
                             Elsevier Editorial System(tm) for Science of 

the Total Environment 

                                  Manuscript Draft 

 

 

Manuscript Number: STOTEN-D-18-06694 

 

Title: Evaluation of four modelling approaches to simulate nitrous oxide 

emissions in China's cropland  

 

Article Type: Research Paper 

 

Keywords: nitrous oxide; model simulation; cropland; DAYCENT; DNDC; 

linear model 

 

Corresponding Author: Dr. Kun Cheng, Ph.D. 

 

Corresponding Author's Institution: Nanjing Agricultural University 

 

First Author: Qian Yue 

 

Order of Authors: Qian Yue; Kun Cheng, Ph.D.; Stephen Ogle; Jonathan  

Hillier; Pete Smith; Mohamed  Abdalla; Jianfei Sun; Genxing Pan 

 

Abstract: Process-based models are useful tools to integrate the effects 

of detailed agricultural practices, soil characteristics, mass balance, 

and climate change on soil N2O emissions in soil - plant ecosystems, 

whereas static, seasonal or annual models often exist to estimate 

cumulative N2O emissions under data-limited conditions. A study was 

carried out to compare the capability of four models to estimate seasonal 

cumulative fluxes from 425 field measurements of N2O emissions 

representing 67 studies across China's croplands. The models were 1) the 

DAYCENT model, 2) DeNitrification - DeComposition model (DNDC), 3) the 

linear regression model (LRM) of Yue et al. (2018), and 4) IPCC Tier 1 

emission factors. The DAYCENT and DNDC models were estimated crop yields 

with R2 values of 0.60 and 0.66 respectively; but DNDC showed significant 

underestimation according to bias analysis. For seasonal cumulative N2O 

emission predictions, the correlation of modelled with measured N2O 

emissions had an R2 of 0.14, 0.14, 0.23 and 0.15 for DAYCENT, DNDC, LRM 

of Yue et al. (2018), and IPCC, respectively. No significant bias was 

identified except for the significant underestimation of 0.52 kg N2O-N 

ha-1 with the DNDC model. The modelled daily N2O emission against 

observations from the experimental fields indicated that the DAYCENT and 

DNDC models simulated temporal patterns effectively, although they did 

not capture the emission peaks perfectly. Based on RMSE and bias 

analysis, LRM performed well on N2O emission prediction for paddy rice 

fields, while DAYCENT performed well for wheat and IPCC for maize. All 

models simulated N2O fluxes well for soybeans, but not well for cotton or 

fallow. Moreover, DAYCENT and LRM performed well under different 

fertilizer management (no fertilizer, mineral fertilizer, and organic 

fertilizer), while DNDC significantly underestimated the emissions under 

no fertilizer and when organic fertilizer was applied, as did IPCC when 

organic fertilizer was applied. 

 

Suggested Reviewers: Jamie  Gerber 

University of Minnesota 

jsgerber@umn.edu 

 



Ute  Skiba 

Centre for Ecology and Hydrology 

ums@ceh.ac.uk 

 

Katja  Klumpp 

French National Institute for Agricultural Research 

katja.klumpp@inra.fr 

 

Xiaotang  Ju 

China Agricultural University 

juxt@cau.edu.cn 

 

Liping Guo 

Chinese Academy of Agricultural Sciences 

guoliping@caas.cn 

 

 

Opposed Reviewers:  

 

 



 

 

 

Dear editors, 

 

Herewith we are submitting a manuscript entitled “Evaluation of four modelling approaches to 

simulate nitrous oxide emissions in China’s cropland”, for review and potential publication in 

Science of the Total Environment. This manuscript provides an evaluation of four modelling 

approaches to simulate N2O emissions with 425 field measurements from China. We conclude 

that neither of the models emerged as a clear “best” choice for estimating N2O emissions for 

Chinese cropping systems. 

This work has not been submitted or published elsewhere. The manuscript deals with the true 

results based on a newly established dataset of data collected from published literatures.  

 

Please contact me if you have questions about the manuscript.  We appreciate any consideration 

given to this manuscript for publication in Science of the Total Environment. 
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Evaluation of four modelling approaches to simulate nitrous oxide 1 

emissions in China’s cropland 2 

Abstract: Process-based models are useful tools to integrate the effects of detailed 3 

agricultural practices, soil characteristics, mass balance, and climate change on soil N2O 4 

emissions in soil - plant ecosystems, whereas static, seasonal or annual models often exist to 5 

estimate cumulative N2O emissions under data-limited conditions. A study was carried out to 6 

compare the capability of four models to estimate seasonal cumulative fluxes from 425 field 7 

measurements of N2O emissions representing 67 studies across China’s croplands. The 8 

models were 1) the daily time-step version of CENTURY (DAYCENT), 2) DeNitrification - 9 

DeComposition model (DNDC), 3) the linear regression model (LRM) of Yue et al. (2018), 10 

and 4) IPCC Tier 1 emission factors. The DAYCENT and DNDC models were estimated 11 

crop yields with R
2
 values of 0.60 and 0.66 respectively; but DNDC showed significant 12 

underestimation according to bias analysis. For seasonal cumulative N2O emission 13 

predictions, the correlation of modelled with measured N2O emissions had an R
2
 of 0.14, 0.14, 14 

0.23 and 0.15 for DAYCENT, DNDC, LRM of Yue et al. (2018), and IPCC, respectively. No 15 

significant bias was identified except for the significant underestimation of 0.52 kg N2O-N 16 

ha
-1

 with the DNDC model. The modelled daily N2O emission against observations from the 17 

experimental fields indicated that the DAYCENT and DNDC models simulated temporal 18 

patterns effectively, although they did not capture the emission peaks perfectly. Based on 19 

RMSE and bias analysis, LRM performed well on N2O emission prediction for paddy rice 20 

fields, while DAYCENT performed well for wheat and IPCC for maize. All models 21 

simulated N2O fluxes well for soybeans, but not well for cotton or fallow. Moreover, 22 

DAYCENT and LRM performed well under different fertilizer management (no fertilizer, 23 

mineral fertilizer, and organic fertilizer), while DNDC significantly underestimated the 24 
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emissions under no fertilizer and when organic fertilizer was applied, as did IPCC when 25 

organic fertilizer was applied.  26 

Key words: nitrous oxide; model simulation; cropland; DAYCENT; DNDC; linear model  27 
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1 Introduction 28 

Anthropogenic greenhouse gas (GHG) emissions, a major contributor to climate change 29 

(IPCC, 2013), have increased rapidly across the world by 41% from 38.2 Pg CO2 equivalent 30 

(CO2-eq) in 1990 to 53.9 Pg CO2-eq in 2012 (http://edgar.jrc.ec.europa.eu/). The trend is 31 

projected to continue in coming decades as a result of increasing food demand and limited 32 

resources (Reay et al., 2012). Meanwhile, the Paris Agreement aims to limit global warming 33 

to “well below” 2 degrees Celsius, with an ambition to pursue efforts to limit warming to 34 

below 1.5 degrees Celsius, and many countries have already made commitments to 35 

participate towards achieving these goals. As one of the world's most populous countries, 36 

with 29.3% of the world’s total emissions (Janssens-Maenhout, et al., 2017), China is of key 37 

importance for mitigating global emissions, and has recently pledged “no-increase” in 38 

chemical fertilizer and pesticide in order to achieve peak GHG emissions by the year 2030 39 

(UNFCCC, 2015).  40 

Nitrous oxide (N2O) has a global warming potential (GWP) of approximately 265-310 times 41 

that of carbon dioxide (CO2) over a 100-year timescale (Watson et al., 1996; IPCC, 2007; 42 

IPCC, 2013) with an atmospheric lifetime of approximately 120 years (Prather, 1998). Global 43 

N2O emissions increased to 9.2 Tg N2O in 2012 from 5.4 Tg N2O in 1970. N2O contributes to 44 

secondary inorganic aerosol formation and thus haze pollution in addition to climate change 45 

(Liu et al., 2017). For China, N2O emissions accounted for 16.4% of global emissions 46 

(Janssens-Maenhout, et al., 2017). The most significant source of N2O emissions was 47 

agriculture, accounting for 51% of total national N2O emissions (FAO, 2015). Emissions 48 

from agriculture tripled from 0.36 to 1.21 Tg N2O in China between 1970 and 2014 (FAO, 49 

2015). Given the importance of this source of emissions, reducing uncertainty in its 50 

estimation is an important issue for China to effectively identify ways to mitigate. 51 



4 

 

The Intergovernmental Panel on Climate Change (IPCC) provided in 1997 (IPCC, 1997) a 52 

default global N2O emission factor intended for use in national inventories of 1.25% with the 53 

confidence interval of 0.25-2.25% for fertilizer-induced emission (FIE) from all cropland 54 

(IPCC, 1997). That is, that 1.25% of nitrogen applied in crop systems is released as N2O-N. 55 

This factor was subsequently updated to 1% with the confidence interval of 0.3-3.0% and 0.3% 56 

with the confidence interval of 0.0-0.6% (Tier I approach) from upland crops and paddy rice 57 

cultivation, respectively (IPCC, 2006). Generally, the emission factor approach makes it easy 58 

to calculate the FIE using applied N rate, but also leads to large uncertainties. Therefore, as 59 

recommended by the IPCC (2006), higher Tier methods should be developed to obtain more 60 

representative, country specific emission rates or spatially disaggregated N2O-EFs that are 61 

region and crop-specific.  62 

Linear or nonlinear regression models can be developed to estimate N2O emissions from 63 

croplands as a function of field and management variables based on field measurements 64 

(Bouwman et al., 2002; Gerber et al., 2016; Albanito et al., 2017). For example, Yue et al. 65 

(2018) published a China-specific multi-variate empirical model for N2O emissions to 66 

identify the spatial variability caused by the major drivers. On the other hand, process-based 67 

models have been widely used to estimate N2O emissions and potential effects of global 68 

climate change on the terrestrial ecosystems. Several dynamic process-based models have 69 

been developed to predict N2O emissions informed by an understanding of key soil processes 70 

and mechanisms (e.g. SUNDIAL by Smith et al., 1997; DNDC by Li et al., 1992; 71 

DAYCENT by Ogle et al., 2010). Compared to regression models, most process-based 72 

models simulate the emissions of several GHGs (CO2, CH4, N2O) considering environmental 73 

and management related factors, such as crop growth, soil properties, fertilization and climate. 74 

DAYCENT and DNDC models are both widely-used ecosystem biogeochemistry models 75 

adopted to simulate N2O emissions all over the world (Abdalla et al., 2010). DAYCENT 76 
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simulates C, N, P, K and S dynamics in plant-soil systems (Parton et al., 1998; Del Grosso et 77 

al., 2001). DNDC mainly focuses on nitrification and denitrification for N dynamics from 78 

upland soils and rice paddy systems (Li et al., 1992, 1994).  79 

There are limitations and uncertainties in estimating N2O fluxes from process-based model 80 

simulations, associated with the representation of the mechanistic processes. Frolking et al. 81 

(1998) found that DNDC simulated very low N2O fluxes for a dry site in Colorado. In 82 

contrast, Smith et al. (2007) produced accurate predictions of average seasonal N2O 83 

emissions from the DNDC model for two sites in Eastern Canada, while the DAYCENT 84 

model underestimated N2O emissions. This variability in performance implies that model 85 

inter-comparisons are useful to determine the most appropriate application for a specific 86 

region or cropping system. For many countries, including China, model inter-comparisons are 87 

especially important since many process-based models, in spite of their intent to be generic, 88 

were originally calibrated on data from North-American or European cropping systems. The 89 

objective of this study is to compare the results of four models, namely DAYCENT, DNDC, 90 

LRM, IPCC, by calibrating and evaluating the N2O emission estimates under different 91 

cropping systems and N application rates across the major agricultural regions of China.  92 
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2 Materials and methods 93 

2.1 Model descriptions 94 

DAYCENT, the daily time-step version of CENTURY, is a process-based ecosystem model 95 

developed to simulate carbon (C), N, P, K and S dynamics in plant-soil systems (Parton et al., 96 

1998; Del Grosso et al., 2001). The nitrogen fluxes through the plant, residue and soil organic 97 

matter pools are coupled with C and estimated based on the C transfer between conceptual 98 

soil C pools, and the C:N ratio of organic matter. The model considers symbiotic and 99 

asymbiotic N fixation, and fertilizer additions. Losses of N occur through removal of 100 

vegetation, nitrification, denitrification, NH3 volatilization, leaching and run-off. Daily 101 

weather data, essential management events, and soil texture data are needed as model inputs 102 

(Table 1). For our study, historical runs were performed to initialize the model in accordance 103 

with China-specific conditions (details are described in Cheng et al. (2014)).  104 

The DeNitrification - DeComposition model (DNDC), contains four main sub-models as 105 

follows: the soil climate sub-model calculating hourly and daily soil temperature and 106 

moisture fluxes in one dimension; the crop growth sub-model simulating crop biomass 107 

accumulation and partitioning; the decomposition sub-model calculates decomposition, 108 

nitrification, NH3 volatilization and CO2 production; and the denitrification sub-model 109 

tracking the sequential biochemical reduction from nitrate (NO3) to NO2
−
, NO, N2O and N2 110 

(Li et al., 1992; Li et al., 2000; Abdalla et al., 2010). Version 9.5 of the DNDC model was 111 

applied in the present study (http://www.dndc.sr.unh.edu/). The input data required were the 112 

same as for DAYCENT (Table 1).  113 

A linear regression model approach has also been applied, named as LRM, fitting cumulative 114 

N2O emissions (       ) in kg N ha
-1 

season
-1 

based on the following equation: 115 

http://www.dndc.sr.unh.edu/
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                                                            116 

                                  117 

where        represents the nitrogen fertilizer application in kg N ha
-1

;      is the annual 118 

average temperature (℃);      indicates the fraction of clay (%); values of    for the 119 

different crop type classes are 0 for legume, 0.700 for upland crops, -0.188 for rice; and 120 

values of     for the different base fertilizer are 0 for mineral fertilizer and -0.002 for organic 121 

fertilizer, and 0 for no fertilizer applied. The required data are N fertilizer application rates, 122 

annual average temperature, soil clay content, crop type, and fertilizer type (Table 1). 123 

Finally, using the IPCC default method (2006), annual cumulative N2O emissions (       ) 124 

in kg N ha
-1 

year
-1 

are calculated using the following equation: 125 

                    126 

where        represents the nitrogen fertilizer application in kg N ha
-1

; and values of    are 127 

0.01 and 0.003 for upland crops and paddy rice cultivation, respectively. The only required 128 

data are N fertilizer rates (Table 1). 129 

2.2 Data sources 130 

N2O emissions data were collected during the crop growing season at the experimental sites 131 

(kg N ha
-1

 season
-1

) - defined as the period from planting to harvest for a given crop. We 132 

conducted a literature search in the databases: CNKI, ISI-Web of Knowledge and Google 133 

Scholar, with the search words “nitrous oxide”, “emission”, “chamber”, and “China”. A total 134 

of 134 papers were found and processed according to the publication date, journal category 135 

and data integrity. For these papers, a dataset of 67 studies with a total of 425 field N2O 136 

emission measurements were compiled. The dataset included the following information: 137 

cumulative N2O-N emissions; grain yields; geographic information; soil characteristics 138 

including clay content, C and N content, bulk density, and pH; cropping system; management 139 
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practices; crop types - maize (MA), wheat (WH), rice paddy  (RP), soybean, cotton, rape, and 140 

fallow; and fertilizer types classified into 5 broad categories - Control, Mineral, Organic, 141 

Mineral & Organic (M_O), Controlled-release fertilizer or Nitrification inhibitor (more 142 

detailed information is provided in Table S1). All data were used to test DAYCENT, DNDC, 143 

and the EF method of IPCC. It should be noted that 267 N2O field emission measurements of 144 

the whole database (425 measurements) were used to derive the linear regression model of 145 

Qian et al. (2018), with all the measurements used to test the LRM of Qian et al. (2018), so 146 

the LRM model is not entirely independent of the evaluation data. 147 

Most of the soil, crop, and cultivation management data were obtained from the dataset. 148 

However, missing soils data that were not provided in the papers were extracted from China 149 

Soil Scientific Database (http://www.soil.csdb.cn/) based on the soil type documented for the 150 

experimental site. Similarly, missing daily weather data, including daily maximum/minimum 151 

temperature and precipitation, were obtained from the China Meteorological Data Sharing 152 

Service System (http://new-cdc.cma.gov.cn:8081/home.do) for the station nearest to the 153 

reported site. Regional nitrogen deposition data were based on Xu et al. (2015).  154 

For the process-based models, most of the parameters were based on prior research 155 

(DAYCENT with information from Cheng et al., 2014; DNDC from Abdalla et al., 2010). 156 

Crop growth directly controls soil water and C and N regimes, and hence is crucial for a 157 

biogeochemical model to correctly simulate trace gas flues, such as N2O (Hu et al., 2017). 158 

PRDX (the maximum potential production parameter), a dimensionless constant, was 159 

optimized by simulating crop yields in the range of 1-3 for DAYCENT for each of the 160 

experimental sites. Similarly, the indices of maximum biomass production, biomass fraction, 161 

and biomass C/N ratio of grain, leaf, stem, and root distributions were optimized for yield 162 

simulations of field conditions for DNDC. 163 

2.3 Model validation 164 
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2.3.1 Daily emission evaluation  165 

DAYCENT and DNDC simulation results were evaluated against field measurements of N2O 166 

emissions by comparing the association between measured and modelled temporal patterns of 167 

N2O fluxes, as well as comparing the coincidence between measured and modelled emission 168 

values. Five representative benchmark sites were selected from the major regions of China to 169 

conduct the model evaluation of daily N2O emissions under typical cropping systems (Table 170 

3). Daily measured emission values for model evaluation were extracted either directly from 171 

tables or text, or were extracted from the figures using Getdata Graph Digitizer software 172 

(http://www.getdata-graph-digitizer.com/).  173 

 174 

2.3.2 Model accuracy 175 

Cumulative N2O-N fluxes were estimated as the sum of simulated daily fluxes for 176 

DAYCENT and DNDC models, and directly by LRM and IPCC. Model accuracy was 177 

evaluated by calculating the bias and root-mean-squared error (RMSE) between measured 178 

and modelled values using the following equations: 179 

              
 
                                               180 

                 
 
                                           181 

where,     and    represent the estimated value of the target variable from the fitted equation 182 

and the measured value from the original studies;    is the mean of the observed data; n is the 183 

number of target values; p is the number of parameters in the relevant model; and i is a single 184 

observation.   185 

With the estimated Bias, the t-statistic was used to test for significant differences between 186 

simulated values and measurements (Smith et al., 1997). Bias, RMSE, and a t-test statistic 187 

http://www.getdata-graph-digitizer.com/
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were also calculated to evaluate model performance for each fertilizer and crop type 188 

individually. All the statistical analyses were conducted in R version 3.4.0 (2018) and 189 

Microsoft Excel 2013. 190 

  191 
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3 Results 192 

3.1 Yield simulation 193 

The measured yield data included 283 individual observations (Fig. 1), which ranged from 194 

400 to 15700 kg ha
-1

. The modelled yields ranged from 537 to 16657 kg ha
-1

 for DAYCENT, 195 

and from 548 to 17230 kg ha
-1 

for DNDC. The regression of modelled versus measured yields 196 

had R
2
 values of 0.60 and 0.66, bias estimates of -823 and -578 kg ha

-1
, and RMSE values of 197 

2201 and 2088 kg ha
-1

 for DAYCENT and DNDC, respectively (Table 2). Both models had a 198 

significant relationship with observed values based on different crop types (Fig. 1), but there 199 

were significant differences from the measured values according to t-tests (Table 2). 200 

3.2 Daily N2O emission validation 201 

Seasonal patterns of daily N2O emissions were analysed for 5 sites with latitudes between 202 

28.6° to 47.4° and longitudes from 113.3° to 126.6° (Table 3), representing several different 203 

climate regions and most common cropping systems in China. Seasonal emission patterns 204 

simulated by the DNDC and DAYCENT models were generally similar to the observed 205 

values for most of the experimental period. Also, a significant increasing trend in N2O 206 

emissions was simulated with increasing N application rates, corresponding with 207 

experimental observations. Both DAYCENT and DNDC models failed to model the specific 208 

timing and magnitude of daily N2O emission peaks. Overall, the DNDC model overestimated 209 

emissions on days with high precipitation by a factor of around 2, particularly at the upland 210 

sites (Fig. 2c and 2d). The DAYCENT model overestimated the fluxes upon drainage of rice 211 

cultivation systems (Fig. 2a, 2b and 2e). 212 

3.3 Cumulative N2O emission validation 213 

The observed emissions from 425 field N2O emission measurements across 67 studies (Fig. 1) 214 

ranged from 0 to 11.14 kg N ha
−1

 with N fertilizer applied in the range of 0-600 kg N ha
−1

. 215 
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The regression of modelled versus observed emissions had an R
2
 of 0.14 for both DAYCENT 216 

and DNDC model, 0.23 for LRM, 0.15 for IPCC (Table 1, Fig. 3). Moreover, the LRM had 217 

the lowest RMSE and bias with the values of 1.22 and -0.02 kg N ha
−1

, respectively; the 218 

DNDC model had the highest RMSE of
 
1.48 kg N ha

−1
 and bias of -0.52 kg N ha

−1
 (Table 1). 219 

According to the t-test, the DNDC model results were significantly different from the 220 

observed values, but estimated values were not significantly different from observations for 221 

the other three models (Table 1). 222 

3.4 Model accuracy 223 

We also assessed the impacts of the simulated N2O emissions for different fertilizer and crop 224 

types, and observed that the accuracy of the four models differed (Table 4). The DAYCENT 225 

model estimated N2O emissions from mineral and organic fertilizer types with the lowest 226 

RMSE and bias, and did not differ significantly from the measured values. Conversely, the 227 

IPCC significantly overestimated the emissions with organic fertilization but estimated N2O 228 

emissions with low RMSE and bias for mineral fertilizers. In fact, only the DNDC model 229 

significantly underestimated the emissions under the mineral fertilizer treatments. The 230 

estimated values from all models showed significant differences compared to measured 231 

values under the control treatment with no N inputs. For crop types (Table 5), the LRM 232 

performed well for rice and maize cultivated system, as did the IPCC method for maize, and 233 

the DAYCENT model for wheat. Moreover, all models simulated emissions for soybean well, 234 

but none performed particularly well for cotton and fallow. 235 

N management, and particularly additions, are the most important drivers of soil N2O 236 

emissions (Del Grosso et al., 2009). Given this fact, we further compared the correlations of 237 

N addition rates with observed emission values for the models (Fig. 4; Table 6). Both the 238 

modelled and observed values had a similar response to fertilizer application rate. The 239 

modelled values were higher in the paddy rice system (Fig. 4a) and were lower in the upland 240 
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cropping system (Fig. 4b) compared to the measured values at low N application rates. The 241 

range of the slopes were 0.0018-0.0042 and 0.0039-0.0056 for paddy rice and upland 242 

cropping systems, respectively.  243 

  244 
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4 Discussion 245 

Given the recognised difficulty in estimating N2O emissions precisely and the ongoing 246 

challenge of developing models which perform over a wide range of conditions, model inter-247 

comparisons are an important way to determine a best candidate model for a given region and 248 

to identify potential ways to reduce the uncertainties. Model inter-comparisons have 249 

previously been carried out in several countries (Frolking et al., 1998; Smith et al., 2007; 250 

Abdalla et al., 2010).  251 

Reasonable simulation of crop yield is of key importance to accurately predict N2O emissions 252 

for process-based models of plant-soil systems. The two process-based models, DAYCENT 253 

and DNDC, performed well in simulating crop yield, explaining 64% of the variation in 254 

observed yields with DAYCENT and 71% with DNDC (Table 2, Fig. 1). However, both 255 

models significantly underestimated yields by 823 and 578 kg ha
-1

 for DAYCENT and 256 

DNDC, respectively, as indicated by the bias and t-test (Table 2). Previous studies have 257 

demonstrated reasonably accurate and precise predictions of crop yields in China for both 258 

DAYCENT and DNDC models (Cheng et al., 2013; Qiu & Wang, 2012). However, some 259 

studies suggested some bias in model simulations. For example, Cheng et al. (2014) found 260 

that the DAYCENT model underestimated corn yields by 521.59 kg ha
-1

, and Cui et al. (2014) 261 

found that the DNDC model underestimated the plant biomass for cotton. The bias in DNDC 262 

may be associated with the fact that DNDC does not simulate phosphorus and potassium 263 

impacts on production. In addition, the climate data used for the two process-based models 264 

includes only the maximum/minimum temperature and precipitation, which also might result 265 

in uncertainties for model simulation, and may be improved if other climate variables were 266 

addressed, such as the influence of humidity on transpiration rates and water stress. We found 267 

that the simulated yield varies greatly between control and fertilized plots for DAYCENT, 268 

which resulted in large bias compared with measured values. Production algorithms in 269 
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DAYCENT may be too sensitive to N availability. Sansoulet et al. (2014) also found that 270 

DAYCENT was less effective at predicting biomass under limited N rates compared to 271 

DNDC.  272 

In general, the models were able to simulate the daily flux over time; however, there were 273 

some abnormal peak periods of emissions simulated by both models, compared to the 274 

observed emissions. Specifically, N2O emission peaks often appeared in simulated upland 275 

crops of maize and wheat after heavy rainfall events for DNDC (Fig. 2c-2e), indicating N2O 276 

emissions are highly sensitive to soil moisture dynamics in the models (Lessard et al., 1996; 277 

Frolking et al. 1998; Smith et al., 2002). In addition, Smith et al., (2008) observed that 278 

DAYCENT and DNDC models both had difficulty in capturing soil water content accurately. 279 

Soil moisture dynamics are linked to soil texture. Groffman and Tiedje (1989) suggested that 280 

the smaller average pore size in finer textured soils leads to greater soil water retention and 281 

greater opportunity to create anaerobiosis, while denitrification occurs at lower rates in a 282 

well-drained coarse-textured soil (Bouwman et al., 2002a, 2002b). Thus, there may be an 283 

opportunity to further resolve the relationship between soil texture and water-filled pore 284 

space, and improve model predictions. Also, the accuracy of capturing N2O emission peaks 285 

may be associated with the frequency of sampling, with low frequency sampling (e.g., once a 286 

week or month) missing some of the peaks that are captured by the models. 287 

In general, the four models explained 14%~23% of the variation in observed seasonal 288 

cumulative N2O emissions. N2O emissions are inherently difficult to predict precisely for 289 

reasons stated above; however, this does suggest considerable opportunity for improvement. 290 

Nevertheless, no significant bias was identified except for the significant bias of -0.52 kg N 291 

ha
-1

 for the DNDC model (Table 2). Beheydt et al. (2007) reported an overestimation of 7.4 292 

kg N2O-N ha
-1 

for DNDC based on 22 long-term N2O field experiments. In addition, other 293 

research found that DAYCENT performed better than in this study, with an R-squared of 78% 294 
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which was much higher than the value found in this study (Cheng et al., 2014). In this study 295 

we used more field measurements than Cheng et al. (2014), which may have added 296 

heterogeneity and uncertainty in model simulation. Conversely, Abdalla et al. (2010) 297 

indicated that DAYCENT performed poorly when simulating control plots, with N2O flux of 298 

-57% below the measured values. Additionally, several studies have indicated that model 299 

accuracy varied for different fertilizer and cropping types (Smith et al., 2002; Cheng et al., 300 

2014; Albanito et al., 2017). As shown, the DAYCENT model performs well with mineral 301 

and organic fertilizer types. The IPCC default method could only accurately predict 302 

emissions associated with mineral N fertilization, similar to results from Li et al. (2001).  303 

DNDC did not accurately simulate N2O emissions associated with mineral fertilizer and 304 

paddy rice (Table 4, 5). In contrast, Smith et al. (2002) found the DNDC model prediction of 305 

N2O flux from control, manure, and mineral fertilization corresponded well with observed 306 

measurements from maize in Canada. Regardless, Li et al. (2017) reported that DNDC was 307 

not suitable for China as it lacks a number of features which are crucial for representing 308 

Chinese agro-ecosystems, especially paddy rice cultivation, complex and multiple cropping 309 

systems, and intensive management practices.  310 

There are different target functions for the four models. The predictions of LRM and IPCC 311 

methods were more accurate and precise than the process-based models. While the LRM 312 

model was only used to calculate fertilizer-induced N2O emissions based on the underlying 313 

datasets that were used to derive these functions (and therefore not independent data), this 314 

does indicate that if a reasonably comprehensive dataset of N2O emissions exists for a given 315 

region, then better predictions will be obtained from a linear regression model than by 316 

calibrating and deploying a process-based model. The two process-based models, in theory, 317 

should be able to capture more heterogeneity and be applied across a broader range of 318 

croplands in China. One of the key strengths of DAYCENT is the initialization of SOM pools 319 
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to accurately represent the carbon stocks, and the linkage between C and N flows through the 320 

plant-soil system. The N associated with carbon lost in respiration (30% to 80% of the carbon 321 

flow is respired) is mineralized and becomes substrate of nitrification and denitrification 322 

(DAYCENT user manual). DNDC also has strengths related to fertilizer applications at 323 

varying depth, and a more mechanistic representation of N dynamics with Michaelis-Menten 324 

dynamics (Li et al., 2006).  325 

Process-based models, such as DAYCENT and DNDC, can also represent more management 326 

impacts than empirical functions, particularly if data are limited for fitting a statistical model. 327 

For example, Xu et al. (2000) showed a significant effect of splitting fertilizer into three or 328 

more applications in DNDC, reducing N2O emissions by 25%. Field practices of irrigation 329 

and tillage also influence N2O fluxes, and their impacts can be represented in these 330 

simulation models. 331 

Our results indicated that the accuracy of model simulations may differ across a range of N 332 

rates. Cheng et al. (2014) showed DAYCENT tended to underestimate N2O emissions at 333 

higher measured emission rates, which were also seen for paddy rice in Fig. 4a. Albanito et al. 334 

(2017) studied N2O-EFs and found that they tended to decrease with the N application rates 335 

approaching 1% in crops fertilized above 300 kg N ha
-1

, and the IPCC-EF would tend to 336 

underestimate N2O emissions by approximately 21% below a fertilization of 200 kg N ha
-1

.  337 

Similarly, Shcherbak et al. (2014) indicated that the IPCC-EF would underestimate and 338 

overestimate N2O emissions in croplands fertilized above and below the threshold of 339 

approximately 150 kg N ha
-1

. Sansoulet et al. (2014) also showed the different sensitivity 340 

under limited and high N rates. The negative intercept for DNDC might indicate that 341 

emissions are under-estimated with no fertilizer applied. 342 

Environmental factors (especially climate) and human-induced activities (e.g. fertilizer, 343 

tillage, straw return, irrigation) influence N2O producing processes over both temporal and 344 
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spatial scales, resulting in heterogeneous N2O emissions at field level (Flessa et al., 2002). 345 

Cumulative seasonal N2O emissions based on the closed static chamber method were used in 346 

most of the experiments at monthly or weekly intervals, which may lead to high inherent 347 

variability of N2O fluxes. Ju et al. (2011) showed that a sampling frequency of 3 or 6 days led 348 

to 112-236% overestimation of total N2O emissions. Process-based models may predict a flux 349 

peak during times, such as after a rainfall event, which is not represented in observational 350 

datasets with a low sampling frequency.  Hence, an overestimation or underestimation of 351 

N2O fluxes from upland soils may occur with static chambers, and more continuous 352 

measurements will likely reduce uncertainties in evaluating models (Yao et al. 2009; Ju et al. 353 

2011).  354 
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5 Conclusion 355 

The performance of the four models varied for the cropping systems and fertilization 356 

management practices. Consequently, we conclude that neither of the models emerged as a 357 

clear “best” choice for estimating N2O emissions for Chinese cropping systems.  In the short 358 

term, it may be best to adopt the methods based on linear regression models to calculate the 359 

N2O emissions for rice, maize, wheat and soybeans, although even this approach has 360 

limitations, leading to significant differences between observed and modelled emissions for 361 

cotton, fallow or rape. Further development is needed to represent regional conditions in 362 

China associated with dominant soil properties, agricultural practices, cropping systems, and 363 

climate conditions, in order to refine empirical models and improve the suitability of process-364 

based models in Chinese conditions. 365 
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Fig.1 Comparison of measured and simulated crop yields for experimental sites across China 482 

Fig. 2 Comparison of observed and modeled daily patterns of N2O emissions from rice paddy 483 

sites. (The representation of letters “a” to “e” were explained in Table 3) 484 

Fig. 3 Comparison of observed and simulated cumulative N2O emissions for four models 485 

Fig. 4 Comparison of observed and modelled growing season N2O emissions from a range of 486 
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Table 1 Models input data for models simulation. 

Data items DAYCENT DNDC LRM IPCC 

Geographical 

location 
Longitude; Latitude; Latitude / / 

Climate factors 

Daily maximum temperature; daily 

minimum temperature; daily 

precipitation; N decomposition;  

The same as for 

DAYCENT 

Annual average 

temperature 
/ 

Soil properties 
SOC; C/N ratio; soil clay, silt, sand 

content; soil bulk density; pH;  

The same as for 

DAYCENT 
Soil clay content / 

Growing time 
Crop type; sowing date; harvested 

date;  

The same as for 

DAYCENT 
Crop type / 

Management 

practices 

N applied rate, date and type; 

irrigating amount and date; tillage 

intensity and date; straw returning 

amount  

The same as for 

DAYCENT 

N rate; N fertilizer 

type  
N rate 

 “/”: The parameters were not required to be entered. 
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Table 2 Statistics describing the performance of DAYCENT and DNDC model 

in grain yield simulations. 

Items Models R-square RMSE Bias t-test 

Yield 
DAYCENT 0.64 2201 -823 s 

DNDC 0.71 2088 -578 s 

N2O-N 

DAYCENT 0.14 1.35 -0.15 ns 

DNDC 0.14 1.48 -0.52 s 

LRM 0.23 1.22 -0.02 ns 

IPCC 0.15 1.42 -0.09 ns 
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Table 3 Information of sites selected for simulating daily fluxes of N2O 

emissions. 

Site 
Latitude, 

Longitude 
Region 

Cropping 

system 

Typical N fertilizer 

rate (kg ha-1) 

References 

Heilongjiang (a) 47.4°,126.6° Northeast China RP 95.4 Yue et al., 2005 

Hunan (b) 28.6°,113.3° 
South-Central 

China 
RP-RP 135(RP), 135(RP) 

Wang et al., 2014 

Liaoning (c) 41.8°,123.6° Northeast China MA 160 Cheng et al., 2016 

Hebei (d) 40.0°,118.1° North China MA 180 Lu et al., 2015 

Jiangsu (e) 32.0°,118.8° East China RP-WH 250(RP), 250(WH) Zhou et al., 2016 
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Table 4 The performance of four models in estimating N2O emissions under 

different fertilizer management 

Fertilizer type Model RMSE Bias t-test 

No fertilizer 

DAYCENT 0.81 -0.21 s 

DNDC 0.87 -0.51 s 

LRM 0.73 0.16 s 

Mineral 

fertilizer 

DAYCENT 1.52 -0.06 ns 

DNDC 1.71 -0.66 s 

LRM 1.37 -0.16 ns 

IPCC 1.50 -0.07 ns 

Organic 

fertilizer 

DAYCENT 0.53 0.01 ns 

DNDC 0.54 -0.15 ns 

LRM 0.77 0.41 s 

IPCC 1.65 1.40 s 
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Table 5 The performance of four models for estimating N2O emissions 

associated with crop types 

Crop 

type 
Model RMSE Bias t-test 

Crop 

type 
Model RMSE Bias t-test 

Rice 

DAYCENT 1.02 0.11 ns 

Cotton 

DAYCENT 3.14 -3.10 s 

DNDC 1.00 -0.41 s DNDC 4.43 -4.25 s 

LRM 0.93 -0.04 ns LRM 3.54 -3.39 s 

IPCC 0.94 -0.34 s IPCC 2.34 -2.34 ns 

Maize 

DAYCENT 1.68 -0.32 ns 

Fallow 

DAYCENT 1.46 -1.09 s 

DNDC 1.72 -0.51 s DNDC 1.51 -1.26 s 

LRM 1.38 -0.16 ns LRM 1.21 -0.73 s 

IPCC 1.64 0.05 ns IPCC 2.04 -1.72 s 

Wheat 

DAYCENT 1.19 -0.06 ns 

Rape 

DAYCENT 0.69 0.35 ns 

DNDC 1.33 -0.55 s DNDC 1.54 -1.33 s 

LRM 1.29 0.48 s LRM 0.86 0.73 s 

IPCC 1.56 0.52 s IPCC 0.46 -0.09 ns 

Soybean 

DAYCENT 0.89 -0.44 ns 
     

DNDC 0.59 -0.13 ns 
     

LRM 0.99 -0.58 ns 
     

IPCC 0.85 -0.59 ns 
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Table 6 Statistics describing the correlations of observed or simulated N2O 

emissions with nitrogen fertilizer application rates in Figure 4. 

  Paddy rice Upland crop 

  Slope intercept R-square Slope intercept R-square 

Observed 0.0034 0.3180 0.1250 0.0042 0.8404 0.1174 

DAYCENT 0.0042 0.3270 0.2383 0.0046 0.4888 0.3872 

DNDC 0.0027 -0.0243 0.3418 0.0056 0.0561 0.3316 

LRM 0.0018 0.4722 0.4522 0.0039 0.8809 0.4463 
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