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Abstract 
 
Rodents colonizing subterranean environments have developed several morphological, 

physiological and behaviour traits that promote the success of individuals in such 

demanding conditions. 

Resting metabolic rate, thermoregulation capacity and daily energy expenditure were 

analysed in two fossorial pine-vole species Microtus lusitanicus and 

M.duodecimcostatus inhabiting distinct areas of the Iberian Peninsula. Individuals were 

captured in locations with different habitat and soil features, allowing the comparison 

of energetic parameters with ecological characteristics, that can help explain the use of 

the subterranean environment and dependence of the burrow system. Results showed 

that M. duodecimcostatus has lower mass independent resting metabolic rate when 

compared with M. lusitanicus, which may be a response to environmental features of 

their habitat, such as dryer soils and lower water availability. Thermal conductance 

increased with body mass and was dependent on the ambient temperature. No 

significant differences were observed in the DEE, but water economy data 

demonstrated the influence of the water available on the habitat on the energetics of 

voles. These may rely on behavioural adaptations and seasonal use of burrows to cope 

which thermal challenges of subterranean activity and soil constraints. We found strong 

evidence that M.lusitanicus is able to use torpor as response to low ambient 

temperatures which is a new observation among Arvicolines. 

 
 
 
Introduction 

Energy metabolism has been extensively studied as a method to approach physiological 

adaptations to environmental variations (Mueller and Diamond 2001; Lovegrove 2003; 

Rezende et al 2004; Bozinovic et al 2007), as it represents the summed result of all 

functions simultaneously occurring in the whole animal, is ecologically relevant to define 

food requirements (Speakman 2000) and potential for heat stress (Speakman and Król 

2010). The resting metabolic rate (RMR) represents a large portion of an animals’ 

energetic requirement comprising 20 to 60% of the daily energetic demands (Ricklefs et 

al 1996; Hammond and Diamond 1997; Speakman 2000; Westerterp and Speakman 
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2008), therefore can be highly informative about the adaptive strategies of different 

species (Morgan and Price 1992; Bennett et al 1994) and populations (Bozinovic et al 

2007; Castellanos-Frías et al 2015). 

In this study we compared the energetics of two sister species the Lusitanian pine vole 

(Microtus lusitanicus Gerbe,1879) and the Mediterranean pine vole (Microtus 

duodecimcostatus de Selys-Longchamps, 1839).  

The M.lusitanicus occurs in the northern most side of the Iberian peninsula, while  M. 

duodecimcostatus inhabits the south eastern part of the Iberian Peninsula and southern 

France, the species share a small portion of their distribution area across the central 

area of the Iberian peninsula (Aulagnier et al 2008; Aulagnier and Palomo 2008). 

Although genetically closely related (Jaarola et al 2004), overall  M. lusitanicus has 

smaller size than  M. duodecimcostatus (Microtus lusitanicus, body mass 14-19g; M. 

duodecimcostatus, body mass 19-32g). Broadly, pine voles can be found in meadows, 

pastures, agricultural areas and orchards where they can often cause severe damage 

(Vinhas 1993; Cotilla and Palomo 2007; Mira and Mathias 2007). However, at the micro 

scale species exhibit different ecological preferences (Borghi et al 1994; Santos et al 

2011) and clear differences in their burrowing behaviour (Giannoni et al 1993), 

M.lusitanicus pushes earth from burrows mostly using the hindlegs and 

M.duodecimcostatus uses the incisors to break the soil and pushes it outwards using the 

head. Soil properties have been reported as a key factor in shaping the morphology of 

subterranean rodents (Stein 2000) and influencing the energetic demands of burrowing 

(Luna and Antinuchi 2006). Therefore, we analysed soil properties and compare them 

with energetic parameters to analyse the response of each species to their 

environmental conditions. We hypothesised that M.duodecimcostatus exhibits reduced 

RMR compared with M.lusitanicus given that inhabits warmer and dryer areas which 

influences the properties of the inhabited soil. Thus, soils with higher water content 

facilitate heat dissipation allowing animals to sustain elevated metabolic rates. 

Moreover, we measured the energy expenditure of free-living voles and compare it with 

captive voles to evaluate the costs of inhabit a subterranean environment. 
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Material and methods 

 

Field sampling and maintenance of voles 

Field work was carried out across the species ranges from the north to the south of 

Portugal (N 37º00 - 41º50; W 6º30 – 9º20). The selection of trapping sites was 

dependent of the presence of fresh mounds, holes or burrows, mainly in agricultural 

areas, road verges and meadows. Voles were captured using modified tube traps to 

include a nesting box, partially filled with local grass and bated with apple. The number 

of traps per site varied in accordance with the extension of the colony, estimated by the 

number of signs such as mounds and tunnel entrances. Trapping was successful in 18 

sites within the range of M. lusitanicus and in 30 sites within the range of M. 

duodecimcostatus. Soil samples were collected in the 48 sites where voles were 

captured. Samples were collected in a radius of 1 meter from the trapping point. 

Approximately 1 dm3 of soil was removed and kept in a closed plastic bag until being 

processed. 

Although a larger number of voles have been trapped, only 46 non-reproductive adults 

(include split by species) were used in the present study. Experimental animals were 

housed in small individual cages (255 x 220 mm) partially filled with soil collected in 

capture sites. The majority of voles (40 out of 46) were taken to the laboratory where 

they were kept under controlled light (12L:12D) and room temperature (≈ 25ºC), with 

free access to water and fed with carrots, apples and grass ad libitum The remaining 6 

individuals were used in field measurements of energy expenditure (see below). 

 

Respirometry 

A total of 24 voles (M. lusitanicus: 5 females, body mass 17.1g ± 0.2g and 6 males, body 

mass 16.4g ± 0.4g; M. duodecimcostatus: 7 females, body mass 24.5g ± 0.3g and 6 males, 

body mass 25.5 g ± 0.4 g), were used to assess energy expenditure and thermoregulatory 

abilities. Energetic measurements were carried out after a 4 week period for laboratory 

acclimation. Oxygen consumption (VO2) was measured using an open-circuit 

respirometry system (Servomex, series 1100), as previously described by Duarte (2010). 

Animals were measured in a cylindrical chamber (approximately 1000 ml capacity), and 

dried atmospheric air was pumped into the chamber at a flow rate of 500ml/min. 
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Carbon dioxide was not removed to minimise error in the conversion of oxygen 

consumption to energy expenditure (Koteja 1996). Each vole was monitored twice, over 

two consecutive days, for 2 hours each day, in different periods, to avoid potential 

effects of daily metabolic cycle (Halle and Stenseth 1994). The average of the two 

measurements was use in the data analysis. Voles were not fasted prior to entering the 

chamber, but no food or water were available during the 2h-experiments. Consequently 

at the end of the runs voles had not been fed for at least 2 hours. 

Measurements of oxygen consumption were recorded at 15s intervals, using the 

Labtech data acquisition and process control software. This procedure was repeated at 

different ambient temperatures: 5ºC, 15ºC, 20ºC, 25ºC, 30ºC, 32.5ºC, 35ºC, 37.5ºC and 

40ºC. A total of 358 measurement runs were performed, but 10 of these were excluded 

from analysis because the voles did not settle in the chamber. At higher ambient 

temperature, if animals showed signs of distress, they were removed from the chamber 

and the temperature registered as the upper survival limit. To correct for machine drift 

baseline, values of atmospheric oxygen were measured for 15 minutes before and after 

each trial. 

At each ambient temperature, resting metabolic rate was estimated as the average 

value of the ten lowest consecutive readings (equivalent to 2min30s in the chamber) 

(Hayes et al 1992). At the beginning and end of each run, animals were weighed and 

body temperature measured rectally (at depth around 2.5 cm), with a thermocouple K 

probe (MI-K-Miniz-1.0-100) connected to a Digitron thermometer (2088T, Sifam 

Instruments Limited). 

Oxygen consumption was calculated after Depocas and Hart (1957) as VO2=V2 (F1O2–

F2O2)/(1-F1O2), where V2 is the flow rate measured after the metabolic chamber, and 

F1O2 and F2O2 are the oxygen concentrations before and after the metabolic chamber. 

All VO2 measurements were corrected to standard temperature and pressure (STPD). 

Thermal conductance was calculated as C=VO2/(Tb-Ta), where C is conductance, Tb is the 

body temperature of the animal and Ta the ambient temperature (McNab 1970). 
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Doubly Labelled Water 

The Doubly Labelled Water technique (DLW) (Butler et al 2004) was used to determine 

the Daily Energy Expenditure (DEE) and the Water Turnover (WTO), estimating how hard 

animals are working through the calculation of sustained metabolic scope (SusMs = 

DEE/RMR). WTO is considered as a balance between internal fluids and the input and 

output of water from the external environment (Speakman and Racey 1988). 

A total of 22 animals (13 females and 9 males) were used in the DLW experiments. Three 

groups of voles were injected with doubly labelled water (30% 18O, 2H). The first group 

included six M. lusitanicus (4 females and 2 males), captured during the summer period 

in an apple orchard and released in their natural environment in the field. We failed to 

successfully recapture any individuals of M. duodecimcostatus and hence have no field 

metabolic rate measurements for this species. Accordingly we compared the DEE of two 

further groups measured in captive conditions. The second group included eight M. 

lusitanicus (5 females and 3 males) captured in the same site where the field 

measurements had been made, but taken to the laboratory, housed in individual cages, 

kept under natural light conditions and fed ad libitum with a mixture of fresh grass and 

carrots. The third group included eight M. duodecimcostatus (4 females and 4 males), 

captured in an orange orchard and kept under the same laboratory conditions.  

One hour after the injection of the DLW, a blood sample was taken by retro orbital 

bleeding, to estimate the initial isotope enrichment of 2H and 18O. Blood samples were 

flame sealed in glass capillaries immediately after being collected. After the blood 

collection, the individuals from the first group were released in the same place of 

capture. The individuals from the second and third groups were kept in the laboratory, 

in individual cages, as described above. After 24h, a second blood sample was taken, to 

evaluate the final isotope enrichment (Speakman and Racey 1988). In the field, the 

blood samples were collected from 6 recaptured animals (from a total of 8 previously 

captured and injected). To assess the correct amount of injected isotope, the syringes 

were weighed before and after the administration of the water (0.0001g, Sartorius 4-

figure balance). 

The capillaries were vacuum distilled (Nagy 1983) and water from the resulting distillate 

was used to produce CO2 and H2 (methods in Speakman et al. (1990)and Speakman and 
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Król (2005). The isotope ratios 2H:1H and 18O:16O were then analysed using gas source 

isotope ratio mass spectrometry. The elimination constants (Ko and Kd) and the dilution 

spaces (No and Nd) of the ratios 2H and 18O injected were determined. Initial and final 

pools were calculated by the plateau method (Speakman et al 1993). This method 

assumes that the initial blood sample was taken when the administered isotope has 

equilibrated with water pool of the animal’s body, and reached a maximal value before 

the isotope has been washed out from the body, according with the following equation 

(Król and Speakman 1999):  Ni = Minj (Epeak − Einj)/(Ebg − Epeak), where Ni (mol) is the 

dilution space for deuterium, oxygen-18 or tritium; Minj is the amount of injectate (mol) 

injected; Epeak is the initial isotope enrichment (ppm) of body water; Einj is the 

enrichment (ppm) of the deuterium/oxygen-18 or tritium injectate; Ebg is the 

background isotope enrichment (ppm) of body water. CO2 production was estimated 

according with equation rCO2=(N/2.078) x (Ko - Kd) – 0.0062 KdN (Speakman, 1997, eq. 

7.17), where rCO2 is the CO2 production, N (mol) is the size of body water pool. The rate 

of C02 production was converted to DEE assuming a respiratory quotient of 0.85 and 

oxygen equivalent to 20.1kJ.L-1. 

The WTO (ml/day) values were calculated using the deuterium elimination rates (Kd  per 

day), and deuterium dilution spaces (Nd, ml), WTO = Kd . Nd.F, where F is the fractionation 

factor of the isotope (0.941; Speakman 1997). The Water Economy Index (WEI) was 

calculated was WTO/DEE. Sustained metabolic scope was calculated as 

SusMs=DEE/RMR (Peterson et al 1990). 

 

All experimental procedures were conducted in the University of Lisbon facilities by an 

expert in laboratory animal science accredited by the Portuguese Veterinary Authority 

(1005/92, DGV-Portugal, following FELASA category C recommendations), according to 

the European guidelines (86/609/EEC). 

 

 

Data analysis  

Resting metabolic rates and thermal conductance were analysed using a mixed model 

procedure, setting species and ambient temperature as factors, body mass as covariate 
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and individual id as random factor to account for repeated measures (methods in Tschöp 

et al (2011)). Thermal conductance (C) calculated from the individual measurements of 

oxygen consumption using the equation C=VO2/(Tb-Ta) (Mcnab 1980). Limits of 

thermoneutrality were determined for each species using a segmented regression 

model through SegReg software (www.waterlog.info). A General linear model was used 

to analyse DEE, WTO, WEI and SusMs data, setting species and environment (field vs 

lab) as fixed factors and body mass as covariate. All values were expressed as mean ± 

S.E. and p< 0.05 was taken as statistically significant, data were analysed using SPSS v19 

for windows. 

Soil samples were analysed for soil texture, percentage of organic matter, and water 

availability. The mineral contents of the soil were separated according with their sizes, 

and classified into three major classes: clay, silt and sand. Texture designates the relative 

proportion of each class in a sample; USDA soil textural classes were adopted (Soil 

Survey Division Staff 1993). The samples from the three main texture categories, were 

processed to the determine water availability and percentage of organic matter in the 

soil. Water availability was assessed by the difference between field capacity and 

permanent willing point (assessed by pF 2.14 and pF 4.2) (Richards 1947). Differences 

between sites were then compared using One-way ANOVA, setting species as fixed 

factor. 

 

 

Results 

 
Resting Metabolic Rate and Thermoregulation 
 
 
Mean body temperature of M.lusitanicus ranged from 35.8±0.39ºC at Ta=5ºC to 

40.1±0.51ºC at Ta=37.5ºC. At lower ambient temperatures some animals reduced their 

body temperature: six individuals had body temperatures between 30 and 33 oC and 

one individual had a body temperature of 26 oC (Figure 2A). The mean body temperature 

for M. duodecimcostatus ranged from 38.1±0.36ºC at Ta=5ºC to 42.3±0.55ºC at Ta=40ºC 

(Figure 2B). Upper survival limit was registered at 37.5ºC for M. lusitanicus and at 40ºC 

for M. duodecimcostatus. 

http://www.waterlog.info/
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Resting metabolic rate variation was explained by the body mass (F1,21 =29.944; 

p<0.001), ambient temperature (F8,21 =49.860; p<0.001) and the interaction between 

ambient temperature and species (F8,21 =4.172; p<0.001). Overall, M.duodecimcostatus 

had lower metabolic rates than M. lusitanicus, except when ambient temperature was 

5ºC. At 5ºC some M.lusitanicus reduced their metabolic rate by 68% when comparing 

all the individuals at 5ºC and body temperature fell to between 26 and 33 oC (see above), 

suggesting the induction of a shallow torpor. 

The thermoneutral zone was calculated for M.duodecimcostatus to be between 31.6ºC 

and 37.5ºC, for M. lusitanicus lower critical point was calculated as 30.7ºC, and due to 

reduced data upper critical temperature was estimated 35 – 37.5ºC. 

Below thermoneutrality thermal conductance was fairly stable at 0.101 mlO2.min-1.ºC-1 

for M.lusitanicus and 0.131 mlO2.min-1.ºC-1 M.duodecimcostatus. Above lower critical 

point thermal conductance increased about 186% to 0.287 mlO2.min-1.ºC-1 in 

M.lusitanicus and to 0.430 mlO2.min-1.ºC-1 (227%) in  M.duodecimcostatus. Thermal 

conductance was mostly influenced by the ambient temperature (F8,20 =33.102; 

p<0.001) and the body mass (F1,20 =12.396; p=0.001). 
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Figure 1 – Oxygen consumption of Microtus duodecimcostatus and M. lusitanicus across 

ambient temperature. (Adjusted values for BM= 21,53g). 
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Figure 2 - Individual values of body temperature (Tb) in relation to ambient temperature 

(Ta) (Tb = Ta). A – Microtus lusitanicus; B – Microtus duodecimcostatus. 
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Soil characteristics 

The analysis of soil samples revealed that M.lusitanicus was mostly found on sandy-loam 

(41%), silty-loam (23%), loam (18%) and clay loam soils (14%), whereas M. 

duodecimcostatus occupied mainly loam (35%), sandy-loam (28%), silty-loam soils 

(17%), and other residual classes (20%). Figure 3 summarises data on water availability 

and % of organic matter on the three texture classes more abundant on both species. 

The soil from locations inhabited by M.lusitanicus have significant higher organic matter 

content (ANOVA F2,39=35.283; p<0.001) and water available (ANOVA F2,38=45.390; 

p<0.001) then those inhabited by M.duodecimcostatus.  
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Figure 3 - % of organic matter and water availability on the sandy-loam, silty loam and 

loam soils, in sites inhabited by M. duodecimcostatus (dark) and M.lusitanicus (light). 

 

Daily Energy Expenditure and Water Flux 

All the variables examined had no significant effects on the DEE and SusMs. The data are 

summarised in Table I. 

The WTO (ml. day-1) was significantly higher in the field animals (F1,17=18.256; p=0.001). 

The WEI was also significantly different between animals from the field and from the lab 

(F1,17=22.264; p<0.001). 
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Table I – Mean ± standard error of the mean for Water turnover (WTO), daily energy 

expenditure (DEE), Sustained Metabolic Scope (SusMS) and Water economy index (WEI) 

(all estimated for body mass = 20.34g). 

 M.lusitanicus M.duodecimcostatus 

 Field Laboratory Laboratory 

N 6 7 8 

WTO (ml.day-1) 3.04 ± 0.31 1.57 ± 0.25 1.52 ± 0.32 
DEE (kJ.day-1) 57.0 ± 6.47 55.2 ± 5.37 52.9 ± 6.82 
WEI (ml. kJ-1) 0.97 ± 0.07 0.58 ± 0.06 0.55 ± 0.07 

SusMS 2.10 ± 0.23 1.87 ± 0.19 2.28 ± 0.24 

 

 

 

Discussion 

The extreme demands of subterranean life have resulted in unique specialisations that 

allow them to cope with the burrow environment. Reduced metabolic rates has been 

described as one of the features that allows subterranean species to avoid overheating 

due to the elevated costs of burrowing activity (Vleck 1979; Bozinovic et al 2005). 

The measurements of oxygen consumption showed clear differences between the 

metabolic rates of the two studied species, M.duodecimcostatus had reduced resting 

metabolic rates, comparing with M. lusitanicus. According with hypothesised such 

variation can be interpreted as response to environmental features, such us soil dryness 

and availability of water. 

Our data show evidence for the occurrence of torpor periods in the M. lusitanicus. 

Torpor is a common strategy in several rodent species as the house mouse Mus 

musculus (Overton and Williams 2004), deermice Peromyscus sp. (Tannenbaum and 

Pivorun 1987) and the Djungarian hamster Phodopus sungorus (Ruf et al 1991). 

However, torpor have never been reported in Arvicoline rodents (McNab 1992; 

Nieminen et al 2013). Voles rely on constant food availability, and are not adapted to 

prolonged periods of fasting, perishing after 6 to 26 hours without food (Mustonen et al 

2008). Thus is unlikely that torpor in M. lusitanicus is induced by the scarcity of 
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resources. However, the expression of torpor occurred only in individuals with reduced 

body mass, observations on mice (Rikke et al 2003; Mitchell et al 2015) suggested that 

body composition may be involved in the mechanisms regulating torpor induction and 

body temperature. 

 On this study, torpor occurs as response to the exposure to reduced temperatures, 

hence possibly voles developed such strategy to save energy and cope with winter 

temperatures. Our study did not consider the circadian variation of body temperature 

(Refinetti and Menaker 1992), however the measured range of body temperature 

variation (30%) gives us confidence to suggest the occurrence of torpor bouts. Other 

Microtine species also reduced their body temperature in response to cold acclimation, 

but the variation range is reduced, about 5% on the M. cabrerae (Mathias et al 2003) 

and M. arvalis (Ishii et al 1996), not entering in a torpid state 

Several studies (Mcnab 1979; Lovegrove 1986) have suggested that the adaptations 

towards a life more dependent on the subterranean environment includes  a reduction 

of resting metabolic rates due to overheating risk and elevated costs of subterranean 

foraging. Moreover, previous studies comparing digging behaviour (Giannoni et al 1993) 

and morphology (Mathias 1990; Mathias 1996) of M.duodecimcostatus and 

M.lusitanicus suggested that M.duodecimcostatus developed features that are in line 

with an adaptation to subterranean environment whilst M.lusitanicus showed adaptive 

traits towards surface dwelling. 

Following Ebensperger and Bozinovic (2000) and Lovegrove (1989) average metabolic 

rates of species digging in dry, harder soils are expected to be greater than those of 

species digging in moist, softer soils due to the higher cost of burrowing. In fact, the soil 

texture, water content, organic matter and tillage are parameters that also highly 

constrain the thermal conductivity of the soil (Abu-Hamdeh and Reeder 2000; Abu-

Hamdeh 2003). Soil thermal conductivity increases with the soil water content, thus soils 

with higher water content also increase the capacity of heat dispersion.  

This supports the hypothesis that high metabolic rates are more sustainable in 

environments that facilitate heat dispersion, potentially explaining the higher RMR of 

M.lusitanicus which inhabits moister soils than M.duodecimcostatus. Moreover, the 

percentage of organic matter also facilitates the water retention on soil (Farley et al 
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2004). This may partly explain why the abundance of pine voles is usually higher in 

agricultural areas (Vinhas 1993; Mira and Mathias 1994; Miñarro et al 2012). In fact, the 

permanent watering of soil, through dripping, is a common agronomic practice that 

facilitates the expansion of vole populations (Bertolino et al 2015), and in some cases it 

has been suggested to be a key factor explaining rodent outbreaks (Jareno et al 2015) 

and continuous reproduction throughout the year (Ventura et al 2010). 

The importance of water as the driver of vole’s behaviour was also made evident by the 

measured WTO rates. Some studies suggested that reduced water turnover is a strategy 

to save energy (Rubal et al 1995; Scantlebury et al 2003) in desert environments, 

moreover WTO is linked to the energy expenditure when water is not available for 

drinking. 

Voles under field conditions had higher values of WTO and WEI, which are indicative of 

the higher water intake than captive voles. Generally, subterranean species, as many 

other species, do not drink free water (Buffenstein 2000), thus our data suggests that 

free-living voles may have access to water sources, such as food. Water economy data 

also suggests some phenotypic plasticity that should be investigated in further studies. 

The absence of differences in DEE between the field group and the housed group were 

unexpected, it may be explained by the abundance of resources in the field area 

(agricultural area with dripping watering and vegetative cover), and an absence of 

intensive burrow digging during the measurement period. 

Considering the present results, our data supports previous observations proposing 

seasonal fluctuation of burrowing activity, during the summer animals are less active 

(Guedon et al 1992) as during winter  grass cover is abundant, animals move mainly on 

the surface, where food is available and can be stored for scarcity periods (Mira and 

Mathias 1994). The climate in the burrows is highly buffered, however the atmosphere 

inside the tunnels can be influenced by the environment on the surface above (Burda et 

al 2007). Thus underground activity (excluding active burrowing) may be preferred 

during the summer, because helps avoiding elevated temperatures of the dry season. 

Deeper soil layers maintain constant levels of moisture which may contribute to heat 

dispersal (Kinlaw 1999; Burda et al 2007). Seasonal and daily variations in burrowing 
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activity were already reported in other species, e.g semifossorial Octodon degus 

(Ebensperger and Bozinovic 2000) and in Spalacopus cyanus (Rezende et al 2003; 

Urrejola et al 2005). Even though subterranean rodents can modify their digging 

behaviour according with soil texture, using only the forelimbs to dig in loose soils, and 

including the use of the incisors when help in required to break some rocks (Lessa and 

Thaeler Jr. 1989). Shifting the activity patterns according to the ambient temperatures, 

creating a seasonal routine, may allow voles to cope with the thermal constrains of 

burrowing during the dry season. 

 

Conclusion 

The data obtained sustained our initial hypothesis that mass-independent RMR is 

reduced in the M.duodecimcostatus (considering ambient temperatures above 15ºC) 

which is consistent with the occurrence of the species in drier and warmer 

environments, typical of the south of the Iberian Peninsula. On the other hand, 

M.lusitanicus may have developed strategies to cope with low temperatures through 

torpor in line with the colonisation of the north of the Iberian Peninsula. 

These are new insights on the species their energetic demands which provides 

interesting information about their biology and the complex speciation process between 

the two species. 
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