
ISSN 0143-4543

THE SUBTOUR CENTRE PROBLEM

By

Dr John Lamb

Discussion Paper 2007-19
March 2007

Editor: Dr W David McCausland
www.abdn.ac.uk/business/

The subtour centre problem

John D. Lamb
University of Aberdeen Business School,
University of Aberdeen, AB24 3QY, UK

Abstract

The subtour centre problem is the problem of finding a closed trail
S of bounded length on a connected simple graphG that minimises
themaximumdistance from S to any vertex ofG. It is a central location
problem related to the cycle centre and cycle median problems (Foulds
et al., 2004; Labbé et al., 2005) and the covering tour problem (Current
and Schilling, 1989). Two related heuristics and an integer linear pro-
gramme are formulated for it. These are compared numerically using a
range of problems derived from tsplib (Reinelt, 1995). The heuristics
usually perform substantially better then the integer linear programme
and there is some evidence that the simpler heuristics perform better
on the less dense graphs that may bemore typical of applications.

keywords: Location, Combinatorial optimization, Heuristics, Linear
programming

1 Introduction

The subtour centre problem is the problem of finding a closed trail S of bounded
length on a connected simple graphG so that the maximum distance from S

to any vertex ofG is as small as possible. More precisely, letG be a connected
simple graph in which each edge has a nonnegative length. If S is a closed trail
inGwe can define its length to be the sum of the lengths of its edges. We call
a closed trail S inG a subtour. We use the word subtour to distinguish from
tours, which usually visit all the vertices.
We define the distance d(u, v) (or sometimes duv) between vertices u and v

ofG as the length of the shortest path from u to v. More generally, we define
the distance between a vertex u and a subgraphH ofG as

d(u,H) = min v ∈ V(H)d(u, v). (1)

The subtour centre problem, then, is to find a subtour S of length no greater
than a given bound b ≥ 0 that minimises the maximum value of d(u, S)

taken over all u ∈ V(G). The value that minimises d(u,H) : u ∈ V(G) for
a subgraph H of G is called the eccentricity of H. Subgraphs that minimise
eccentricity subject to some constraint are often called centres.

0

3

706

13

398

310

12

499

8

804

1

664

5

598

6
507

7

197

10
310

634

11

19

439

9
757

124

133 315

582

2

390

4

774

880

455

902

635

761

247

498

Figure 1: Example of a subtour centre

Fig. 1 shows a graph and its subtour centre. The bound on subtour length is
6000 and the subtour is drawnwith solid edges. Vertex 13 appears twice in
the subtour.
Typical applications of the subtour centre problem are locating a mobile
facility or service on a transport network with constraints on the distance the
facility can move. Examples might include the routing of mobile services
such as post offices or libraries, the design of bus or train routes and touring
problems for theatres and the like. As far as I know, the subtour centre
problem has not been studied before except in (Lamb, 2006), which considers
only simple insertion heuristics.
Network location problems have been studied since the 1960s. A natural
problem is to find a structure that is central in a graph. There are two obvious
definitions of centrality. One is the centre, defined above. The other is the
median, defined like the centre but replacing ‘maximum distance’ with ‘sum
of distances’. Both of these and a third, new, definition of centrality, called the

2

centroid, are discussed in detail in (Foulds et al., 2004). The earliest problems
to be studied sought 1-medians and 1-centres (Hakimi, 1964): that is, prob-
lems in which the median or centre comprises a single vertex. In later studies
the central structure was extended to a null graph on p vertices (p-centre)
(Drezner, 1984; Dyer and Frieze, 1985), to paths (Slater, 1982), trees (Hutson
and ReVelle, 1989) and circuits (Foulds et al., 2004; Labbé et al., 2005; Gen-
dreau et al., 1997; Akinc and Srikanth, 1992; Arkin and Hassin, 1994). Mesa
and Boffey (1996) survey the problems studied. Two problems are of partic-
ular interest. The first is the cycle centre problem discussed by Foulds et al.
(2004). It differs from the subtour centre problem by requiring that solutions
are circuits (degree two rather than even degree). They consider only graphs
with all edge weights equal to one and find integer linear programming (ilp)
solutions. We base our ilp formulation on theirs. The second problem is the
covering salesman (Current and Schilling, 1989) or covering tour (Gendreau
et al., 1997) problem. (See also (Akinc and Srikanth, 1992) for a generalisa-
tion.) This seeks a minimum length tour subject to an eccentricity bound
rather than aminimum eccentricity tour subject to a tour-length bound. The
solution heuristics for the covering tour problem tackle first a set covering
problem to identify a suitable set of vertices for the solution. Then they tackle
a travelling salesman problem (tsp) to minimise subtour length. Since we
seek a subtour of bounded length rather than bounded eccentricity, we can-
not easily adopt such an approach. For, we cannot easily choose vertices for
the subtour before we consider its length.

Section 2 develops an ilp formulation for the subtour centre problem. This
draws on (Foulds et al., 2004) and (Labbé et al., 2005). Section 3 develops a
heuristic for the problem. It uses insertion heuristics similar to those used
for p-centre (Dyer and Frieze, 1985) and tsp (Rosenkrantz et al., 1972) prob-
lems. It also uses improvement heuristics similar to those used for p-centre
(Drezner, 1984) and tsp (Lin and Kernighan, 1973) problems. Section 4 ex-
plains howwe implement the heuristic efficiently and presents a simplified
heuristic. Section 5 presents numerical performance comparisons for the ilp

method and the heuristics, using problems derived from tsplib (Reinelt,
1995).

Wenote some features of the subtour centre problem. First, it isNP-hard. For,
consider the subtour centre problem in which we seek a subtour of length at
mostnwhereG hasn vertices and all edges have length one. In this problem,
G has a Hamilton cycle whenever there is a solution with eccentricity zero.
Since theHamilton cycle problem isNP-complete, it follows that the subtour
centre problem isNP-hard.
The problems we consider do not include any prespecified vertices, often

3

called hubs, common in location problems. However, the ilp formulation
and heuristics are easily be adapted to handle this extra restriction.
Wecan assumedistances obey the triangle inequality: foru, v andw ∈ V(G),

d(u,w) ≤ d(u, v) + d(v,w). (2)

Rosenkrantz et al. (1972) note that, if necessary, we can add a sufficiently large
constant to every edge length to ensure this condition is met. We test our
solution methods on problems that obey the triangle inequality. There is
some reason (see (Lamb, 2006)) to believe the heuristics will perform less well
on problems that do not satisfy the triangle inequality.
We use an observation commonly used for the tsp. We construct a complete
graph Ĝ from G as follows. Let V(Ĝ) = V(G), let E(Ĝ) = {uv : u, v ∈
V(Ĝ), u 6= v} and, for uv ∈ E(Ĝ), let uv have length d(u, v). Clearly, for
any subtour ofG there is a corresponding subtour of Ĝ of the same length.
IfG satisfies the triangle inequality then so does Ĝ. If S is a closed trail in Ĝ

with a repeated vertex x, we can remove one instance of x from S and join
its neighbours to get a subtour of no greater length on the same vertices. We
can repeat this process until S has is a circuit. Hence, any shortest subtour S

on U ⊆ V(G) corresponds to a circuit of Ĝ and so we need only consider
circuits of Ĝwhen looking for subtours ofG.
From here on, we write Ĝ for the complete graph corresponding toG.

2 An integer linear programming formulation

This section presents an integer linear programming (ilp) formulation of the
subtour centre problem. It draws on (Foulds et al., 2004) and (Labbé et al.,
2005).
The formulation uses the following observation, used, for example, byHassin
et al. (2003). Given a circuitC of Ĝ, each u ∈ V(Ĝ) can be assigned to a vertex
v ofC chosen so that d(u, v) ≤ d(u,w) forw ∈ V(C). The assignment is
often, but not always, unique. We can assumewithout loss of generality that if
v ∈ V(C) then v is assigned to itself. For the ilp formulation it is convenient
to seek not just a circuit C but also an assignment of each u ∈ V(Ĝ) to a
unique v ∈ V(C)with v assigned to itself for v ∈ V(C).
Label the vertices of Ĝ as 1, . . . , n and the edges e1, . . . , em. If e is an edge
joining vertices i and j, we write ij to represent ewhen it is convenient to do
so. We write the length of an edge as dij (as before) or de. Let b ≥ 0 be the
maximum length of a subtour. Let C(Ĝ) denote all circuits of Ĝ. Then we
seek a circuitC ∈ C(Ĝ) satisfying

min
C∈C(Ĝ)

max
i∈{1,...,n}

d(i, C) subject to
∑
e∈C

de ≤ b. (3)

4

We restate this as an ilp. First, let pij (i, j = 1, . . . , n), xe (e = 1, . . . ,m), zi

(i = 1, . . . , n) and z be variables. These represent the following in a solution.

1. pij = 1 if and only if i is assigned to j.

2. xe = 1 if and only if the solution contains e.

3. Each vertex i is incident with piizi solution edges.

4. z is the eccentricity of the solution.

Following Labbé et al. (2005), we define, for a subgraph H of Ĝ, δ(H) to be
the set of edges with exactly one vertex inH. We write δ(i) for δ({i}). Also
we define

δ(e,H) =

{
1 if e ∈ δ(H),

0 otherwise.
(4)

and

x(δ(H)) =
∑

e∈E(Ĝ)

xeδ(e,H). (5)

In other words, if {ei : i ∈ I} is the set of edges joiningV(H) toV(Ĝ) \ V(H)

then x(δ(H)) =
∑

i∈I xi.
We wish to solve

min z (6)

subject to∑
e∈E(Ĝ)

dexe ≤ b, (7)

n∑
i=1

pij = 1, j = 1, . . . , n (8)

z ≥
n∑

i=1

pijdij, j = 1, . . . , n (9)

pij ≤ pjj, i, j = 1, . . . , n (10)

x(δ(i)) = 2zipii i = 1, . . . , n, (11)

x(δ(S)) ≥ 2, S {i ∈ V(Ĝ) : pii = 1}, (12)

5

0 ≤ xe ≤ 1 e ∈ E(Ĝ), (13)

0 ≤ pij ≤ 1 i, j ∈ V(Ĝ), (14)

xe integer e ∈ E(Ĝ), (15)

pij integer i, j ∈ V(Ĝ), (16)

zi integer i ∈ V(Ĝ). (17)

Constraint (7) ensures the circuit length is at most b. Constraints (8) ensure
that each vertex is assigned to precisely one solution vertex. Constraint (8)
together with constraints (14) and (16) ensure that if k is assigned to j then
one of constraints (9) has the form

z ≥ dkj. (18)

Thus the objective is at least as large as the eccentricity of the solution. Con-
straints (10) ensure that each vertex is assigned to a solution vertex. Con-
straints (11) ensure that the solution is a subgraph of maximum degree two.
And constraints (12) ensure the solution is connected.
Following Foulds et al. (2004, (2.8), (2.9)) we add constraints

xij ≤ pii i, j ∈ V(Ĝ), (19)

xij ≤ pjj i, j ∈ V(Ĝ), (20)

to obtain better performance.
The number of constraints in (12) grows exponentially with problem size.
Sowe remove these constraints. Thenwe solve the relaxed ilp. Whenever
we find a solution that is not connected, we choose a component C of the
solution of largest eccentricity. We add a lazy constraint of the form∑

i∈I

xi ≤ |I| − 1, (21)

where {ei : i ∈ I} is the set of edges of C. Then we solve the ilp again.
This guarantees that the solution is ultimately connected and so satisfies
constraints (12). We use constraints (21) rather than the method suggested
in Foulds et al. (2004) for two reasons. First, I use the Boost graph library
(Siek et al., 2002; Boost, 2006) to test for connectivity. This gives components
explicitly andmakes it easy to find constraints of the form of (21). Second, in
contrast to the method of Foulds et al. (2004), we avoid adding extra variables
to the ilp model each time we add a constraint. This lets cplex (Ilog,
2006) solve the revised ilp more efficiently because it starts from an existing
solution if no new variables are introduced.

6

3 A heuristic for the subtour centre problem

Since the subtour centre problem isNP-hard, we should reasonably expect
that a good heuristic will perform better on average than the ilp method for
larger problems. We develop two heuristics, one in this section, one in the
next. As in Section 2, we seek circuits in the complete graph Ĝ corresponding
toG rather than subtours directly. We consider the empty set, a single vertex,
and a pair of parallel edges together with their vertices to be circuits.
We need some definitions in order to describe the first heuristic. We remove a
vertex x from a circuitC that has two ormore vertices by removing x from
the vertices ofC and joining its neighbours inC. IfC comprises one vertex
x, we remove x from C by replacing C with ∅. We insert a vertex x into a
circuitCwith at least one vertex by finding an edge uv ofC that minimises
d(ux) + d(xv) − d(uv), disconnecting u and v and joining x to u and v. If
C = ∅, we insert a vertex x intoC by replacing it with the circuit comprising x.
And ifC comprises a single vertexu, we insert a vertex x intoC by replacing it
with the circuit comprising x, u and parallel edges xu and ux. IfC is a circuit,
x a vertex ofC and y 6= x a vertex not inCwe exchange x and y by removing
x then inserting y. The cost of an insertion, exchange or removal is the length
of the circuit after the operationminus the length before.
The first heuristic we develop comprises several parts. Each is a smaller
heuristic chosen because it modifies an existing circuit. We want a heuristic
that increases the number of vertices in the circuit. We use one based on a
heuristic of Dyer and Frieze (1985) for the geometric p-centre problem.We
call it theDyer–Frieze heuristic:

LetC be a (possibly empty) circuit.
While there exists a vertex x such that if we insert x inCwe get a circuit of
length at most b:

Choose a vertex x that maximises d(x,C) subject to the constraint that
if we insert x inCwe get a circuit of length at most b:
Insert x inC.

This is a farthest insertion heuristic. Using results of (Dyer and Frieze, 1985)
and (Rosenkrantz et al., 1972), we can show that a circuit constructed using
farthest insertion has bounds on length and eccentricity. For details, see
(Lamb, 2006), which also demonstrates good empirical performance for this
insertionmethod.
We use a heuristic that seeks to improve on a circuit by exchanging a vertex
on the circuit with another not on it. We adapt a heuristic developed by
Drezner (1984) for the geometric p-centre problem. Hassin et al. (2003) apply

7

the combination ofDyer–Frieze and this heuristic top-centre problems. They
also note that no polynomial bound on its running time is known and show
its error ratio cannot be bounded by a constant. We use it because it has
shown good practical performance.

Suppose C is a circuit with vertices v1, . . . , vp. For each i (1 ≤ i ≤ p), let
Ni = {v ∈ V(G) : d(v, vi) = mind(v, vj)} where the minimum is taken
over j = 1, . . . , n. In other words, Ni is the set of vertices of G that are
at least as near to vi as to any other vertex of C. Thus Ni contains all the
vertices assigned to i. For each i (1 ≤ i ≤ p), let Ki be the set of vertices
that are 1-centres ofNi inG: that is, the set of vertices u ofG that minimise
maxd(u, v) taken over all v ∈ Ni. An exchange candidate is a pair (vi, k)with
k ∈ K \ V(C). TheDrezner heuristic is as follows:

LetC be a circuit.
Repeat

LetU be the set of exchange candidates (x, y) such that if we exchange
xwith y inCwe get a circuit with length at most b and strictly smaller
eccentricity.
IfU 6= ∅ choose (x, y) ∈ U so that the circuit obtained by exchanging x

and y inC has eccentricity as small as possible.
Exchange x and y inC.

untilU = ∅.

We can think of this heuristic as a 1-opt local search algorithm that seeks
to improve the eccentricity without exceeding the circuit bound. Drezner
(1984) originally suggests also a k-opt version of the algorithm. We restrict
exchanges to one vertex at a time so that we have only one new circuit to
check at each step. An alternative approach would allow k-opt exchanges
and solve a tsp problem on each set of vertices tested at each step. Current
and Schilling (1989) use a similar method for the covering tour problem.

We can sometimes shorten a circuit by changing the order of its vertices. This
does not change its eccentricity. Since we are working with a circuits on
a complete graph, changing the order of vertices is a tsp. We try to solve
this tsp using one of the most popular and effective tsp heuristics, the
Lin–Kernighan heuristic. There aremany variations of this. We use essentially
the version of Cook et al. (1998, pp. 247–249) because it limits the number
of rearrangements considered and so terminates reasonably quickly. The
documentation and code in (Lamb, 2007) give full details.

A circuit may contain a vertex whose removal does not increase its eccentric-
ity. And its length cannot increase if the triangle inequality (2) holds. We call

8

the following the shorten circuit heuristic.

LetC be a circuit.
Repeat

LetU be the set of vertices ofC such that ifu ∈ U and removingu from
C gives a circuit with eccentricity at most b and no increase in length.
IfU 6= ∅:
Let u1, . . . , uk be U sorted in decreasing order of improvement in
circuit length
For i = 1 to k:

Remove ui fromC if doing so does not increase the eccentricity of
C.

untilU = ∅.

The next heuristic creates a minimally infeasible solution. The idea is that
Lin–Kernighan or shorten circuit may be more useful if we increase the
length of the circuit before applying it. Nearest good vertex is as follows.

LetC be a circuit.
Let v be the vertex in V(G) \ V(C) nearestC.
Insert v inC.

Heuristic 1, described in Fig. 2, is our first heuristic the subtour centre problem.
We consider improvement relative to the best solution so far found. We
considerC ′ an improvement ofC if both are feasible and eitherC ′ has lower
eccentricity thanC orC ′ has the same eccentricity asC andC ′ is shorter. If a
method finds an improvementC ′ ofCwe replaceCwithC ′.

LetC be an initial candidate circuit.
Use theDyer–Frieze heuristic to try to improveC.
Use theDrezner heuristic to try to improveC.
Repeat:

Use nearest good vertex to insert a vertex inC.
Use Lin–Kernighan to try to shortenC.
Use shorten circuit to try to remove unneeded vertices fromC.
Use theDyer–Frieze heuristic to try to improveC.
Use theDrezner heuristic to try to improveC.

Until no improvement is found.

Figure 2: Heuristic 1

9

In practice, Heuristic 1 is very fast and so we repeat it with different candi-
date circuits as follows. We suppose, as in Section 2, the vertices are labelled
1, . . . , n. Our first candidate circuit is the empty circuit. Thereafter, we use
candidate circuits containing the vertices {1}, . . . , {n}, {1, 2}, {1, 3}, . . . , {1, n},
{2, 3}, We construct each candidate circuit by placing its vertices in ran-
dom order. We only apply the heuristic if the length of the candidate circuit
is at most the bound b.
Aswith the ilp method, we generate a subtour from the best circuit found
by replacing each edge with a shortest path joining its vertices.

4 Implementing the heuristic efficiently

We now consider howwemight implement Heuristic 1 efficiently. There are
two issues. First, we need efficient coding and data structures. Second, there
is no guarantee that each step contributes substantially to performance.This
leads us to develop a simplified heuristic, omitting two steps.
The heuristic and ilp algorithm are both coded in C++. I use two libraries
to help achieve efficient code. The first is the Boost graph library (Siek et al.,
2002; Boost, 2006). It is a template library written in C++. It contains various
data structures to handle graphs and algorithms efficiently. In particular,
it includes efficient algorithms for depth-first search and Johnson all-pairs
shortest paths. We need these to measure eccentricity and find 1-centres.
The data structures are created from templates at compile time, reducing the
run-time overhead often associated with object-oriented programming. The
second library is cplex (Ilog, 2006). It is a well-known efficient library for
linear and integer programming problems.
The combination of cplex and the Boost graph library allows us to quickly
develop code for both the ilp algorithm and for heuristics. It simplifies
translation from an ilp form to a graph form. So we can easily create ilp

constraints of the form of (21), which depend on efficiently finding graph
components.
The data structures and algorithms are given in detail in (Lamb, 2007). The
most important new data structure is one to hold trails. These represent
circuits and subtours. Ideally we want to quickly iterate round a trail, but also
to quickly search through it for a given vertex. To achieve both, I implement
a trail as a multimap using the C++ standard template library (Austern, 1999).
Each vertex is given an integer index andmapped to a pair of iterators. The
first iterator points to a predecessor (if there is one) in the trail, the second
to a successor. Consider a trail withn vertices (including repeats). Since we
represent it as a multimap, we can search for a given vertex in timeO(logn).

10

And the iterators let us to traverse the trail in order in timeO(n).
We now describe a simplified heuristic. Each of the steps in Heuristic 1 can
plausibly help improve a solution. However, each also consumes time and
may contribute little to finding a solution. So we also consider Heuristic 2 in
Fig. 3. It omits the Drezner and Lin–Kernighan steps. Section 5 explains why
we choose to omit them.

LetC be an initial candidate circuit.
Use theDyer–Frieze heuristic to try to improve eccentricity.
Repeat:

Use nearest good vertex to insert a vertex inC.
Use shorten circuit to try to remove unneeded vertices fromC.
Use theDyer–Frieze heuristic to try to improve eccentricity.

Until no improvement is found.

Figure 3: Heuristic 2

5 Numerical results

This section presents numerical results. It compares the performance of the
ilp algorithm and the heuristics across a range of problems.
We need a range of test problems. The tsplib problems (Reinelt, 1995) are
a good choice. They are standard test problems for the tsp and include
problems known to be difficult. We adapt these in twoways. First, we need
length bounds to create subtour centre problems for each tsplib graph. The
optimum tsp length is one possibility. If the subtour length bound is much
greater, the subtour centre problem should become easy. For, then there is a
solution with eccentricity zero, and the larger the bound the more should
we expect to find such a solution. Similarly, if the subtour length bound is
much smaller than the optimum tsp length, we should expect the problem
to become easy because we only have to check small subtours. We consider
bounds on subtour length that are the optimum tsp length or one half or
one third of it.
Second, the tsplib problems typically represent distances on a complete
graph. But we wish to also consider problems where the graph G is not
complete. Clearly, we need only consider G connected. We restrict our
attention toG 2-connected so that any vertex might occur in a solution. We
construct a new problem instance from each tsplib problem we test by
adding edges uniformly at random until we get a 2-connected graph. The

11

new problem instances and the code that generated them are available from
(Lamb, 2007). The problem instances are in a format used bymany tsplib

files, documented in (Reinelt, 1995).
Before we compare Heuristics 1 and 2, and the ilp algorithm in detail, let
us consider why Heuristic 2 might be a reasonable alternative to Heuristic 1.
Although each step of Heuristic 1 may improve the solution there is no guar-
antee that it will do so. Even if it does, we should consider howmuch cpu

time is consumed and howmuch the step contributes to improving the solu-
tion. I investigated these by letting Heuristic 1 run to completion on several
problems (up to 29 vertices) and found two things. First, no individual step
used substantially more cpu time than any other. Second, more than 99%
of the steps that improved eccentricity or circuit length were Dyer–Frieze or
shorten-circuit steps. These suggest that Heuristic 2, in Fig. 3 above, as a good
alternative to Heuristic 1. We retain the nearest-good-vertex step because it is
designed to perturb a solution rather than improve it.
We carry out tests on six problems based on each of the 29 tsplib problems
with 101 or fewer vertices. We report detailed results for 15 problems that are
typical of the whole set.
Tables 1–3 show the results of numerical tests of the ilp algorithm and the
two heuristics. Each test ran with a time limit of eight hours cpu time on the
same computer and operating system: a personal computer with a 3.0 GHz
Pentium 4 processor, 1 Gb ram and the SuSE Linux 10.1 operating system.
The test program recorded the cpu time, eccentricity and length of each
feasible solution that improved over the previous best. The heuristics allow
feasible solutions with two parallel edges. We exclude these from the results
to allow a fair comparison with the ilp algorithm.
Each of Tables 1–3 reports results for five problems. For each problem we
consider three bounds and two variants: tsp is the original tsp graph; cc2
is a 2-connected graph obtained from it as described above. The column
titled best shows the eccentricity of the best solution found by any of the
three methods. Entries in it are integer because the lengths of edges in the
tsplib problems are integer. Bold values indicate valueswhere the solution is
known to be optimum, either because the ilp algorithm ran to completion or
because the problem is a tsp problemwith a known optimum solution. The
columns titled ilp, h1 and h1 show approximately the seconds of cpu time
taken to reach a solution withminimum eccentricity by the ilp algorithm,
Heuristic 1 and Heuristic 2. There is no guarantee that anymethod will find a
minimum-eccentricity solution and a dash indicates when amethod fails.
The last four columns of the tables indicate how quickly each of the three
solutionmethods came to within each of four upper bounds on the eccen-

12

Problem type bound best ilp h1 h2 25% 10% 5% 1%
burma14 cc2 3323 625 0.284 0.02 0.004 21L 21L 21L 21L
burma14 tsp 3323 0 0.468 0.004 0.016 12L 12L 12L 12L
burma14 cc2 1661 757 0.224 0.0 0.0 12L 12L 12L 12L
burma14 tsp 1661 400 0.812 0.004 0.004 12L 12L 12L 12L
burma14 cc2 1107 757 0.02 0.0 0.0 12L 12L 12L 12L
burma14 tsp 1107 406 0.408 0.004 0.0 21L 21L 21L 21L
ulysses16 cc2 6859 904 1.444 0.06 0.012 12L 12L 12L 21L
ulysses16 tsp 6859 0 1.908 0.004 1.3 12L 1L2 1L2 12L
ulysses16 cc2 3429 1504 0.052 0.004 0.004 12L 12L 12L 12L
ulysses16 tsp 3429 1122 0.188 0.084 0.004 21L 21L 21L 21L
ulysses16 cc2 2286 1504 0.012 0.0 0.0 12L 12L 12L 12L
ulysses16 tsp 2286 1387 0.016 0.0 0.0 12L 12L 12L 12L
ulysses22 cc2 7013 1262 4.268 0.084 0.004 21L 21L 21L 21L
ulysses22 tsp 7013 0 239.9 0.02 1.868 12L 12L 12L 12L
ulysses22 cc2 3506 1581 11.36 0.0 0.0 12L 12L 12L 12L
ulysses22 tsp 3506 1122 0.212 0.008 0.028 12L 12L 12L 12L
ulysses22 cc2 2337 1772 0.892 0.004 0.0 12L 12L 12L 21L
ulysses22 tsp 2337 1387 0.04 0.004 0.004 12L 12L 12L 12L
gr24 cc2 1272 258 4.532 0.128 0.024 12L 21L 21L 21L
gr24 tsp 1272 0 0.232 0.032 0.264 21L 1L2 1L2 1L2
gr24 cc2 636 282 1.612 0.004 0.0 21L 21L 21L 21L
gr24 tsp 636 74 11.78 0.008 0.588 12L 12L 21L 12L
gr24 cc2 424 354 1.948 0.02 0.008 21L 21L 21L 21L
gr24 tsp 424 122 16.25 0.012 0.004 21L 21L 21L 21L
fri26 cc2 937 140 6.58 0.044 0.016 21L 21L 21L 21L
fri26 tsp 937 0 1.848 0.008 0.196 21L 12L 12L 12L
fri26 cc2 468 188 2.044 0.004 0.004 12L 12L 12L 12L
fri26 tsp 468 71 18.88 0.068 0.0 12L 21L 21L 21L
fri26 cc2 312 227 0.308 0.18 0.032 21L 21L 21L 21L
fri26 tsp 312 93 1.68 0.02 0.112 12L 12L 12L 12L

Table 1: Numerical results part 1

13

Problem type bound best ilp h1 h2 25% 10% 5% 1%
bayg29 cc2 1610 220 10.56 0.1 0.016 12L 12L 21L 21L
bayg29 tsp 1610 0 2.796 1.616 – 12L 1L 1L 1L
bayg29 cc2 805 257 8.617 0.172 0.012 12L 21L 21L 21L
bayg29 tsp 805 74 546.7 0.176 0.004 12L 21L 21L 21L
bayg29 cc2 536 294 1.844 0.004 1.216 21L 12L 12L 12L
bayg29 tsp 536 121 248.7 165.7 60.52 21L 21L 12L 21L
dantzig42 cc2 699 124 38.29 0.004 0.004 12L 12L 12L 12L
dantzig42 tsp 699 0 166.7 1.936 3852 12L 12L 1L2 1L2
dantzig42 cc2 349 164 38.79 0.02 0.0 21L 21L 21L 21L
dantzig42 tsp 349 34 – 0.304 9.037 21 21 12 12
dantzig42 cc2 233 164 21.73 0.024 0.008 12L 21L 21L 21L
dantzig42 tsp 233 52 7461 0.344 0.024 21L 21L 21L 21L
att48 cc2 10628 1043 517.7 48.73 59.59 21L 12L 12L 21L
att48 tsp 10628 0 24957 125.0 – 21L 12L 1L 1L
att48 cc2 5314 1527 376.2 8.625 0.048 21L 21L 21L 21L
att48 tsp 5314 401 – 0.188 0.708 21 21 21 12
att48 cc2 3542 1783 76.06 71.98 0.416 21L 21L 21L 21L
att48 tsp 3542 739 – 0.056 0.056 12L 12 12 12
berlin52 cc2 7542 701 688.0 5.596 104.4 21L 21L 12L 12L
berlin52 tsp 7542 0 57.84 2.292 – 12L 12L 1L 1L
berlin52 cc2 3771 952 112.1 0.04 0.016 21L 21L 21L 21L
berlin52 tsp 3771 365 – 0.012 0.076 12L 12L 12L 12
berlin52 cc2 2514 1125 37.99 0.012 0.016 12L 12L 12L 12L
berlin52 tsp 2514 426 23230 41.55 0.724 21L 21L 21L 21L
brazil58 cc2 25395 2471 603.0 3.084 0.86 21L 21L 21L 21L
brazil58 tsp 25395 0 9875 1.84 – 21L 21L 1L 1L
brazil58 cc2 12697 2929 262.1 0.564 0.004 21L 21L 21L 21L
brazil58 tsp 12697 1126 – 22.65 18.55 21L 21 21 21
brazil58 cc2 8465 3178 159.0 7.548 0.8 21L 21L 21L 21L
brazil58 tsp 8465 1991 – 0.384 0.008 21L 21 21 21

Table 2: Numerical results part 2

14

Problem type bound best ilp h1 h2 25% 10% 5% 1%
st70 cc2 675 59 7406 – – 12L 12L 12L L
st70 tsp 675 0 4356 415.0 – 12L 12L 1L 1L
st70 cc2 337 93 11232 0.008 0.008 21L 21L 21L 21L
st70 tsp 337 17 – 897.0 – 21L 12 12 1
st70 cc2 225 93 1519 0.008 0.0 21L 21L 21L 21L
st70 tsp 225 28 – 0.732 0.112 21 12 21 21
eil76 cc2 538 36 3381 – – 12L L L L
eil76 tsp 538 0 73.59 301.5 – 12L 1L L1 L1
eil76 cc2 269 46 3300 1.284 10.01 21L 12L 21L 12L
eil76 tsp 269 11 – 0.348 104.5 21L 21L 12 12
eil76 cc2 179 50 1306 0.288 0.12 21L 21L 21L 21L
eil76 tsp 179 15 – 9.409 19.49 21 12 12 12
gr96 cc2 55209 5906 – 13.92 14.92 21L 21 12 12
gr96 tsp 55209 0 – 1527 – 12L 12L 1L 1
gr96 cc2 27604 7551 – 489.9 1071 21L 21L 12L 12
gr96 tsp 27604 1224 – 1435 – 12L 12 12 12
gr96 cc2 18403 8651 4601 11.6 1.784 21L 21L 21L 21L
gr96 tsp 18403 2465 – 1.048 0.208 21 21 21 21
kroA100 cc2 21282 2062 – – 27128 12L 12 2 2
kroA100 tsp 21282 0 – 248.8 – 21L 12L 1L 1
kroA100 cc2 10641 2789 – 39.99 82.85 21L 21 12 12
kroA100 tsp 10641 417 – 4453 5885 21L 12 21 12
kroA100 cc2 7094 3104 15515 25.25 7.973 21L 21L 21L 21L
kroA100 tsp 7094 794 – 1842 269.1 21 12 21 21
eil101 cc2 629 33 – 606.0 – 12L 12 12 1
eil101 tsp 629 0 1270 1335 – 12L 12L 1L L1
eil101 cc2 314 41 15757 3464 11144 21L 21L 21L 12L
eil101 tsp 314 10 – 3.22 82.37 21L 21 12 12
eil101 cc2 209 45 27678 10880 12680 21L 12L 12L 12L
eil101 tsp 209 14 – 373.3 20386 21 21 21 21

Table 3: Numerical results part 3

15

tricity of the best solution. These are calculated as b∗ + p(c − b∗)where b∗ is
the eccentricity of the best solution found, c is the eccentricity of the 1-centre
and p is 0.25, 0.1, 0.05 or 0.01. The 1-centre is easily found and has length zero.
So any reasonable solution should have eccentricity between b∗ and c and
the bounds give a crude indication of how close we are to the best solution
we know of. The entries in the columns show from left to right the order
in which the three methods found a solution: L indicates ilp, 1 indicates
Heuristic 1 and 2 indicates Heuristic 2. If times are identical then ilp is listed
before Heuristic 1 and Heuristic 1 before Heuristic 2. If a method fails to reach
a bound it is not listed.
We see immediately from the results that both Heuristics 1 and 2 perform
well, often finding an optimum solution even in the tsp problems that are
equivalent to travelling salesman problems because they have eccentricity
bound equal to zero. Only in two cases, one with problem st70 and one
with eil76, do neither of the heuristics find the best solution. There is clearly
some increase in solution time as problem size increases, but also dramatic
differences in solution time for similar problems. I have considered regression
models using results for all 29 tsplib problems on 101 to estimate how
solution time increases with problem size but have found nomodel that can
predict with any reasonable confidence how solution time and problem size
are related.

method method
bound ilp h1 h2 total bound ilp h1 h2 total
0% type tsp 3 62 31 96 10% 0 51 48 99

cc2 6 37 60 103 2 39 64 105
total 9 99 91 199 2 90 112 204

1% type tsp 3 62 31 96 25% 0 36 76 112
cc2 6 36 61 103 0 33 76 109

total 9 98 92 199 0 69 152 221
5% type tsp 1 58 37 96

cc2 4 39 61 104
total 5 97 98 200

Table 4: Summary of results

It is difficult to see from Tables 1–3 performance differences between Heuris-
tic 1 and Heuristic 2. Table 4 summarises the data in a way that should make
differences clearer. It shows for each type of problem, for each bound (25%,
10%, 5% and 1%) and for the best solutions found (0%) the numbers of times
eachmethod is first to reach the bound. Where two or more methods find a

16

Df Sum Sq Mean Sq F value Pr(> F)

problem 28 20.56 0.73 3.5166 1.891e-09*
pbound 2 0.81 0.40 1.9345 0.144808
type 1 0.13 0.13 0.6192 0.431468
method 1 7.60 7.60 36.3930 1.974e-09*
bound 1 2.17 2.17 10.4023 0.001282
type:method 1 22.76 22.76 108.9753 < 2.2e-16*
type:bound 1 0.24 0.24 1.1724 0.279066
method:bound 1 15.71 15.71 75.2321 < 2.2e-16*
type:method:bound 1 5.40 5.40 25.8510 4.095e-07*
Residuals 1702 355.46 0.21

Selected coefficients Estimate Std Error t value Pr(> |t|)

(Intercept) 0.39588 0.06686 5.921 3.86e-09*
type tsp 0.29043 0.04170 6.966 4.66e-12*
method h2 0.29012 0.04170 6.958 4.91e-12*
bound -0.17402 0.24057 -0.723 0.46955
type tsp:method h2 -0.65807 0.05897 -11.160 < 2e-16*
type tsp:bound -0.96266 0.34021 -2.830 0.00472
method h2:bound 0.86345 0.34021 2.538 0.01124
type tsp:method h2:bound 2.44627 0.48113 5.084 4.09e-07*

Table 5: Analysis of covariance

solution in the same cpu time, both methods are counted, which is why the
totals exceed 174 (29× 6), the number of test cases. We see immediately that
in each case the proportion of successes for the ilp algorithm is much fewer
than we should expect if all three methods were equally good.

We construct an analysis of covariance model using R (R Development Core
Team, 2006) tomake further inferences from the result. Its dependent variable
takes the value 1 for a method that is the first to reach a solution bound and
zero otherwise. It includes the a factor (pbound) representing the eccentricity
bound b (1, 1/2 or 1/3 of the tsp bound), and all interactions between the
method, problem type and solution bound. We exclude the ilp method
from the analysis. Table 5 summarises the results: * denotes effects with
p-value less than 0.001. We can infer from this model that there are strong
interactions between problem type, solutionmethod and solution bound.

From the selected coefficients, we can infer that Heuristic 2 performs better,
but its performance declines on tsp problems and as the solution bound
(25%, 10%, 5%, 1%, 0) decreases. This is consistent with Table 4 and further

17

supported by an analysis of variance (not reported in detail) excluding cases
with nonzero solution bound. In this the interaction between problem type
and solution method is highly significant while all individual effects have p-
value above 0.2. The coefficient of this effect is also highly significant and we
can infer that Heuristic 1 is better at finding the best solution for tsp problems
while Heuristic 2 is better for cc2 problems.
Although statistical tests are clearly useful, at least for identifying differences
that might appear by chance alone, we must use caution when trying to
generalise from the tests above. The statistical tests assume an independent
random sample of problems. It is difficult to define what a randomly chosen
subtour centre problemmight be.

6 Conclusion

We have looked at two heuristics and one ilp algorithm for the subtour
centre problem. As wemight reasonably expect for anNP-hard problem,
the heuristics typically outperform the ilp algorithm.
For practical applications, Heuristic 2, described in Fig. 3, is probably the most
useful. It is simpler and easier to implement than Heuristic 1 and shows
similar performance. There is some evidence that it performs better on less
dense graphs, such as wemight expect in practical location problems.
The component heuristics of Heuristics 1 and 2 are reasonably general and
it may be useful to investigate how easily they could be adapted to similar
problems. In particular, Heuristic 2 might be adapted so that it can be used
for the cycle centre problem of (Foulds et al., 2004).

References

Akinc, U., Srikanth, K., 1992. Optimal routing and process scheduling for a
mobile service facility. Networks 22, 163–183.

Arkin, E. M., Hassin, R., 1994. Approximation algorithms for the geometric
covering salesman problem. Discrete AppliedMathematics 55, 197–218.

Austern, M. H., 1999. Generic Programming and the STL. Addison–Wesley.

Boost, 2006. http://www.boost.org/, accessed July 2006.

Cook, W. J., Cunningham, W. H., Pulleybank, W. R., Schrijver, A. J., 1998.
Combinatorial Optimization. JohnWiley and sons, New York.

Current, J. R., Schilling, D. A., 1989. The covering salesman problem. Trans-
portation Science 23 (3), 208–213.

18

Drezner, Z., 1984. The p-centre problem—heuristic and optimal algorithms.
Journal of the Operational Research Society 35 (8), 741–748.

Dyer, M. E., Frieze, A. M., 1985. A simple heuristic for the p-centre problem.
Operations Research Letters 3 (6), 285–288.

Foulds, L. R., Wilson, J. M., Yamaguchi, T., 2004. Modelling and solving cen-
tral cycle problems with integer programming. Computers &Operations
Research 31, 1083–1095.

Gendreau, M., Laporte, G., Semet, F., 1997. The covering tour problem. Opera-
tions Research 45 (4), 568–576.

Hakimi, S. L., 1964. Optimum location of switching centres and the absolute
centres andmedians of a graph. Operations Research 12, 450–459.

Hassin, R., Levin, A., Morad, D., 2003. Lexicographic local search and the
p-center problem. European Journal of Operational Research 151, 265–279.

Hutson, V. A., ReVelle, C. S., 1989. Maximal direct covering tree problems.
Transportartion Science 23, 288–299.

Ilog, 2006. cplex, http://www.ilog.com/products/cplex/, accessed Novem-
ber 2006.

Labbé, M., Laporte, G., Rodríguez Martín, I., Salazar González, J. J., 2005.
Locating median cycles in networks. European Journal of Operational
Research 160, 457–470.

Lamb, J. D., 2006. Insertion heuristics for cycle centre problems, Working
Paper Series, Business School, Aberdeen University Research Archive,
http://hdl.handle.net/2164/96.

Lamb, J. D., 2007. http://www.abdn.ac.uk/∼cms127/code.html, accessed
February 2007.

Lin, S., Kernighan, B.W., 1973. An effective heuristic algorithm for the traveling
salesman problem. Operations Research 21, 498–516.

Mesa, J. A., Boffey, T. B., 1996. A review of extensive facility location in net-
works. European Jounal of Operational Research 95, 595–603.

RDevelopment Core Team, 2006. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0.
URL http://www.R-project.org

19

http://www.R-project.org

Reinelt, G., 1995. tspl ib, http://www.iwr.uni-
heidelberg.de/groups/comopt/software/tsplib95, accessed July 2006.

Rosenkrantz, D. J., Stearns, R. E., Lewis II, P. M., September 1972. An analysis
of several heuristics for the traveling salesman problem. Siam Journal on
Computing 6 (3), 563–581.

Siek, J. G., Lee, L.-Q., Lumsdaine, A., 2002. The boost graph library. Addison-
Wesley, Boston.

Slater, P. J., 1982. Locating central paths in a graph. Transportation Science 16,
1–18.

20

	ISSN 0143-07-19.pdf
	ISSN 0143-07-19.pdf
	Introduction
	An integer linear programming formulation
	A heuristic for the subtour centre problem
	Implementing the heuristic efficiently
	Numerical results
	Conclusion

