods under study 
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riociguat treatment on 
pulmonary hypertension (PH) 
in single patients with PH-
COPD 

Pragman et al. (2019) 
[65] 

A case-control observational 
study aimed to determine key 
features that differentiate the 
oral and sputum microbiota of 
frequent exacerbators (FEs) 
from the microbiota of 
infrequent exacerbators (IEs) 
during periods of clinical 
stability 

Data showed that the 
frequent exacerbator 
phenotype is associated 
with decreased alpha 
diversity, beta-diversity 
clustering, and changes in 
taxonomic abundance 

 
Not applicable 

Not relevant with 
machine learning 
methods under study 

Xavier et al. (2019) [33] 

An observational cross-
sectional study aiming to 
investigate COPD phenotypes 
according to their levels of 
physical activity and sedentary 
behaviour, as well as body 
composition and skeletal 
muscle strength 

Cluster analysis identified 
three distinct COPD 
phenotypes 

1) more physically 
active, less sedentary 
and had better body 
composition and lower 
ADO index, 2) older, 
less physically active, 
more sedentary having 
a higher dyspnoea and 
obstruction (ADO) index, 
3) worse HRQoL, 
clinical control and body 
composition, less 
physically active, more 
sedentary having a 
higher ADO index 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Incalzi et al. (2019) [45] 

The STORICO Italian 
observational study aiming to 
describe multi-dimensional 
COPD phenotypes  

Machine learning methods 
used to identify five COPD 
phenotypes 

1) Mild COPD: no night-
time symptoms and the 
best health status in 
terms of quality of life, 
quality of sleep, level of 
depression and anxiety, 
2) Mild emphysematous: 
prevalent dyspnea in the 
early-morning and 
daytime, 3) Severe 
bronchitic: nocturnal and 
diurnal cough and 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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phlegm, 4) Severe 
emphysematous: 
nocturnal and diurnal 
dyspnea, 5) Severe 
mixed COPD: higher 
frequency of symptoms 
during 24h and worst 
quality of life, of sleep 
and highest levels of 
depression and anxiety. 

Lainez et al. (2019) [37] 
A retrospective study aiming to 
identify asthma and COPD 
overlap (ACO) phenotypes 

Cluster analysis identified 
four ACO phenotypes 

1) overweighed heavy 
smokers, with an early 
onset and a severe 
disease, 2) similar 
patients, with a late 
onset, 3) and 4) slighter 
smokers, presenting a 
moderate disease, with 
early and late onset 
respectively 

ACO phenotypes were 
not validated with 
clinical meaningful 
outcomes 

Kukol et al. (2019) [66] 
A cross-sectional study aiming 
to identify COPD phenotypes 
of elderly patients 

Cluster analysis identified 
different COPD 
phenotypes for men and 
women 

 
Not applicable 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Pragman et al. (2019) 
[67] 

A genetic study aiming to 
determine features that 
differentiate the oral, nasal, 
and sputum microbiome 
among subjects with stable 
COPD 

Data showed associations 
between anatomic site and 
bacterial biomass, 
Shannon diversity, and β-
diversity. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Haghighi et al. (2019) 
[38] 

A multi-center cross-sectional 
study aiming to identify COPD 
phenotypes using Quantitative 
computed tomographic (QCT) 
imaging  

Imaging-based cluster 
analysis identified four 
possible COPD 
phenotypes 

1) asymptomatic and 
showed relatively 
normal airway structure 
and lung function except 
airway wall thickening 
and moderate 
emphysema, 2) obese 
females showed an 
increase of tissue 
fraction at inspiration, 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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minimal emphysema, 
and the lowest 
progression rate of 
emphysema, 3) older 
males showed small 
airway narrowing and a 
decreased tissue 
fraction at expiration, 
both indicating air-
trapping, 4) lean males 
were likely to be severe 
COPD subjects showing 
the highest progression 
rate of emphysema 

Bak et al. (2019) [68] 

A retrospective observational 
study aimed to assess 
prognostic impact among 
identified clusters in patient 
with idiopathic pulmonary 
fibrosis (IPF) and evaluate the 
impact of fibrosis and 
emphysema on lung function 

Cluster analysis identified 
distinct phenotypes, which 
predicted prognosis of 
clinical outcome 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Karayama et al. (2019) 
[39] 

A cross-sectional study aimed 
to identify novel COPD 
phenotypes using radiologic 
data 

Cluster analysis identified 
four COPD phenotypes 

1) mild emphysema with 
severe airway changes, 
severe airflow limitation, 
and high exacerbation 
risk, 2) mild emphysema 
with moderate airway 
changes, mild airflow 
limitation, and mild 
dyspnea, 3) severe 
emphysema with 
moderate airway 
changes, severe airflow 
limitation, and increased 
dyspnea, 4) moderate 
emphysema with mild 
airway changes, mild 
airflow limitation, low 
exacerbation risk, and 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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mild dyspnea 

Kneppers et al (2019) 
[69] 

A prospective observational 
study aimed to assess skeletal 
muscle molecular responses to 
Pulmonary rehabilitation (PR) 
in COPD patients 

Cluster analysis identified 
patient groups with distinct 
skeletal muscle molecular 
responses to rehabilitation 

 
Not applicable 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

de Torres et al. (2018) 
[34] 

A prosepctive observational 
study aimed to evaluate the 2-
year cluster variability in stable 
COPD patients. 

Data showed that after 2 
years of follow-up, most of 
the COPD patients 
maintained their cluster 
assignment 

1) younger age, mild 
airway limitation, few 
symptoms, 2) 
intermediate (clinical 
characteristics between 
clusters 1 and 3), 3) 
older age, severe airway 
limitation and highly 
symptomatic 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Gedebjerg et al. (2018) 
[70] 

A prospective observational 
study aimed to establish the 
predictive ability of the GOLD 
2017 classification, compared 
with earlier classifications, for 
all-cause and respiratory 
mortality 

Data showed that the new 
GOLD 2017 ABCD 
classification does not 
predict all-cause and 
respiratory mortality more 
accurately than the 
previous GOLD systems 
from 2007 and 2011 

 
Not applicable 

Not relevant to COPD 
phenotyping and to 
machine learning 
methods under study 

Merrill et al. (2018) [71] 

Data from two randomized 
clinical trials aimed to 
investigate the response to 
specific interventions 
according to heart failure (HF) 
phenotype  

Response to treatments 
such as exercise training 
and spironolactone varies 
among complex HF 
phenotypes  

 
Not applicable 

Not relevant to COPD 
phenotyping  

El Boueiz (2018) [72] 

A prospective observational 
study aimed to improve the 
predicted ability in COPD 
progression 

Results showed that 
machine learning methods 
improved the prediction 
accuracy of COPD 
progression  

 
Not applicable 

Not relevant to COPD 
phenotyping  

Fang et al. (2018) [73] 
A cross-sectional study aimed 
to estimate the COPD 
prevalence in China 

Data showed that the 
estimated overall 
prevalence of COPD in 
China in 2014-15 was 
13.6% 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Koo et al. (2018) [74] A cross-sectional study aimed Data showed that small  Not relevant to COPD 
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to determine whether 
destruction of the terminal and 
transitional bronchioles occurs 
before, or in parallel with, 
emphysematous tissue 
destruction 

airways disease is a 
pathological feature in mild 
and moderate COPD 

Not applicable phenotyping 

Liang et al. (2018) [75] 

A simulation study aimed to 
develop a novel variable 
reduction method for joint 
analysis of multiple 
phenotypes in association 
studies 

Results showed that this 
novel method can be used 
in analyzing a whole-
genome genotyping data 

 
Not applicable 

Not relevant with the 
machine learning 
methods under study 

Raherison et al. (2018) 
[46] 

A prospective observational 
study aiming to determine the 
association between specific 
comorbidities and COPD 
severity. 

Cluster analysis identified 
five phenotypes of 
comorbidities 

1) included cardiac 
profile, 2) included less 
comorbidities, 3) 
included metabolic 
syndrome, apnea and 
anxiety-depression, 4) 
included denutrition and 
osteoporosis, 5) 
included bronchiectasis 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Kilk et al. (2018) [76] 

A pilot study aiming to 
characterize patients with 
COPD, based on the 
metabolomic profiling of 
peripheral blood and exhaled 
breath condensate (EBC) 
within the context of defined 
clinical and demographic 
variables. 

Cluster analysis did not 
reveal a clinical-
metabolomic stratification 
superior to the strata set by 
the GOLD consensus. 

 
Not applicable 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

de Vries et al. (2018) [47] 

A multi-centre cross-sectional 
study to capture 
clinical/inflammatory 
phenotypes in patients with 
chronic airway disease using 
an electronic nose (eNose) in 
a training and validation set 

Cluster analysis identified 
five combined asthma and 
COPD phenotypes 

1) Asthma and COPD: 
predominantly females, 
high BMI, high symptom 
scores, low FeNO, no 
inflammation measured 
in blood, 2) Asthma and 
COPD: predominantly 
males, high circulating 
eosinophil counts, high 
FeNO, low use of oral 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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corticosteroids, 3) 
Asthma and COPD: 
predominately non-
Caucasian, poor lung 
function, eosinophil 
blood counts of 
0.45±1.3×109 cells·L-1, 
lowest exacerbation rate 
in the past 3 months, no 
OCS use, low use of 
ICS, 4) Asthma and 
COPD: predominantly 
atopic, high circulating 
neutrophil blood counts, 
highest number of 
exacerbations per 
person in the past 3 
months, 5) fewer COPD 
patients, best 
postbronchodilator 
FEV1, relatively low 
exacerbation rate per 
person in the past 3 
months 

Le Rouzic et al. (2018) 
[77] 

A prospective observational 
study aimed to confirm the 
existence of the frequent 
exacerbator phenotype 

Data confirmed the 
existence of the frequent 
exacerbator and the 
threshold to define this 
phenotype 

 
Not applicable 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Vazquez Guillamet et al. 
(2018) [32] 

A retrospective observational 
study aimed to identify COPD 
phenotypes from electronic 
medical records 

Cluster analysis identified 
nine COPD phenotypes 

1) depression–chronic 
obstructive pulmonary 
disease, 2) coronary 
artery disease–chronic 
obstructive pulmonary 
disease, 3) 
cerebrovascular 
disease–chronic 
obstructive pulmonary 
disease, 4) malignancy–
chronic obstructive 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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pulmonary disease, 5) 
advanced malignancy–
chronic obstructive 
pulmonary disease, 6) 
diabetes mellitus–
chronic kidney disease–
chronic obstructive 
pulmonary disease, 7) 
young age–few 
comorbidities–high 
readmission rates–
chronic obstructive 
pulmonary 
disease, 8) atopy–
chronic obstructive 
pulmonary disease, 9) 
advanced disease–
chronic obstructive 
pulmonary disease 

Hall et al. (2018) [78] 

An observational prospective 
study aimed to determine the 
extent to which multimorbidity 
is associated with long-term 
survival following acute 
myocardial infarction (AMI) 

Three multimorbidity 
phenotype clusters that 
were significantly 
associated with loss in life 
expectancy were identified 
and should be a 
concomitant treatment 
target to improve 
cardiovascular outcomes. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Das et al. (2018) [79] 
A review of machine learning 
methods in the diagnosis of 
COPD 

The application of artificial 
intelligence has produced 
promising results in the 
diagnosis of COPD 

 
Not applicable Not relevant to COPD 

phenotyping 

Merchant et al. (2018) [80] 

A prospective observational 
study aimed to assess the 
impact of digital intervention on 
asthma health resource 
utilization 

Results showed that digital 
health interventions can be 
incorporated into routine 
clinical practice, and their 
use may contribute to 
improved outcomes 
including reduced 
healthcare utilization 

 
Not applicable 

Not relevant to COPD 
phenotyping 
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 Radin et al. (2017) [31] 

A cross-sectional study aimed 
to identify novel COPD 
phenotypes based on 
computed tomography (CT) 
densitometry 

Cluster analysis showed 
the CT densitometry 
identified two distinct 
phenotypes of COPD   

Cluster 1 has subjects 
with decreased FEV1, 
FEV/FVC, FEF at 25-
75% of FVC and BMI 
and increased residual 
volume and total lung 
capacity compared to 
cluster 2 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Christenson et al. (2017) 
[81] 

A randomized placebo-
controlled clinical trial aimed to 
explore airway epithelial mucin 
gene expression heterogeneity 
in COPD  

Cluster analysis identified 
that 2 COPD subgroups in 
which either MUC5AC or 
MUC5B gene expression is 
elevated. These subgroups 
are associated with 
specific inflammatory 
patterns 

2 COPD subgroups in 
which either MUC5AC 
or MUC5B gene 
expression is elevated 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Kästle et al (2017) [82] 

A genetic study aimed to 
identify specific miRNAs 
implicated in controlling Th17 
differentiation 

Results showed evidence 
of miRNAs involvement in 
controlling the 
differentiation and function 
of T helper cells, offering 
useful tools to study and 
modify Th17-mediated 
inflammation. 

 
Not applicable 

Not relevant with the 
machine learning 
methods under study 

Fouda et al (2017) [83] 

A prospective observational 
study on the association 
between osteoporosis and 
emphysema in a model that 
includes these potentially 
confounding factors 

Results showed that 
emphysematous 
phenotype is not a risk 
factor for osteoporosis 
independently of BMI, 
FEV1, and PaO2. 

 
Not applicable 

Not relevant with the 
machine learning 
methods under study 

Chalmers JD (2017) [84] 
A review on bronchiectasis 
characterization 

Key developments in the 
bronchiectasis field include 
the establishment of 
international disease 
registries and 
characterization of disease 
phenotypes using cluster 
analysis and biological 
data. 

 
Not applicable 

Not relevant to COPD 
phenotyping and 
machine learning 
methods under study 

Fingleton et al. (2017) A cross-sectional Cluster analysis identified 1) severe late-onset COPD phenotypes 
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[48] observational study aiming to 
compare the phenotypes of 
airways disease in two 
separate populations (China 
and New Zealand) 

five COPD phenotypes that 
were similar in both 
populations 

asthma/COPD overlap 
group, 2) moderately 
severe early-onset 
asthma/COPD overlap 
group, 3) moderate to 
severe asthma group 
with type 2 predominant 
disease, 4 and 5) 
minimal airflow 
obstruction, 
differentiated by age of 
onset. 

were not validated with 
clinical meaningful 
outcomes 

Zarei et al. (2017) [35] 

A randomized placebo-
controlled trial aimed to identify 
COPD phenotypes using 
proteomic data 

Cluster analysis identified 
three COPD phenotypes 

The third cluster had 
less emphysema and 
worse disease-related 
quality of life, despite 
similar levels of lung 
function impairment than 
the other two groups 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Hirai et al. (2017) [85] 

A prospective observational 
study aimed to clarify the 
discriminant factors for 
assigning the asthma-COPD 
overlap phenotype 

Data showed that the 
asthma-COPD overlap 
phenotype was 
characterized by peripheral 
blood eosinophilia and 
higher levels of IgE despite 
the Th2-low endotype. 

 
peripheral blood 
eosinophilia and higher 
levels of IgE despite the 
Th2-low endotype 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Lee et al. (2017) [49] 

A national survey aimed to 
identify subtypes in patients 
with mild-to-moderate airflow 
limitation and to appreciate 
their clinical and 
socioeconomic implications 

Cluster analysis identified 
five phenotypes with 
different level of health 
care utilization  

1) near-normal: oldest 
mean age, highest 
FEV1, 2) asthmatic: 
youngest, lowest 
prescription rate,despite 
the highest proportion of 
self-reported wheezing, 
3) chronic obstructive 
pulmonary disease 
(COPD): male 
predominant and all 
current or ex-smokers, 
high prescription rate of 
respiratory medicine, 4) 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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asthmatic-overlap: high 
prescription rate of 
respiratory medicine, 5) 
COPD-overlap: male 
predominant and all 
current or ex-smokers, 
high prescription rate of 
respiratory medicine. 
 

Haldar et al (2017) [86] 

A genetic study aimed to 
assess whether the balance 
between the two dominant 
bacterial groups 
(Gammaproteobacteria (G) 
and Firmicutes (F)) in COPD 
sputum samples might reveal 
a subgroup with a bacterial 
community structure change at 
exacerbation that was restored 
to baseline on recovery and 
potentially reflects effective 
antibiotic treatment. 

Results showed that the 
G:F ratio at exacerbation 
can be determined on a 
timescale compatible with 
decisions regarding clinical 
management 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Çolak et al. (2017) [87] 

A prospective observational 
study aimed to investigate the 
prognosis of individuals with 
asymptomatic and 
symptomatic, undiagnosed 
COPD in the general 
population in Denmark. 

Individuals with 
undiagnosed, symptomatic 
COPD had an increased 
risk of exacerbations, 
pneumonia, and death. 
Individuals with 
undiagnosed, 
asymptomatic COPD had 
an increased risk of 
exacerbations and 
pneumonia. 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 

Maddocks et al. (2016) 
[88] 

A randomized placebo-
controlled trial aimed to assess 
the effectiveness of 
neuromuscular electrical 
stimulation (NMES) as a 
home-based exercise therapy 

Data showed that NMES 
improves functional 
exercise capacity in 
patients with severe COPD 
by enhancing quadriceps 
muscle mass and function. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Lange et al. (2016) [89] A prospective observational Data showed that the  Not relevant to COPD 
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study aimed to investigate the 
long-term prognosis of 
individuals with different types 
of chronic airway disease and 
asthma-COPD overlap 

prognosis of individuals 
with asthma-COPD overlap 
is poor and seems to be 
affected by the age of 
recognition of asthma, 
being worst in those with 
late asthma onset (after 40 
years of age) 

Not applicable phenotyping 

Papi et al (2016) [24]  

A prospective observational 
study aimed to define COPD 
phenotypes and identify 
biomarkers and/or genetic 
parameters that help to predict 
disease progression 

The study highlights some 
of the progress in 
phenotyping the 
heterogeneity of the 
disease 
that have been made 
thanks to the analyses of 
this longitudinal study 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 

Ning et al. (2016) [40] 
A cross-sectional analysis 
aimed to identify distinct 
COPD phenotypes  

Cluster analysis identified 
four phenotypes 

1) COPD patients with 
moderate to severe 
airflow limitation, 2) 
asthma and COPD 
patients with heavy 
smoking, airflow 
limitation and increased 
airways reversibility, 3)  
patients having less 
smoking and normal 
pulmonary function with 
wheezing but no chronic 
cough, 4) chronic 
bronchitis patients with 
normal pulmonary 
function and chronic 
cough 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Rootmensen et al. (2016) 
[41] 

A cross-sectional study aimed 
to identify COPD phenotypes 
in an outpatient population 

Cluster analysis identified 
four COPD phenotypes 

1) patients with a history 
of extensive cigarette 
smoking, airway 
obstruction without signs 
of emphysema, 2) 
patients with features of 
the emphysematous 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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type of COPD, 3) 
patients with 
characteristics of allergic 
asthma, 4) patients with 
features suggesting an 
overlap syndrome of 
atopic asthma and 
COPD 

Sekiya et al. (2016) [50] 

A prospective observational 
study aimed to examine the 
clinical characteristics and 
heterogeneity of patients with 
severe or life-threatening 
asthma exacerbation.  

Cluster analysis identified 
five distinct asthma 
phenotypes 

1) younger-onset 
asthma with severe 
symptoms at baseline, 
including limitation of 
activities, a higher 
frequency of treatment 
with oral corticosteroids 
and short-acting beta-
agonists, and a higher 
frequency of asthma 
hospitalizations in the 
past year, 2) 
predominantly 
composed of elderly 
females, with the 
highest frequency of 
comorbid, chronic 
hyperplastic 
rhinosinusitis/nasal 
polyposis, and a long 
disease duration, 3) 
allergic asthma without 
inhaled corticosteroid 
use at baseline. Patients 
in this cluster had a 
higher frequency of 
atopy, including allergic 
rhinitis and furred pet 
hypersensitivity, and a 
better prognosis during 
hospitalization 
compared with the other 

Not relevant to COPD 
phenotyping; not 
validated with clinical 
meaningful outcomes 
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clusters, 4) elderly 
males with concomitant 
chronic obstructive 
pulmonary disease 
(COPD), 5) very mild 
symptoms at baseline 
according to the patient 
questionnaires, 41% 
had previously been 
hospitalized for asthma 

Sato et al. (2016) [90]  

A retrospective study aiming to 
identify phenotypes of patients 
with idiopathic interstitial 
pneumonia (IIP) with 
pulmonary emphysema (PE) 

Cluster analysis identified 
three phenotypes; 
idiopathic pulmonary 
fibrosis (IPF) with PE is a 
distinct phenotype with 
poor prognosis 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Morélot-Panzini et al. 
(2016) [91] 

An observational prospective 
study testing the 
Multidimensional Dyspnea 
Profile (MDP) in COPD 
patients 

The MDP can identify an 
affective/emotional 
dimension of dyspnea and 
contribute to phenotypic 
description of patients 

 
Not applicable 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Roche et al. (2016) [92] 

A cross-sectional study 
investigating the genetic 
variability of COPD and 
obstructive sleep apnea 
patients 

The study identified 
genetic variants mapping 
to hypoxia response 
elements 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Martínez-García et al. 
(2016) [93] 

An observational cohort study 
aimed to identify phenotypes 
for non-cystic fibrosis 
bronchiectasis  

Using cluster analysis, it 
was possible to identify 
distinct phenotypes 

 
Not applicable Not relevant to COPD 

phenotyping 

Batista-Navarro et al. 
(2016) [94] 

A cross-sectional qualitative 
study that compared a manual 
performing task of COPD 
phenotype curation to that of a 
text-mining algorithm  

Text-mining algorithms 
were more efficient in 
facilitating the curation of 
COPD phenotypes  

 
Not applicable 

Not relevant to 
methods under study; 
not validated with 
clinical outcomes 

Labuzzetta et al. (2016) 
[95] 

A genetic cross-sectional study 
that uses machine learning 
methods to predict COPD 
phenotypes 

Machine learning methods 
showed that isoform 
expression data have high 
accuracy in predicting 
phenotypes 

 
Not applicable Predicted phenotypes 

not validated with 
clinical outcomes 
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Kaluarachchi et al. (2016) 
[96] 

A case-control study aimed to 
determine perturbed 
biochemical functions 
associated with tobacco 
smoking 

Results showed that 
combining multiplatform 
metabolic phenotyping with 
knowledge-based mapping 
gives mechanistic insights 
into disease development 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Obeidat et al. (2015) [97] 

A genome-wide association 
study aimed to investigate 
molecular mechanisms 
underlying variations in lung 
function 

The system genetics 
approach identified lung 
tissue genes driving the 
variation in lung function 
and susceptibility to COPD 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Kim et al. (2015) [98] 

A cross-sectional study aimed 
to identify novel lung disease 
phenotypes using multi-omics 
data   

Cluster analysis identified 
subclusters with distinct 
clinical and biomolecular 
characteristics 

 
Not applicable 

Not relevant to COPD 
phenotyping; not 
validated with clinical 
meaningful outcomes 

Hübenthal et al. (2015) 
[99] 

A case-control study that used 
genetic profiling and machine 
learning methods to accurately 
predict inflammatory diseases 

The proposed miRNA 
signature is of relevance 
for the etiology of 
inflammatory bowel 
disease (IBD) 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Lee et al. (2014) [100] 

An observational genetic study 
aimed to investigate the 
clinical and genetic 
heterogeneity in subjects with 
mild airflow limitation in 
spirometry grade 1 defined by 
the Global Initiative for COPD 

Results showed that GOLD 
1 subjects show 
substantial clinical 
heterogeneity, which is at 
least partially related to 
genetic heterogeneity. 

 
Not applicable 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Uzun et al. (2014) [101] 

A randomized placebo-
controlled trial aimed to 
investigate whether patients 
with COPD who had received 
treatment for three or more 
exacerbations in the previous 
year would have a decrease in 
exacerbation rate when 
maintenance treatment with 
azithromycin was added to 
standard care 

Data showed that 
maintenance treatment 
with azithromycin 
significantly decreased the 
exacerbation rate 
compared with placebo 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Brightling et al. (2014) 
[102] 

A randomized placebo-
controlled trial aimed to 

Results showed that 
compared with placebo, 

 
Not applicable 

Not relevant to COPD 
phenotyping 
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establish whether 
benralizumab reduces acute 
exacerbations of COPD in 
patients with eosinophilia and 
COPD 

benralizumab did not 
reduce the rate of acute 
exacerbations of COPD 

Kon et al. (2014) [103] 

Three prospective 
observational studies aimed to 
assess the he minimum 
clinically important difference 
(MCID) for the COPD 
Assessment Test (CAT) in 
patients with COPD 

The most reliable estimate 
of the minimum important 
difference of the CAT is 2 
points 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Köhnlein et al. (2014) 
[104] 

A prospective randomized 
controlled clinical trial aimed to 
investigate the effect of long-
term non-invasive positive 
pressure ventilation (NPPV), 
targeted to markedly reduce 
hypercapnia, on survival in 
patients with advanced, stable 
hypercapnic COPD 

Results showed that the 
addition of long-term NPPV 
to standard treatment 
improves survival of 
patients with hypercapnic, 
stable COPD when NPPV 
is targeted to greatly 
reduce hypercapnia.  

 
Not applicable 

Not relevant to COPD 
phenotyping 

Jones et al. (2014) [105] 

A retrospective study aimed to 
investigate patterns of health-
care use and comorbidities 
present in patients in the 
period before diagnosis of 
chronic obstructive pulmonary 
disease (COPD) 

Data showed that 
opportunities to diagnose 
COPD at an earlier stage 
are being missed, and 
could be improved by 
case-finding in patients 
with lower respiratory tract 
symptoms and concordant 
long-term comorbidities. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Zheng et al. (2014) [106] 

A randomized placebo-
controlled trial aimed to assess 
whether N-acetylcysteine 
could reduce the rate of 
exacerbations in patients with 
COPD 

Data showed that in 
Chinese patients with 
moderate-to-severe 
COPD, long-term use of N-
acetylcysteine 600 mg 
twice daily can prevent 
exacerbations, especially 
in disease of moderate 
severity. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Corhay et al. (2014) A cross-sectional study aimed Cluster analysis can help  COPD phenotypes 
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[107] to summarize the current data 
available about the 
phenotypes of this disease  

to identify more precise 
definition of COPD 
phenotypes 

Not applicable were not validated with 
clinical meaningful 
outcomes 

Moore et al. (2014) [108] 

A cross-sectional study aiming 
to understand the interactions 
between inflammation and 
clinical asthma subphenotypes 

Cluster analysis identified 
four phenotypes 
associated with asthma 
severity 

 
Not applicable Not relevant to COPD 

phenotyping 

Qiao et al. (2014) [109] 

A simulation study 
investigating the association 
between genetic loci and 
complex phenotypes 

Cluster analysis can be 
useful in genome 
sequencing studies for 
pairing genomic regions 
with complex phenotypes 

 
Not applicable 

Not relevant to COPD 
phenotyping 

DiSantostefano et al. 
(2014) [110] 

Baseline data of two clinical 
trials were used to identify risk 
groups for pneumonia 

Cluster analysis can 
identified distinct patient 
groups at risk of 
pneumonia 

 
Not applicable Not relevant to COPD 

phenotyping 

Vogelmeier et al. (2013) 
[111] 

A randomized parallel group 
trial aimed to compare the 
efficacy, safety, and tolerability 
of QVA149 versus salmeterol-
fluticasone (SFC) over 26 
weeks in patients with 
moderate-to-severe COPD 

Results suggested the 
potential of dual 
bronchodilation as a 
treatment option for non-
exacerbating symptomatic 
COPD patients 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Franciosi et al. (2013) 
[112] 

Four clinical trials aimed to 
assess the efficacy and safety 
of a novel inhaled dual 
phosphodiesterase 3 (PDE3) 
and PDE4 inhibitor, RPL554 
for its ability to act as a 
bronchodilator and anti-
inflammatory drug 

Data showed that inhaled 
RPL554 is an effective and 
well tolerated 
bronchodilator, 
bronchoprotector, and anti-
inflammatory drug 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Decramer et al. (2013) 
[113] 

A randomized parallel group 
study aimed to compare the 
efficacy and safety of 
indacaterol and tiotropium in 
patients with COPD 

Data showed that 
Indacaterol and tiotropium 
provided clinically relevant 
improvements in lung 
function with comparable 
safety profiles. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Dransfield et al. (2013) 
[114] 

Two parallel group randomized 
controlled trials aimed to 
investigate whether fluticasone 

Results showed that 
addition of fluticasone 
furoate to vilanterol was 

 
Not applicable 

Not relevant to COPD 
phenotyping 
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furoate and vilanterol would 
prevent more exacerbations 
than would vilanterol alone 

associated with a 
decreased rate of 
moderate and severe 
exacerbations of COPD in 
patients with a history of 
exacerbation, but was also 
associated with an 
increased pneumonia risk 

Wedzicha et al. (2013) 
[115] 

A randomized parallel-group 
study aimed to evaluate the 
effect of dual, longacting 
inhaled bronchodilator 
treatment on exacerbations in 
patients with severe and very 
severe chronic obstructive 
pulmonary disease (COPD) 

Results suggested 
potential of dual 
bronchodilation as a 
treatment option for 
patients with severe and 
very severe COPD. 

 
Not applicable 

Not relevant to COPD 
phenotyping 

Rabe et al. (2013) [116] 

A randomized parallel-group 
study aimed to establish 
whether ADRB2 
polymorphisms differentially 
affected COPD exacerbation 
outcomes in response to 
tiotropium versus salmeterol. 

Data showed limited 
evidence for the use of 
ADRB2 polymorphisms for 
predicting LABA treatment 
response  

 
Not applicable 

Not relevant to COPD 
phenotyping 

Siedlinski et al. (2013) 
[117] 

A case-control study aimed to 
estimate direct and indirect 
effects of genetic loci on 
COPD development using 
mediation analysis 

This study confirms the 
existence of direct effects 
of the AGPHD1/CHRNA3, 
IREB2, FAM13A and HHIP 
loci on COPD 
development. 

 
Not applicable Not relevant to COPD 

phenotyping and 
machine learning 
methods under study 

Gouzi et al. (2013) [118] 

A cross-sectional study aimed 
to test whether muscle fiber 
atrophy and increased 
oxidative stress constitute the 
attributes of validated COPD 
phenotypes 

Data showed that 
demonstrates that the 
muscle heterogeneity is 
the translation of different 
phenotypes of the disease. 

 
Not applicable COPD phenotypes 

were not validated with 
clinical meaningful 
outcomes 

Fens et al. (2013) [42] 

A cross-sectional study aimed 
to identify subphenotypes of 
COPD in a community-based 
population of heavy (ex-) 
smokers 

Cluster analysis identified 
four COPD phenotypes 

1) mild COPD, limited 
symptoms and good 
quality of life, 2) low lung 
function, combined 
emphysema and chronic 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 
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bronchitis and a distinct 
breath molecular profile, 
3) emphysema 
predominant COPD with 
preserved lung function, 
4) highly symptomatic 
COPD with mildly 
impaired lung function. 

Shaykhiev et al. (2013) 
[119] 

A genetic study investigating 
the association between 
CXCL14 gene, cancer and 
COPD  

Data showed that smoking-
induced gene expression is 
a potential link between 
smoking-associated airway 
epithelial injury, COPD, 
and lung cancer.  

 
Not applicable 

Not relevant to COPD 
phenotyping 

Carolan et al. (2013) 
[120] 

A review that discusses 
advances in describing 
phenotypic variability in 
asthma and COPD 

The authors suggest that 
better understanding of the 
heterogeneity of the 
disease through 
phenotyping will improve 
care and reduce potential 
adverse effects from 
unnecessary therapies 

 
Not applicable 

Not relevant to 
methods under 
study.i.e. a review - not 
original research study 

 Basagaña et al. (2013) 
[39] 

In this article the authors 
developed a framework of 
applying imputation to missing 
values of a cluster analysis 

The proposed framework 
deals with uncertainty in 
definine the number of 
clusters, the variable 
selection and allocation of 
patients to clusters 

 
Not applicable 

Not relevant to the 
studies under review 

Toraldo et al. (2012) 
[121] 

A review article that discusses 
and refines the concept of 
desaturator phenotypes in 
COPD with pulmonary 
hypertension (PH) 

Cluster analysis can 
identify a pattern of 
phenotypic markers that 
could be used as a 
framework for future 
diagnosis and research 

 
Not applicable Not relevant to COPD 

phenotyping and 
machine learning 
methods under study 

Travers et al. (2012) 
[122] 

In a letter to the editors the 
authors discuss the possibility 
of re-examining the 
classification of airways 
disease to identify disease 
subgroups that may respond to 

The authors conclude that 
classification analysis can 
be used to derive 
allocation rules that allow 
disease groups identified 
through cluster analysis to 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 
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treatments in different ways. be prospectively identified 
in the real world. This will 
enable trials to test 
interventions in putative 
phenotypes, a necessary 
step towards personalised 
medicine for airways 
disease. 

Toraldo et al. (2011) 
[123] 

A cross-sectional study aimed 
to discuss and refine the 
concept of phenotyping 
desaturators in COPD and 
shows a possible pattern 
which could be used as a 
framework for future research. 

The study suggests that 
COPD phenotyping can 
facilitate our understanding 
and management of COPD 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 

 Bafadhel et al. (2011) 
[36] 

A cross-sectional study aimed 
to study the application of CT 
imaging in the 
multidimensional approach to 
phenotyping patients with 
COPD 

Cluster analysis identified 
three clusters, two of which 
were emphysema 
predominant and the third 
characterized by a 
heterogeneous 
combination of 
emphysema and 
bronchiectasis 

1) emphysema (EM) 
predominant, 2) 
bronchiectasis (BE) 
predominant, 3) 
heterogeneous 
combination of EM and 
BE 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Bafadhel et al. (2011) 
[43] 

A prospective observational 
study aimed to investigate 
biomarker expression in COPD 
exacerbations to identify 
biologic clusters and determine 
biomarkers that recognize 
clinical COPD exacerbation 
phenotypes 

Cluster analysis identified 
four distinct biologic 
exacerbation clusters 

1) bacterial-
predominant, 2) viral-
predominant, 3) 
eosinophilic--
predominant, 4) limited 
changes in the 
inflammatory profile 

COPD phenotypes 
were not validated with 
clinical meaningful 
outcomes 

Fingleton et al. (2011) 
[124] 

In a letter to the editors the 
authors discuss the tailoring of 
treatment regiments to patients 
with different COPD 
phenotypes 

The author acknowledge 
the challenge to determine 
distinct phenotypes and 
suggest that if these 
phenotypes are validated 
with response to treatment 
then can be potentially 
used to target treatments 

 
Not applicable 

Not relevant to 
methods under study, 
i.e. a review - not 
original research study 
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specifically to patients 

Shirtcliffe et al. (2011) 
[125] 

This review aimed to a better 
understanding of the distinct 
disorders of airways disease 
with the potential to inform on 
underlying mechanisms, risk 
factors, natural history, 
monitoring and treatment. 

The authors conclude that 
by further defining the 
distinct phenotypes that 
make up the syndromes of 
asthma and COPD could 
lead to treatments 
specifically targeted for 
defined phenotypic groups. 

 
Not applicable 

Not relevant to 
methods under study, 
i.e. a review - not 
original research study 

Sharma et al. (2010) 
[126] 

A study used data from two 
clinical trials aimed to identify 
subject clusters in one study 
and replicate the findings in 
the second study 

Cluster analysis identified 
three subjects clusters in 
one study that were 
replicated in the second 
study 

 
Not applicable 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Jo et al. (2010) [127] 

A cross-sectional 
observational study aimed to 
classify the phenotypes in 
elderly subjects with 
obstructive lung disease (OLD) 

Cluster analysis identified 
three phenotypes in elderly 
patients with OLD  

 
Not applicable 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Cho et al. (2010) [44] 
An observational genetic study 
aimed to identify subtypes of 
severe emphysema 

Cluster analysis identified 
four phenotypes in a group 
of sever emphysema 
patients 

1) emphysema 
predominant, 2) 
bronchodilator 
responsive, with higher 
FEV1, 3) discordant, 
with a lower FEV1 
despite less severe 
emphysema and lower 
airway wall thickness, 4) 
airway predominant. 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Sobradillo et al. (2010) 
[128] 

In this article the authors 
review the knowledge in the 
topic of COPD phenotypes 

  
 
Not applicable 

Not relevant to the 
purpose of the review 
under study 

 Weatherall et al. (2010) 
[129] 

In this article the authors 
discuss the advantages and 
disadvantages of cluster 
analysis to characterize 
different types of airways 
disorders 

The author conclude that 
cluster analysis can help to 
better understanding the 
true patterns of airway 
disorders and could lead to 
different pharmacological 
treatments and other 
interventions directed at 

 
Not applicable 

Not relevant to 
machine learning 
methods under study 



2 
 

specific phenotypic group 

Paoletti et al. (2009) 
[130] 

A cross-sectional study aimed 
to assess the presence of 
hidden structures in data 
corresponding to the different 
COPD phenotypes observed in 
clinical practice 

Data showed that using 
cluster analysis can 
identify phenotypes for 
understanding the results 
of pharmacologic trials; 
clinician’s approach to 
patient treatment and 
COPD natural history. 

 
Not applicable 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Weatherall et al. (2009) 
[51] 

A cross-sectional study aimed 
to explore clinical phenotypes 
in a community population with 
airways disease 

Cluster analysis identified 
five distinct phenotypes of 
airflow obstruction 

1) severe and markedly 
variable airflow 
obstruction with features 
of atopic asthma, 
chronic bronchitis and 
emphysema, 2) features 
of emphysema alone, 3) 
atopic asthma with 
eosinophilic airways 
inflammation, 4) mild 
airflow obstruction 
without other dominant 
phenotypic features, 5) 
chronic bronchitis in 
nonsmokers 

The derived 
phenotypes were not 
validated with clinical 
meaningful outcomes 

Pistolesi  et al. (2008) 
[131] 

A cross-sectional study aimed 
to ascertain whether COPD 
phenotypes reflecting different 
mechanisms of airflow 
limitation could be clinically 
identified 

Results showed that 
patients with COPD can be 
assigned a clinical 
phenotype reflecting the 
prevalent mechanism of 
airflow limitation 

 
Not applicable Not relevant to COPD 

phenotyping and 
machine learning 
methods under study 

Patel et al. (2008) [132] 

An observational study aiming 
to assess the association 
between airway wall thickening 
and emphysema at the 
severity of COPD  

Airway wall thickening and 
emphysema make 
independent contributions 
to airflow obstruction in 
COPD. 

 
Not applicable Not relevant with 

machine learning 
methods under study 

Kodavanti et al. (2006) 
[133] 

An animal study investigating 
whether spontaneously 
hypertensive (SH) rats may 
offer a better model of 
experimental bronchitis and 

Data showed that sulfur 
dioxide (SO2) exposure 
SH rats may yield a 
relevant experimental 
model of bronchitis 

 
Not applicable 

Not relevant to COPD 
phenotyping 
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subsequent COPD phenotypes 

Wardlaw et al. (2005) 
[134] 

An article that discusses the 
use of a new taxonomy for 
mutli-dimensional phenotyping 

The authors suggest that 
development of this 
taxonomy will require a 
much more complete and 
sophisticated correlation of 
the many variables that 
uses complex statistical 
tools such as cluster 
analysis 

 
Not applicable 

Not relevant machine 
learning methods under 
study 

Hackett et al. (2003) 
[135] 

A genetic study investigating 
the association between 
antioxidant-related genes and 
smoking-induced chronic 
bronchitis 

Data showed that 
antioxidant-related genes 
may be useful genetic 
markers in assessing 
susceptibility to smoking-
induced chronic bronchitis 

 
Not applicable 

Not relevant to COPD 
phenotyping 

  



2 
 

Table 4. Data characteristics and methods for the identification of COPD phenotypes in the reviewed studies 

Study Data used in the clustering analysis Data reduction and clustering methods 

Yoon et al. (2019) 
[9] 

Age, BMI, smoking status, history of asthma, COPD 

assessment test (CAT) score, pre-bronchodilator 

FEV1 % predicted, diffusing capacity of carbon 

monoxide % predicted 

K-means 

Pikoula et al. 
(2019) [6] 

BMI, smoking status, atopy, GINA1 classification, 
eosinophilia, comorbidities 

Multiple correspondence analysis (MCA),   
k-means, and hierarchical clustering 

Kim et al. (2018) 
[10] 

BMI, Charlson comorbidity index, SGRQ2 total score, 
FEV1 

Factor analysis and hierarchical clustering 

Kim et al. (2017) 
[11] 

Clinical, physiological and imaging data PCA and hierarchical cluster analysis 

Burgel et. al. (2017) 
[8] 

Age, BMI, FEV1 % predicted, mMRC3 dyspnea 
scale, exacerbation in the past 12 months, 
comorbidities 

Factor analysis for mixed data (FAMD) and 
hierarchical clustering 

Peters et al. (2017) 
[14] 

FEV1 % predicted, BMI, exercise capacity, subjective 
symptoms, fatigue, quality of life 

Hierarchical and discriminant cluster 
analysis 

Chubachi et al. 
(2016) [17] 

Comorbidity data (e.g., cardiovascular diseases and 
diabetes)  

Hierarchical cluster analysis 

Fingleton et al. 
(2015) [19] 

Respiratory history and comorbidities, lung function, 
reversibility testing, biomarkers, disease control and 
health status  

Hierarchical cluster analysis 

Chen et al (2014) 
[16] 

Age, lung function (FEV1 % predicted), BMI, history 
of severe exacerbations, mMRC, SpO2, Charlson 
Index 

PCA, hierarchical, and k-means clustering 

Castaldi et al. 
(2014) [7] 

Demographic and clinical characteristics, spirometry, 
genome-wide SNP genotyping data, inspiratory and 
expiratory CT scans 

Factor analysis and k-means clustering 

Altenburg et al. 
(2012) [18] 

Age, BMI, quadriceps force, body plethysmography, 
exercise testing  

K-means cluster analysis 

Burgel et al. (2010) 
[12] 

Age, symptoms, spirometry, BMI, exacerbations, 
health and psychological status 

PCA and hierarchical cluster analysis 

Burgel et al. (2012) 
[13] 

Age, symptoms, health status, body 
plethysmography, DLCO4, CT scan, comorbidities 

PCA and hierarchical cluster analysis 

Garcia-Aymerich et 
al. (2011) [15] 

Symptoms, health status, body composition, 
plethysmography, CT scan, saliva and serum, 
exercise testing 

K-means cluster analysis 

1
GINA: Global Initiative for Asthma; 

2
SGRQ: St George’s Respiratory Questionnaire; 

3
mMRC: Modified Medical Research Council;  
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4
 DLCO: Diffusing capacity of the lungs for carbon monoxide 

 

Table 5. Best practices recommended for the identification of clinically validated COPD phenotypes using clustering analysis 

Prospective 
longitudinal data 

External validation Large samples Handling of missing 

data 

Choice of variables and 

cluster analysis 

Use longitudinal 

prospective data over 

a long period of time 

from a large database 

(e.g., CALIBER, UK 

Biobank) 

Cross-validation with 

different databases 

from multiple settings 

(in different parts of 

the world), and 

validation against 

clinically meaningful 

endpoints (e.g., 

exacerbations, 

response to therapy, 

mortality) 

Use large samples, 

ideally with more 

than 1,000 patients 

Multiple imputation 

methods and 

sensitivity analysis 

Through a combination of expert 
opinions, evidence-based data 
and literature reviews, data 
reduction methods, and cluster 
analysis  
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Figure 1. PRISMA diagram for the systematic review  
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